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Abstract 

Given several different new product development projects and limited resources, this paper is concerned 

with the optimal allocation of resources among the projects. This is clearly a multi-objective optimization 

problem (MOOP), because each new product development project has both a profit expectation and a loss 

expectation, and such expectations vary according to allocated resources. In such a case, the goal of 

multi-objective new product development (MONPD) is to maximize the profit expectation while 

minimizing the loss expectation. As is well known, Pareto optimality and the Pareto front are extremely 

important to resolve MOOPs. Unlike many other MOOP methods which provide only a single Pareto 

optimal solution or an approximation of the Pareto front, this paper reports a novel method to calculate the 

complete Pareto front for the MONPD. Some theoretical conditions and a ripple-spreading algorithm 

together play a crucial role in finding the complete Pareto front for the MONPD. Simulation results 

illustrate that the reported method, by calculating the complete Pareto front, can provide the best support to 

decision makers in the MONPD.  

 

Key words: Multi-Objective Optimization, New Product Development, Pareto Front, Ripple-Spreading 

Algorithm. 

 

1 INTRODUCTION 

New product development plays an extremely crucial role in company survival and success in the 

modern increasingly competitive global market; every year, billions of dollars are invested in various new 

product development projects (NPDPs) worldwide [1]-[5]. Obviously, not all NPDPs are successful, and 

there never lack examples where a big-brand company collapses after an NPDP because it misjudges 

market trends and/or consumes considerable of capital. To avoid such a tragedy, an effective practice is 

"not to put all eggs in one basket". Therefore, a company may often have several NPDPs proceeding at one 

time. Each NPDP has both a profit expectation and a loss expectation, and such expectations vary 

according to the resources allocated to the NPDP. Basically, the greater the allocated resources the higher 

the profit expectation is. Increased allocated resources may reduce the failure possibility during the 

development stage of an NPDP, but cannot necessarily provide a better guarantee of market success. If 

anything goes wrong during the marketing stage due to many external, uncertain and uncontrollable factors, 

the larger resource allocation only means a bigger loss. Common sense in the financial sector predicts that 

a high profit expectation usually comes with a big loss expectation [6]. Therefore, decision makers often 



 
 

 

have to make a choice between high-profit-big-risk options and low-profit-small-risk options, based on 

their risk taking willingness and understanding of a market environment. Since available resources are 

always limited, decision makers usually need to optimize their investment portfolio, in order to maximize 

the profit expectation while minimizing the loss expectation – two conflicting objectives. In this paper, we 

are particularly concerned with the problem of allocating limited resources among several NPDPs, so that 

the overall profit expectation can be maximized while the overall loss expectation can be minimized. This 

clearly fits in the scope of a multi-objective optimization problem (MOOP), and hereafter we call the 

concerned problem multi-objective new product development (MONPD). 

To resolve the MONPD, we need to make use of the Pareto front. As the most important concept in 

MOOPs, the Pareto front originates from the concept of Pareto efficiency proposed to study economic 

efficiency and income distribution [7]. In general MOOPs, a solution is called Pareto optimal if there 

exists no other solution that is better in terms of at least one objective and is not worse in terms of all other 

objectives [8] [9]. The projection of a Pareto optimal solution in the objective space is called a Pareto point. 

All Pareto points, i.e., the projections of all Pareto optimal solutions, compose the complete Pareto front of 

an MOOP. 

The history of such problems is long resulting in the development of many methods for resolving 

various MOOPs. Basically, most methods can be classified into three categories: aggregate objective 

function (AOF) based methods [10]-[14], Pareto-compliant ranking (PCR) based methods [15]-[25], and 

constrained objective (COF) function based methods [26]-[30]. An AOF method combines all of the 

objectives of an MOOP to construct a single aggregate objective function, and then resolve the 

single-objective problem to get a Pareto optimal solution. However, it involves subjectiveness in 

constructing an AOF, and it often fails to find some Pareto optimal solutions if the Pareto front is not 

convex. A PCR method may overcome such drawbacks of AOF methods by operating on a pool of 

candidate solutions and favoring non-dominated solutions. Population-based evolutionary approaches 

(such as genetic algorithms, particle swarm optimization and ant colony optimization) often play a key role 

in PCR methods to identify multiple Pareto optimal candidate solutions. It should be noted that, due to the 

stochastic nature of PCR methods, their outputs are Pareto optimal candidate solutions, not necessarily 

real Pareto optimal solutions. Theoretically, COF methods, by optimizing only one single objective while 

treating all other objectives as extra constraints, may avoid both the subjectiveness of AOF methods and 

the loss of Pareto optimality in PCR methods.  

Calculating complete Pareto front is a relatively less discussed topic in the study of MOOPs. 

Theoretically, some nonlinear AOF based methods can prove that for any Pareto point on the Pareto front 



 
 

 

a set of AOF coefficients definitely exists which can lead to that Pareto point. However, the difficulty is 

that there a lack of a practicable method to find those sets of coefficients that will help to identify the 

complete Pareto front [28]. For PCR methods, guaranteeing the complete Pareto front is theoretically a 

mission impossible, largely because of the stochastic nature of employed population-based approaches 

[15]. COF methods, given well posed objective function constraints, may theoretically guarantee the 

finding of the complete Pareto front but like AOF methods, how the practicality of finding proper 

constraints is a big issue [30]. Therefore, most existing methods can only produce an incomplete or 

approximate Pareto front [10], [15], [26]-[30]. In particular, as pointed out in [26], very few results are 

available on the quality of the approximation of the Pareto front for discrete MOOPs. 

We have recently proposed a deterministic method which can, theoretically and practically, guarantee 

the finding of complete Pareto front for discrete MOOPs [31]. Some theoretical conditions and a general 

methodology were reported in [31], and a case study on a multi-objective route optimization problem 

(ROP) was used to prove the correctness and practicability. In this paper, we will particularly apply the 

method of [31] to the MONPD. Actually, there is a substantial body of literature on optimizing investment 

portfolios [6], [32]-[38] similar to MONPD, but little work has been reported to calculate complete Pareto 

front of such investment portfolio optimization problems. To calculate the complete Pareto front for 

MONPD, firstly, we will improve the theoretical conditions and the methodology reported in [31]. The 

most challenging part in the method of [31] is to design an algorithm that is capable of finding the global 

kth best solution for any given k in terms of a given single objective. Designing such an algorithm is largely 

problem-dependent, and is often difficult because most optimization algorithms only calculate the global 

1st best solution. MONPD is quite different from the ROP in [31]. For example, in the ROP, every 

objective needs to be minimized; however, in MONPD, the profit expectation needs to be maximized 

although the loss expectation is to be minimized. Therefore, MONPD demands a new algorithm to 

calculate the general kth best (rather than only the kth smallest) single-objective solution. By successfully 

developing a new ripple-spreading algorithm for MONPD, this paper will further prove the practicability 

and the potential of the methodology of resolving discrete MOOPs by calculating complete Pareto front. 

The remainder of this paper is organized as following. Section 2 gives some theoretical results for 

calculating complete Pareto front for discrete MOOPs. Section 3 describes mathematically the details of 

MONPD. Section 4 reports a ripple-spreading algorithm for MONPD. Simulation results are given in 

Section 5, and the paper ends with some conclusions and discussions on future work in Section 5.  



 
 

 

2 THEORETICAL RESULTS FOR CALCULATING THE COMPLETE PARETO FRONT 

We have recently reported some theoretical results and a general methodology to guarantee, 

theoretically and practicably, the finding of the complete Pareto front for discrete MOOPs [31]. The work 

in [31] is the theoretical foundation of this application paper. In this section, we will introduce some 

improvements to the work of [31], in order to better apply to MONPD later. 

First of all, we need a general mathematical formulation of discrete MOOPs as following: 
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subject to  

   0≤)(xhI ,                                                                       (2) 
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where gi is the ith objective function of the total NObj objective functions, hI and hE are the inequality and 

equality constraints, respectively, x is the vector of optimization or decision variables belonging to the set 

of ΩX, and x is of discrete value. A Pareto-optimal solution x* to the above problem is so that there exists 

no x that makes  

   )()( *xgxg ii ≤ , for all i=1,..,NObj,                                                   (5) 

   )()( *xgxg jj < , for at least one j ∈[1,..,NObj].                                       (6) 

The projection of such an x* in the objective space is called a Pareto point. The above problem usually has 

a set of Pareto optimal solutions, whose projections compose the complete Pareto front.    

2.1 Theoretical conditions  

According to the theoretical results in [31], we have the following statements for discrete MOOPs.  

Lemma 1: Suppose we sort all discrete Xx Ω∈  according to a certain objective function gj(x), and xj,i 

has the ith smallest gj. For a given constant c, if there exists an index k that satisfies   

   )()( ,, 1+<≤ kjjkjj xgcxg ,                                                       (7) 

Then the number of Pareto points whose gj≤c is no more than k, and all the associated x values are included 

in the set [xj,1,…,xj,k].      

Lemma 2: Suppose we have a constant vector ],...,[
ObjNcc1 , the element cj is for objective function gj, 

and after sorting all discrete Xx Ω∈  according to each objective function gj, we have kj satisfying 

Condition (7). If for any j=1,…,NObj,  
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then the total number of Pareto points is no more than  

        ∑
=

≤
ObjN

j
jPP kN

1

,                                                               (9) 

and all associated x values are included in the union set  
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For more details about Lemma 1 and Lemma 2, one may refer to [31]. Based on Lemma 1 and Lemma 

2, [31] reported a methodology which employs an iteration process to calculate the kj best solutions in 

terms of objective function gj, for all j=1,…,NObj. In the iteration process, kj is increased step by step for all 

j=1,…,NObj, until a set of ],...,[ 1 ObjNkk  is found to make Condition (8) hold. 

In this paper, we give an upper bound for kj (or upper bound for cj),  j=1,…,NObj, in order to improve the 

computational efficiency of the methodology in [31]. To this end, we need the following new theorems. 

Theorem 1: Suppose there exist 
ObjNxx ,...,1  such that for any ],...,1[ ObjNj ∈ , 

   )()( iiji xgxg ≤ , for all i=1,..,NObj.                                        (11) 

Then all Pareto-optimal solutions are included in the union set  
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 Proof: Assume Theorem 1 is false. Therefore, there exists at least one Pareto-optimal solution, say x*, 

that does not belong to the union set ΩU2, which means, according to the definition of ΩU2 in Eq.(8), we 

have *)()( xgxg iii <  for all i=1,..,NObj. Then for any ],...,1[ ObjNj ∈ , we have     

   )()()( *xgxgxg iiiji <≤ , for all i=1,..,NObj.                                  (13) 

This means 
ObjNxx ,...,1  are all more Pareto efficient than x*. In other words, x* is not a Pareto-optimal 

solution at all. Therefore, the assumption must be false, and Theorem 1 must be true. 

Corollary 1: Obviously, the set of the first best single-objective solutions ],...,[ 1,1,1 ObjNxx  satisfies 

Condition (11) in Theorem 1. Therefore, all Pareto-optimal solutions are included in the union set  
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With the union set defined by Eq.(14), we have 

Theorem 2: The constant vector ],...,[
ObjNcc1  in Lemma 2 has an upper bound defined by 

)( 1,
,...,1
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Ni
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Obj=

= , j=1,…,NObj.                                             (15) 

Suppose the jc  in Eq.(15) is the ( jk )th best solution in terms of gj, then jk  can be used as an upper bound 



 
 

 

for kj in Lemma 2, j=1,…,NObj.  
Proof: Assume Theorem 2 is false, i.e., for at least a ],...,1[ ObjNj ∈ , there exists no jj cc ≤  that can 

make Condition (8) hold. This means that the complete Pareto front is not covered by the union set ΩU1, in 

other words, there exists at least one Pareto-optimal solution x* that has )( *xgc jj < . Then according to 

Eq.(14) and Eq.(15), one has that this x* is not included in the union set ΩU3, which is obviously against 

Corollary 1. Therefore, Theorem 2 must be true. 

2.2 General methodology  

In this sub-section, based on Theorem 1 and Theorem 2, we will modify the methodology reported in 

[31], in order to improve the computational efficiency. The modified general methodology to calculate the 

complete Pareto front for discrete MOOPs is described as following: 

Step 1. Design a problem-dependent deterministic algorithm that is capable of calculating any global kth 

best solution in terms of a single objective function gj, for any j=1,…,NObj.  

Step 2. Calculate the set of the first best single-objective solutions ],...,[ 1,1,1 ObjNxx , and then determine 

the upper bound set ],...,[ 1 ObjNcc  according to Eq.(15).  

Step 3. Initialize kj=1, for every j=1,…,NObj. Initialize the Pareto front associated x value set as 

∅=Ω PFX . Calculate the  (kj+1)th global best solutions in terms of the single objective function gj, 

i.e., calculate 1, +jkjx , for every j=1,…,NObj.  

Step 4. If for every j=1,…,NObj,  

        )()( ,, 1+<
jj kjjkjj xgxg ,                                                         (16) 

       )()( ,, ij kiikji xgxg ≤ , for all i≠j,                                                 (17) 

then go to Step 6. Otherwise, fix kj for any j that has Conditions (16) and (17) both satisfied or has 

jkjj cxg
j

≥)( , , and increase kj by one, i.e., kj=kj+1, for the j that has Condition (16) satisfied for the 

most i values. 

Step 5. For the newly increased kj, calculate the  (kj+1)th global best solutions in terms of gj, i.e., update 

1, +jkjx . Go to Step 4. 

Step 6. Calculate the union set of ],...,[ ,1, jkjj xx , j=1,…,NObj, denoting as UXΩ . 

Step 7. For any UXx Ω∈ , if there exist no UXx Ω∈(  such that )()( xgxg ii ≤(
, for all i=1,..,NObj, and  

)()( xgxg jj <( , for at least one j ∈[1,..,NObj], then we know the point ],...,[
ObjNgg1  is a Pareto point. 

Therefore, add x into PFXΩ , i.e., }{xPFXPFX +Ω=Ω .   



 
 

 

The basic methodology in [31] needs to keep calculating the k best solutions in terms of each 

single-objective function in the iteration process, whilst the modified methodology only calculates the kth 

best single-objective solution in Step 2, Step 3 and Step 5. Another improvement in the modified 

methodology is the introduction of upper bound jc  in Step 4, which avoids unnecessary operation of 

increasing any kj with jkjj cxg
j

≥)( , . These modifications may obviously improve the computational 

efficiency to find the complete Pareto front for a discrete MOOP. 

3 A MATHEMATICAL FORMULATION OF MONPD 

Basically, MONPD is to allocate limited resources among several different new product development 

project (NPDPs), in order to maximize the profit expectation and minimize the loss expectation. Here we 

give a mathematical description of the MONPD as following, which is illustrated by Fig.1. 

 

Fig.1. Illustration of MONPD 

Suppose we have limited resources, X , to support NP NPDPs. Let x denote an allocation strategy, and 

0≤x(i)≤ X  denote the resources allocated to NPDP i, for i=1,...,NP. With allocated resources x(i), the profit 

expectation of NPDP i is g1,i(x(i)), and the associated loss expectation is g2,i(x(i)). Then for an allocation 

strategy x, the total profit expectation and loss expectation are  
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respectively. Then, with g1 and g2 as two objective functions, MONPD is formulated as 

1maxg
x

 , and 2min g
x

                                                     (20) 

subject to (18), (19) and 
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=
PN

i

ixX
1

)(  .                                                             (21) 

The work in [31] is used to calculate complete Pareto front for discrete MOOPs. In this study, we 

assume there is a minimal investment unit x∆  for resource allocation, and for any i=1,...,NP, we have  

      xinix ∆= )()(  ,                                                             (22) 

where n(i)≥0 is an integer. Suppose there are NTNIU investment units in total, i.e., 

      xNX TNIU ∆=  ,                                                             (23) 

then we know for each i=1,...,NP, x(i) has (NTNIU+1) choices, i.e., },...,,0{)( xNxix TNIU ∆∆∈ . With 

the minimal investment unit x∆ , Constraint (21) is equivalent to  

∑
=

=
PN

i
TNIU inN

1

)(  .                                                          (24) 

     

 (a) Contribution curves to g1                                      (b) Contribution curves to g2 
Fig.2. Illustration of contribution curves 

 

The complexity of MONPD mainly comes from gj,i(x(i)), which determines the contribution of NPDP 



 
 

 

i with allocated resources x(i) to objective function gj, i=1,...,NP, and j=1,2. Basically, a contribution curve 

is nonlinear, and the MONPD involves a combination of different shaped nonlinear contribution curves. 

The complexity is illustrated by the contribution curves in Fig.2, where there are 3 NPDPs, and therefore 6 

contribution curves of different shapes, which are totally project-dependent. Regarding the profit 

expectation of NPDP i, there is usually a threshold xT,i, and if the allocated resources to NPDP i is below 

the threshold, i.e., x(i)≤xT,i, then the project has no way to succeed, and therefore will make no profit at all. 

Regarding the loss expectation of NPDP i, when x(i)≤xT,i, the loss often linearly increases as x(i) goes up, 

and the gradient largely depends on what percentage of x(i) is invested in reusable facilities.  

 

 

Fig.3. Complete Pareto front and approximations  

 

For discrete MONPD, a typical complete Pareto front is given in Fig.3, which is composed of squares 

and solid lines. Since the MONPD needs to maximize g1 and minimize g2 simultaneously, the Pareto front 

is an increasing curve. It should be noted that the Pareto front of the ROP in [31] is a decreasing curve, 

because all objectives need to be minimized there. Therefore, as will be explained later in Section 4.2, the 

method design for MONPD is rather different from that for the ROP in [31]. Such an increasing curve in 

MONPD implies a large profit expectation always comes with a large loss expectation. Any point in the 

right-bottom side of the Pareto front is impossible to achieve. For any point in the left-top side of the 

Pareto front, the associated x is not Pareto optimal, which means there exists at least one solution leading 

to a larger profit expectation without increasing the loss expectation, or a smaller loss expectation without 

decreasing the profit expectation. Fig.3 also gives two approximations of the Pareto front and one is 

plotted by circles and dash-and-dot lines, and the other by triangles and dash lines. As illustrated in Fig.3, 

there is often a difference between the complete Pareto front and an approximation. The difference is 



 
 

 

usually uncertain to decision makers, in other words, if an approximation of the Pareto front is provided, 

decision makers will have no idea whether there exists any other Pareto-optimal solution (e.g., in Fig.3, 

Approximation 2 misses out one Pareto point, which is probably the best tradeoff between two objectives), 

or even whether a provided solution associated with a point on the approximated Pareto front is really 

Pareto-optimal (e.g., in Fig.3, Approximation 1 actually has 3 false Pareto points). Therefore, using an 

approximation of Pareto front implies (i) some solutions most preferable by decision makers might be 

actually missed out, and (ii) arguments might occur in the decision making process because different 

decision makers could choose different approximation methods. Obviously, if we can calculate the 

complete Pareto front rather than approximating it, then decision makers will be free of the above issues. 

With the complete Pareto front at hand as illustrated in Fig.3, decision makers in MONPD can easily and 

accurately find an ideal resource allocation strategy according to, say, their risk-taking willingness and 

market uncertainties. 

4 A RIPPLE-SPREADING ALGORITHM FOR MONPD 

4.1 Basic idea of ripple-spreading algorithm (RSA) 

It is well known that many successful computational intelligence techniques are actually inspired by 

certain natural systems or phenomena [39]. For instance, genetic algorithms are inspired by natural 

selection and evolutionary processes, artificial neural networks by the animal brain, particle swarm 

optimization by the learning behavior within a population, and ant colony optimization by the foraging 

behavior of ants. Following the common practice of learning from nature in the computational intelligence 

domain, we have recently reported some ripple-spreading models and algorithms [40]-[44]. The 

hypothesis behind these is the following: the natural ripple-spreading phenomenon, as a pervasive 

phenomenon in the universe, reflects certain fundamental organization/optimization principles in nature, 

and such principles are to be found in many systems and problems around us. Taking such inspiration 

when developing models and algorithms to study such systems and problems, we are likely to better 

match/reflect the embedded principles of these systems, and therefore generate more effective solutions. 

For example, by mimicking the natural ripple-spreading phenomenon, we developed some useful models 

to study complex networks [40], air traffic management [41], and epidemic dynamics [42], and some 

effective algorithms to tackle ROPs [43], [44].  

Basically, ripple-spreading algorithms (RSAs) achieve optimality by taking advantage of the 

optimization principle reflected in the natural ripple-spreading phenomenon, which is very simple: a ripple 

spreads out at the same speed in all directions, and therefore it reaches spatial points in order according to 



 
 

 

their distance from the ripple epicenter, i.e., it always reaches the closest point first. Intuitively, one may 

get a feeling that this optimization principle could be used to find the closest interesting points (e.g., to find 

the closest gas station), or more generally, to find the shortest path. Therefore, we successfully developed 

some effective RSAs for ROPs in [43] and [44]. Most existing methods for ROPs are centralized, 

top-down, logic-based search algorithm. Differently, RSAs are actually decentralized, bottom-up, 

agent-based simulation model. By defining the behavior of individual nodes, optimality will automatically 

emerge as a result of the collective performance of the model. As illustrated in Fig.4, the first ripple starts 

from the source node, i.e., node 1; when a ripple reaches a directly connected but unvisited node, that new 

node will be activated to generate its own ripple; when all of those nodes that are directly connected to the 

epicenter node of a ripple are visited (not necessarily by the same ripple), that ripple will then stop and be 

eliminated; when the destination node, i.e., node 4, is visited for the first time, the first shortest route is 

then found [43]; the simulation keeps going on until the destination node is reached for the kth time, then 

the k shortest routes are found in order [44]. The above process is likened to a ripple relay race, where 

ripples compete with each other to reach the destination node. During the entire process, all ripples always 

travel at the same preset constant speed. 

 
 

Fig.4. Illustration of RSA to find the shortest path 
 



 
 

 

4.2 Bespoke RSA for MONPD 

The most difficult part of the general methodology in Section 2.2 is to find/design a problem-specific 

algorithm to calculate the k best single-objective solutions to an MOOP. In this sub-section, we will design 

an RSA which is capable of calculating the k best solutions in terms of the profit expectation g1 and the 

loss expectation g2, respectively. 

As discussed in Section 4.1, the RSA in [44] can resolve the k shortest paths problem. To apply a RSA 

to the MONPD, we need to transform the MONPD into a special ROP. Please note that the ROP in [44] is 

a minimization problem, whilst optimizing profit expectation is a maximization problem. Therefore, we 

have to make some modifications before we can apply RSA to the MONPD.    

To transform the MONPD into a ROP, we need to construct two directed route networks for the 

MONPD, one for g1 and the other for g2. In the route network for gj, firstly we set up a dummy source node. 

Then we add NTNIU+1 new nodes, representing different resource allocations to NPDP1. Then we establish 

directed links from the source to each of these NTNIU+1 nodes. In the route network for g1, the length of the 

link which connects to the node of xn∆  allocation to NPDP1 is set as  

      )()( 1,11,11, xngXgln ∆−= , n=0,…, NTNIU,                                              (25) 

and in the route network for g2, the length is 

      )(1,21, xngln ∆= , n=0,…, NTNIU.                                                       (26) 

Assume we have added NTNIU+1 nodes associated with different resource allocations to NPDP i, i<NP-1. 

Then we add another NTNIU+1 new nodes, representing different resource allocations to NPDP i+1. Then 

we establish directed links from NPDP i nodes to NPDP i+1 nodes subjected to Constraint (21) or (24). In 

the route network for g1, the length of the link which connects to the node of xn∆  allocation to NPDP i+1 

(i.e., x(i+1)= xn∆ ) is set as  

      )()( 1,11,11, xngXgl iiin ∆−= +++ , n=0,…, NTNIU,                                              (27) 

and in the route network for g2, the length is 

      )(1,21, xngl iin ∆= ++ , n=0,…, NTNIU.                                                       (28) 

After we have added NTNIU+1 nodes associated with different resource allocations to NPDP NP-1, then we 

add a dummy destination node, and establish a directed link from every NPDP NP-1 node to the destination. 

As will be explained later, the length of a link connected to the destination, denoted as ln,NP, will be 

dynamically set up during the following ripple relay race. Fig.5 gives a simple illustration about how to 

construct a route network for MONPD, where NP=4 and NTNIU=3.  



 
 

 

With the constructed route network for gj, we can develop a ripple relay race to calculate the k best 

solutions in terms of objective gj for MONPD. Basically, the new race process is similar to that in [44], 

which aims to resolve the k shortest paths problem, and the major modifications are: (i) a new ripple at a 

node needs to select out feasible links from established links according to Constraint (21) or (24); (ii) the 

length ln,NP needs to be dynamically reset according to the resource allocations of NPDP1 to NPDP NP-1. 

Since a ripple-spreading algorithm is actually a bottom-up, agent-based simulation model we can easily 

define problem-specific node behavior to achieve the above two modifications. Therefore as a result of the 

above two modifications, the route network for gj in MONPD can be viewed as a dynamic network rather 

than the static ones in [31], [43] and [44].  

 

 

Fig.5 The construction of route network for gj in MONPD 

 

The following are the details of the new ripple relay race to calculate the k best solutions in terms of 

objective gj for MONPD. 

Step 1. Set the ripple spreading speed as s. Set time t=0. Let nDNR=0 denote how many times the dummy 

destination node has been reached by ripples. Start an initial ripple at the dummy source node. In the 

relay race, every ripple needs to record which existing ripple triggers it, and which node it originates. 

For the initial ripple at the dummy source node, it is triggered by no other existing ripple. 

Step 2. If nDNR<k, update t=t+1, and repeat the following process. For each existing ripple, increase its 

radius by s. Compare its radius with the length of every feasible link. As emphasize before, the route 

network of MONPD is a dynamic network. Although we have established a static network topology 

to run the ripple relay race, for a ripple originating from the NPDP i node of xin ∆)( , i=2,...,NP-2, not 



 
 

 

all established links are feasible to travel on. Suppose a stimulating ripple passes the NPDP m node 

of xmn ∆)( , m=1,...,i-1, and then trigger a new ripple at the NPDP i node of xin ∆)( . Then, for this 

new ripple, an established link connected to the NPDP i+1 node of xin ∆+ )1(  is feasible if  

      ∑
+

=

∆≥
1

1

)(
i

m

xmnX .                                                    (29) 

The dynamic feature of the MONPD network also results from the length of a link from an NPDP 

NP-1 node to the dummy destination node, which depends on the so-far route along which the 

stimulating ripple of the current NPDP NP-1 ripple travels. Suppose the stimulating ripple passes the 

NPDP i node of xin ∆)( , i=1,...,NP-2, and the current NPDP NP-1 ripple originates from the NPDP 

NP-1 node of xNn P ∆− )1( , then in the route network for g1, the link length from the NPDP NP-1 

node of xNn P ∆− )1(  to the dummy destination node is 

      ))(()(
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i
NNNn xinXgXgl ,                                         (30) 

and in the route network for g2, the link length is  
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i
NNn xinXgl .                                                    (31) 

If the radius is larger than a feasible link,  

Step 2.1. If the end node of the feasible link is not the dummy destination node, then a new ripple 

will be triggered at the end node of the feasible link, and the initial radius of the new ripple is the 

radius of the stimulating ripple minus the length of the feasible link.  

Step 2.2. If the end node of the feasible link is the dummy destination node, then update nDNR= 

nDNR+1. Track back the current ripple to reveal the (nDNR)th best solution in terms of objective gj. 

If nDNR=k, go to Step 3. 

Step 3. Stop the ripple relay race, and output the k best solutions in terms of objective gj. 

It is easy to derive that the kth shortest path in the constructed route network for gj is associated with the 

kth best solution in terms of optimizing the value of gj (i.e., maximizing g1 or minimizing g2). With the 

above ripple-spreading algorithm, the methodology in Section 2.2 becomes practicable for MONPD. One 

may argue that, for the sake of computational efficiency, the methodology in Section 2.2 demands an 

algorithm to calculate the kth best single-objective solution rather than the k best single-objective solutions. 

This is not a problem at all. When integrating the above ripple-spreading algorithm into the methodology 

in Section 2.2, the ripple relay race will be initialized once and only once. Every time when the dummy 



 
 

 

destination node is reached by a ripple, the race process will be paused or frozen. Then the newly found 

best solution will be checked with all previously found best solutions, to see if the complete Pareto front is 

covered. If not, then the race process will be resumed to find the next best solution. 

The optimization of profit expectation g1 defined in (20) is a maximization problem, to which the RSA 

in [26, [43] and [44] cannot apply directly. The setup of link length according to (25), (27) and (30) in 

the route network for g1 actually converts the original maximization of g1 into a minimization problem. 

This design enables the calculation of the kth largest profit expectation by the RSA. Similar to 

approaches in [43] and [44], one may derive that the optimality of the RSA reported in this section is 

guaranteed by the optimization principle reflected in the natural ripple-spreading phenomenon. In other 

words, the reported RSA can theoretically guarantee the finding of the kth best single-objective solution 

for MONPD. Therefore, applying the general methodology in Section 2.2 to calculate the complete 

Pareto front of MONPD becomes practically possible.  

5 SIMULATION RESULTS 

In this section, we present some simulation results to demonstrate the practicability and effectiveness of 

the proposed method to calculate the complete Pareto front for MONPD. There are three parts of 

simulation results: (i) comparative results with a brute-force search (BFS) method to prove the discovery 

of the complete Pareto front; (ii) comparative results with an aggregate objective function (AOF) based 

method and a Pareto-compliant ranking (PCR) based method to show the advantage of new method; (iii) 

analyses based on the complete Pareto front to illustrate the usefulness of the new method. In the 

simulation, the total budget X  has 9 options: [10 15 20 25 30 35 40 45 50] (million money unit), which 

represent 8 scenarios. Resources need to be allocated to five different NPDPs, whose profit expectations 

and loss expectations are given in Fig.6. Basically, the profit expectations all go up as the allocated 

resources increase. For NPDP1 to NPDP4 (e.g., traditional categories of products such as clothes, toys and 

food), the profit expectation will approach a certain upper bound gradually, while for NPDP5 (e.g., 

high-tech products such as online games), the profit expectation rises exponentially. Both expectation 

curves of NPDP3 are piece-wise, and this is usually related to contracted order of customized product. In 

other words, a new product is especially developed according to the order of a certain customer, and once 

developed successfully, will be sold for sure (therefore the loss expectation may become zero once the 

basic order is fulfilled), but only to that customer. Further development may be carried out beyond the 

basic order, but the customer is not contracted to buy or pay a higher price. Therefore, the loss expectation 

goes up from zero again. NPDP2 is a more generalized case of NPDP3.    



 
 

 

In the comparison with BFS, the minimal investment unit x∆  is set as 1 million, so that the simulation 

results can be better plotted to demonstrate the advantage of new method. Some results are given in Table 

1 and Fig.7, where NNS is total number of solutions explored by a method, NPPF is number of Pareto points 

found by a method, NSS is the total number of solutions in the solution space, and NNS/NSS indicates the 

search efficiency of a method. Firstly, the simulation results confirm that the Pareto fronts identified by the 

new method are exactly the same as those found by the BFS. Table 1 shows that the Pareto fronts found by 

the new method have exactly the same number of Pareto points as those by the BFS. From Table 1, one can 

also see the new method has a much better search efficiency than the BFS, and in general, the advantage 

becomes more significant as the problem complexity increases (i.e., when X  goes up). Fig.7 gives four 

examples to illustrate why the new method is much more computationally efficient. According to the 

theories in [31], the solutions explored by the new method are only those pink star points (including all 

Pareto point plotted as red circles), which are below or on the right-hand side of the yellow dash lines in 

Fig.7. Those yellow dash lines are drawn according to the kth best solutions which trigger the termination 

criteria of the new method, i.e., Conditions (16) and (17) in Section2.2. For example, in the case of Fig.7(c), 

the 7th best solution in terms of g1 and the 6th best solution in terms of g2 satisfy the Conditions (16) and 

(17). Because of the ripple-spreading nature when searching for the kth best single-objective solution, the 

new method simply stops before any more solution is explored. Those green star points in Fig.7 are all 

solutions which are not explored by the new method. When comparing those green star points and those 

pink ones, one may get an intuitive feeling how computationally efficient the new method could be against 

the BFS.    

 

 

Fig.6 Contribution curves used in the simulation 



 
 

 

 

Table 1 Comparative results between BFS and the new method ( x∆  is set as 1 million) 

 X =10m X =15m X =20m X =25m X =30m X =35m X =40m X =45m X =50m 
 

BFS 
NNS 1001 3876 10626 23751 46376 82251 135751 211876 316251 
NPPF 5 10 9 10 13 7 5 12 29 

NNS/NSS 1 1 1 1 1 1 1 1 1 
New 

method 
NNS 12 62 122 83 198 34 12 66 306 
NPPF 5 10 9 10 13 7 5 12 29 

NNS/NSS 0.0120 0.0160 0.0115 0.0035 0.0043 0.0004 0.0001 0.0003 0.001 

 

(a)  X =20m                    (b) X =30m 

    

(c)  X =40m                    (d) X =50m 

     

      Fig.7 Completeness of the calculated Pareto fronts ( x∆  is set as 1 million)  

 

Now, we compare the new method with two of the most popular MOOP methods: one is an AOF 

method, and the other is a well known PCR method, i.e., the NSGA-II in [19]. This time, we increase the 

problem complexity by setting x∆ =0.2 million. In the AOF method, in a similar fashion to traditional 



 
 

 

portfolio optimization [32], the two objective functions g1 and g2 are integrated as follows 

      21 )1( gwwgg AOF −+= ,                                                   (32) 

where 10 ≤≤ w  is a weight. In the simulation, for each scenario of MONPD, we change value of w from 0 

to 1 with a step of 0.01. For each w value, we run the AOF method, and get a Pareto point. Then we use all 

Pareto points generated by the AOF method to approximate the true Pareto front. In the simulation, the 

NSGA-II has a population size of 100, a crossover probability of 0.5, a mutation probability of 0.1, and 

evolves 200 generations. For each scenario of MONPD, the NSGA-II is run for 100 times. Fig.8 gives the 

complete Pareto fronts found by the new method, and Table 2 gives the results of different methods, where 

NPPF shows how many real Pareto points a method has found, NTPP is total number of real Pareto points in 

a certain scenario, and PFCPF is the probability for a method to find the complete Pareto front. From Table 

2, one can see clearly that: (i) the reported new method is the best, because it can always guarantee the 

finding of the complete Pareto fronts for the MONPD; (ii) except in the scenario of X =40m (where the 

Pareto front is convex), the AOF method cannot find any complete Pareto front, because those fronts are 

not convex (see Fig.8); (iii) NSGA-II is better than the AOF method, but due to its stochastic nature, 

NSGA-II cannot guarantee to find the complete Pareto front for the MONPD every time, in particular, the 

probability of success drops significantly in complex scenarios such as X =45m and X =50m. Please note 

that, during a run of the NSGA-II, a set of currently non-dominated solutions is developed, and it is the 

final set of currently non-dominated solutions, not the last generation of chromosomes, that is used to 

approximate the Pareto front. Therefore, in the case of X =50m, although the population size, i.e., 100, is 

smaller than the total number of Pareto points, i.e., NTPP=176, the NSGA-II may still find the complete 

Pareto front in some runs. However, when compared with the new method, the chance for the NSGA-II to 

success is very poor in the case of X =50m. From Table 1, Table 2, Fig.7 and Fig.8, one may conclude that 

the capability of calculating complete Pareto front gives the new method an obvious advantage against 

existing methods.  

 

Table 2 Comparative results between AOF, NSGA-II and the new method (x∆  is set as 0.2 million) 

 X =10m X =15m X =20m X =25m X =30m X =35m X =40m X =45m X =50m 
AOF NPPF/NTPP 17/19 42/44 7/40 40/44 40/57 4/17 12/12 26/55 41/176 

PFCPF 0 0 0 0 0 0 1 0 0 
NSGA-II NPPF/NTPP 18.25/19 41.28/44 37.92/40 41.35/44 53.19/57 14.84/17 10.29/12 47.51/55 122.52/176 

PFCPF 0.96 0.91 0.92 0.90 0.86 0.88 0.86 0.72 0.35 
New 

method 
NPPF/NTPP 19/19 44/44 40/40 44/44 57/57 17/17 12/12 55/55 176/176 

PFCPF 1 1 1 1 1 1 1 1 1 

 



 
 

 

(a) X =10m                                             (b) X =15m                                           (c) X =20m                            

         

 

(d) X =25m                                           (e) X =30m                                           (f) X =35m                           

         

(g) X =40m                                         (h) X =45m                                           (i) X =50m 

         

Fig.8 Calculated Pareto fronts in different scenarios of MONPD  

(x axis is g1, and y axis is g2; x∆  is set as 0.2 million) 

 

Finally, we will show what good things a complete Pareto front may do for decision makers in MONPD. 

One reason for why AOF methods are widely accepted in the practice of MOOP is because decision 

makers have to make only one single choice anyway. Once decision makers can agree on and provide a set 

of weights, AOF methods will output a unique Pareto optimal solution as the final choice. Given a set of 

weights, a complete Pareto front can no doubt also help decision makers with making the same single 



 
 

 

choice. In the case of MONPD, decision makers just need to provide a coefficient α to indicate how much 

loss risk (g2) they are willing to take to get a unit profit expectation (g1). Then in the objective space, we 

move a straight-line with α as the gradient, from the right-bottom towards the left-top, until it touches the 

Pareto front, and the point of tangency gives the ideal choice to decision makers. Although AOF methods 

can also find such an ideal choice given the value of α, the new method offers much more detail to decision 

makers. In particular, a complete Pareto front provides the most comprehensive support to backup 

solutions. Fig.9 gives some examples in the MONPD scenario of X =40m and x∆ =0.2m. Basically, a 

gambling manager may go with the Pareto point at the right top (e.g., s/he is willing to take a risk of 16.2 

units of loss for one unit profit). A cautious manager can choose the Pareto point at the left bottom (e.g., 

even a risk of 0.1 units of loss seems too much). A reasonable manager willing to take a risk of 0.89 units 

of loss for one unit profit can choose the green Pareto point. Although the AOF method can do the same 

thing once α is specified, it cannot provide sufficient backup solutions. For example, from Fig.9, one can 

see that, once the complete Pareto front is available, then for the gambling manager willing to take a risk of 

16.2 units loss for one unit profit, s/he may actually choose the second right top Pareto point, which offers 

almost the same profit expectation but with an obviously smaller loss expectation. This is a significantly 

beneficial thing offered by the new method.    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4, 30, 6, 0, 0]; 
α = 16.2 

[1.8, 32.2, 6, 0, 0]; 
α = 0.89 

[0, 34, 6, 0, 0]; 
α = 0.1 

Profit expectation: g1 
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      Fig.9 Using complete Pareto front to help with single-choice making (X =40m and x∆ =0.2m) 

 

As mentioned in Section 1, AOF methods are often criticized for their elements of subjectivity as they 

demand weights from decision makers. For the new method, the coefficient α largely relied on the risk 

attitudes of the decision makers and their understanding of the current and future market environments. No 

doubt there are significant uncertainties and no decision makers can be 100% sure about the value of α they 

provide. A complete Pareto front can minimize the influence of such uncertainties. With a complete Pareto 

front at hand, we can easily and accurately work out for what range of α value each individual Pareto point 

may serve as the ideal choice for decision makers. Fig.10 gives an illustration in the MONPD scenario of 

X =20m and x∆ =0.2m. If we invest 8.6m and 11.4m  in NPDP1 and NPDP3, and nothing in NPDP2, 

NPDP4 and NPDP5, respectively (the associated Pareto point is plotted as a solid green circle), 

respectively, then the complete Pareto front tells that, for any 0.34≤ α ≤ 3.79 (because of uncertainties in 

risk taking willingness and market environment), the solution is still the ideal choice. The capability of 

accurately assessing to what extent a solution may serve as the ideal choice is no doubt highly useful to 

decision makers in MONPD. This is another good thing the new method can do beyond the existing 

methods. Obviously the new and advantageous decision-making analyses demonstrated by Fig.9 and 

Fig.10 are firmly rooted in the capability of calculating complete Pareto front. This apparently verifies the 

importance of the methodology described in Section 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α = 0.34 
 

α = 3.79 
 

[8.6, 0, 11.4, 0, 0];  
The ideal choice when  

0.34≤ α ≤ 3.79 
 

Profit expectation: g1 
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Fig.10 The extent to which a Pareto-optimal solution serves as the ideal choice (X =20m and x∆ =0.2m) 

6 CONCLUSIONS AND FUTURE WORK 

Profit expectation and loss expectation are two concerns of decision makers in front of several new 

product development (NPD) projects. The decision of how to allocate limited resources among projects in 

order to maximize the profit expectation and minimize the loss expectation (a challenging task) falls in the 

scope of a multi-objective optimization problem (MOOP). As a key concept in the study of MOOPs, the 

Pareto front can theoretically provide the best support to decision makers, but unfortunately, there is often 

a lack of practical methods to find the complete Pareto front, and most existing methods only give an 

approximation to it. Based on our previous theoretical work, this paper develops a practicable method to 

calculate the complete Pareto front for multi-objective new product development (MONPD). Some new 

theoretical results are reported to guarantee optimality, and then a ripple-spreading algorithm for 

calculating the kth best single-objective solution is developed to deliver practicability. The simulation 

results clearly show that finding the complete Pareto front can provide the best support to decision makers 

of MONPD, because, for example, it enables decision makers to conduct many new useful analyses which 

are basically impossible based on an approximation of Pareto front.  

It should be emphasized that the design of algorithm for calculating the kth best single-objective 

solution is highly problem-dependent and often not an easy task, so, the general applicability and 

tractability of the theoretical methodology adopted demands further sustained effort to be reinforced in 

future study. In particular, more comparisons need to be conducted not only for benchmark MOOPs which 

already have many mature methods to calculate Pareto front, but also for those newly emerging MOOPs 

which lack effective methods to resolve them. Only in this way can the potential of the reported 

methodology be fully explored.        
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