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Abstract: This paper considers a novel image compression technique called 

Hybrid Predictive Wavelet coding. The new proposed technique combines the 

properties of predictive coding and discrete Wavelet coding. In contrast 

to JPEG2000, the image data values are pre-processed using predictive 

coding to remove inter-pixel redundancy. The error values, which are the 

difference between the original and the predicted values, are discrete 

wavelet coding transformed. In this case, a nonlinear neural network 

predictor is utilised in the predictive coding system. The simulation 

results indicated that the proposed technique can achieve good compressed 

images at high decomposition levels in comparison to JPEG2000. 
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As it can be noted from Figure 8, at decomposition levels 1, 2 and 3, the visual quality of the 
reconstructed images for the proposed HPNNWA and JPEG2000 is very good and it is not easy to 
notice the difference between the original image and the constructed image for both systems. 
  
- The comparison is mainly based on the PSNR which is the most widely used approach. Are there 
other measures that can be used to emphasize further the advantages of the proposed approach. 
 
For all the experiments, the authors have added the mean absolute value of the error as another 
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proposed approach. 
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data" -  please rephrase, it is confusing. 

Revision Notes



 
This paragraph was replaced by the following:  
In the proposed work, Differential Pulse Code Modulation (DPCM) or Predictive Coding was used to 
remove inter-pixel redundancy and produce Prediction Errors (PE) which has smaller entropy than 
the original image data. 
 
4) Figure 4 is unclear. 
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6) Section 5.1 - 2nd last para- please rearrange the paragraph. 
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These results indicated that the FLNN has achieved better results in comparison with the NARX and 
the MLP predictors. Hence, functional link neural network predictor was utilised in the proposed 
HNNPWA image compression system.  
 
Reviewer #3: The references to be arranged in sequence, for example, on page 4 the sequence has 
been changed from reference 4 to 15. 
 
The authors understand that the Neurocomputing journal requests the use of numeric references 
style with no empathise on the order of the references as shown in their latest open access paper: 
Y. Choi, S. Ozawa, M. Lee, “Human Intention Recognition based on Eyeball Movement Pattern and 
Pupil Size Variation “, Neurocomputing, 2014.  

However, as requested by the reviewer the order of the references has been re-arranged.   

 
 On Page 5, Figure 2, I would recommend writing proper scale for x-axis. 
 
As Figure 2 is just a redraw of Figure 1 with the frequency decreasing rather than the pixel values. 
Including the pixel values in the x-axis will make the figure confusing to the readers rather than 
clarifying the picture. Hence we have not included the x-axis values. To illustrate this, Figure 2 will 
look like this:  



 
 
We are certainly happy to include the x-axis in Figure2 in the final manuscript if the reviewer insists 
on this.  
 
For Page 9, I would suggest to make Figure 4 clearer (i.e. the neurons structure) 
 
The authors have made Figure 4 clearer.  
 
In section 5.1; it has been mentioned that 10% to 20% or even the complete image is used as a 
training sample. If you can justify your choice here that will help other researchers.  
 
In our experiments, we have utilised 10% to 20% or a complete image or several images combined 
together to look at the best number of training set used for training the image neural network 
predictor. Our extensive simulations indicated that there are conflicting results. The training error 
and the mean square error (performance indicators) improved consistently as the number of tested 
image rows was increased for two of the test images (Peppers.bmp and Zelda.png) and the 
performance indicators reduced as the number of tested image rows for the Baboon.bmp and 
Barbara.png test images was increased.  
Hence we can’t say that 10% or 20% is enough for the training the neural network predictor and 
therefore extensive simulations are still required for training any neural network. This explanation 
was added to the text of the paper for better clarification. 

The results on tables 2 to 7, I would suggest to add under compressed file size for (HPWA and 
JPEG2000) systems (i.e Bytes) as written on the original file size column.  Furthermore, that applies 
for table 8 and the unit for PSNR in dB. 
 
The compressed size of the images were already added to Tables 2, 7 under heading Compressed 
File Size (JPEG file size + DPCM overhead)  for the proposed technique and Compressed file size for 
the JPEG2000. For more clarity, the authors have added the bytes in parentheses.  The average 



image sizes were also included in Table 8 under heading Average File size and we have also included 
the Bytes in parentheses for clarification.  
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Abstract- This paper considers a novel image compression technique called Hybrid 

Predictive Wavelet coding. The new proposed technique combines the properties of 

predictive coding and discrete Wavelet coding. In contrast to JPEG2000, the image 

data values are pre-processed using predictive coding to remove inter-pixel 

redundancy. The error values, which are the difference between the original and the 

predicted values, are discrete wavelet coding transformed. In this case, a nonlinear 

neural network predictor is utilised in the predictive coding system. The simulation 

results indicated that the proposed technique can achieve good compressed images 

at high decomposition levels in comparison to JPEG2000. 

Keywords—Neural Network, predictive coding, image compression, quantisation. 

1. Introduction:  

Digital image compression is a topical research area in the field of multimedia 

processing. Image and video compressions are essential for image transmission 

applications such as TV transmission, video conferencing, remote sensing via 

satellite (aircraft, radar or sonar) and facsimile transmission of printed materials as 

well as where pictures are stored in databases, such as archiving medical images, 

finger prints, educational and business documents and drawings. The major focus is 

to develop different compression schemes that provide good visual quality with fewer 

bits to represent digital images.  

JPEG2000 Image Coding Standard was produced by the Joint Photographic Experts 

Group (JPEG) under the auspices of the International Standards Organization (ISO) 

as the successor for their earlier image coding standard JPEG. As expected, 
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JPEG2000 is more efficient than JPEG in terms of the compression ratio and the 

quality of the reconstructed image (at a fixed compression ratio) [1]. 

Although JPEG2000 offers a range of new and very important features, it has not 

used widely in some application areas such as web applications and mobile 

computing, where JPEG is still the most widely used standard. The reasons for this 

are mainly attributed to the computational complexity of the standard which makes 

image coding a slow process. Furthermore, the small increase in compression ratio  

has not seemed to convince the application developers that the benefit is enough to  

justify the extra computational complexity. 

Several image compression techniques such as directionlets based methods [2], and 

hybrid methods that integrate Discrete Wavelet Transform (DWT) and fractal 

coding [3] or Discrete Cosine Transform (DCT) [4] are still being investigated to 

achieve high compression ratios without noticeable loss in the image quality. 

Delaunay et al. [5] suggested the use of an image compression scheme with a 

tuneable complexity-rate-distortion trade-off and wavelet transform. Their technique 

was applied for the compression of satellite images. While Bita et al. [6] showed the 

criterion satisfied by an optimal transform of a JPEG2000 compatible compression 

scheme, using high resolution quantisation hypothesis and without the Gaussianity 

assumption. 

 

Figure 1: Frequency distribution of the pixel values of the test image Barbara.bmp 
(512×512) 
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Let us consider the frequency distribution of the pixel values of the test image 

Barbara which is a resolution of (512×512) pixels of grey-scale values between 0 

and 255.  

Figure 1 shows the frequency distribution of the pixel values. As it can be noticed, 

some pixel values are repeated more than others.  

Generally speaking, an image that is an ideal candidate for compression should 

have: 

1. Large amounts of data redundancy e.g. small numbers of pixel values are 

repeated many times while most other pixel values are repeated only few times. 

2. Redundant data that is generally in large homogenous regions. 

By inspecting Figure 1, it is obvious that it has relatively large amounts of data 

redundancy since some values are repeated more than 2000 times while other 

values are repeated less than 500 times. However, the graph in Figure 1 cannot be 

interpreted easily. Sorting the pixel values in descending order will result in the graph 

shown in Figure 2. 

 

Figure 2:  The frequency distribution of the pixel values of the test image 
Barbara.bmp (512×512) plotted in descending order 
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In general, the effectiveness of image coding improves when the entropy of the 

representation reduces.   

This paper proposes a novel image compression technique based on predictive 

coding, neural networks and DWT which we call Hybrid Neural Network Predictive 

Wavelet and Arithmetic (HNNPWA) image coding. In the proposed work, Differential 

Pulse Code Modulation (DPCM) or Predictive Coding was used to remove inter-pixel 

redundancy and produce Prediction Errors (PE) which has smaller entropy than the 

original image data. In order to improve the performance of the proposed system, the 

neural network is utilised as a nonlinear predictor structure.  

The remainder of the paper is organised as follows. Section 2 presents the 

application of neural networks in image compression. Section 3 illustrates various 

neural network architectures that have been used in the proposed system which 

includes the structure of the NARX neural network and the functional link neural 

network.  Section 4, discusses the structure of the proposed Hybrid Neural Network 

Predictive Wavelet Image Compression System while section 5 shows simulation 

results with in depth discussion. Finally, section 6 demonstrates the conclusion and 

direction for future works. 

2. The Application of Neural Networks In Image Compression:  

Dianat et al [7] used MLPs as predictor structures in DPCM. The network consists of 

3 input units (the immediate causal neighbours), 30 hidden units and 1 output unit 

representing the predictor value. Their experiments have shown an improvement of 

4 dB in the SNR, in comparison to linear prediction. He et al [8] reported similar 

results, while stressing the use of the quantised prediction error in the network cost 

function. The main disadvantages with using MLPs are long training times, complex 

network architecture and that there is no clear defined scheme to extract the 

information acquired by the network, such that it can be utilised in a similar prediction 

task. 

Manikopoulos [9] applied higher-order predictors (a special type of functional-link 

networks [10]), which take into account the non-linear interactions of the input terms, 

thus achieving efficient input-output mappings without the need of hidden layers. In 

this case, the output of  n-th order HONN is given by: 
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where T0(i) and T1(i) are first order terms, while T2(i) and Tn(i) are given by 
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In 1-D DPCM, the network was selected to be of 4th order, with 4 previous pixels as 

inputs and one output node. Simulation results have shown SNRs of 27.22 dB and 

26.87 dB for the LENA and BABOON images, respectively. This provided an 

improvement in the order of 4.17dB and 3.74 dB respectively, when compared to 

linear DPCM. In the case of 2-D DPCM, the corresponding neural network structure 

was of 3rd order, with 9 previous ―causal‖ pixel inputs and one output. The neural 

predictor demonstrated a SNR of 29.5 dB in the case of the LENA image. 

The application of recurrent neural networks to image prediction has also been 

suggested. Park and Park [11] proposed the use of bilinear recurrent neural network 

in 2-D, DPCM; In this case an average SNR of 28.5 dB was achieved. Hussain and 

Liatsis [12] developed the recurrent Pi-Sigma architecture, which provides average 

SNRs of 29 dB and 31.6 dB, in 1-D and 2-D DPCM, respectively. 

3. Neural Network Architectures Utilised in the Proposed Image Compression 
System: 

In this section, two types of neural network architectures including the functional link 

network and the recurrent NARX neural network will be discussed.  

3.1 Functional Link Neural Network (FLNN) 

The FLNN neural network was used as the predictor structure for the proposed 

Hybrid Neural Network Predictive-Wavelet Image Compression System. 

Functional Link Neural Network was introduced by Giles and Maxwell [13].  The 

network determines the product of the network inputs at the input layer, while at the 

output layer the summations of the weighted inputs are calculated.  

FLNN can use higher order correlations of the input components to perform 

nonlinear mappings using only a single layer of units. Since the architecture of the 

network consists from a single layer, the network is aimed to reduce the 

computational cost in the training stage and at the same time maintaining good 



approximation performance [14].  

 

Figure 3:  The Structure of the Functional Link Neural Network. 

 

Figure 4:  The structure of the NARX neural network [15]. 

A single node in the FLNN model could receive information from more than one node 

by one weighted link. The higher order weights, which connect the high order terms 

of the input products to the upper nodes have simulated the interaction among 

several weighted links. For that reason, FLNN could greatly enhance the information 

capacity and complex data could be learnt [14, 16,17].  

Fei and Yu [18] indicated that FLNN has a powerful approximation capability in 

comparison to conventional Backpropagation network, and it is a good model for 

system identification [14]. Cass and Radl [16] used FLNN in process optimization 

and found that FLNN can be trained much faster than an MLP network without 
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scarifying computational capability. Furthermore, FLNN has the properties of 

invariant under geometric transformations [19]. The model has the advantage of 

inherent invariance, and only learns the desired signal. Figure 3 shows an example 

of a third order FLNN with three external inputs, x1, x2, and x3, and four high order 

input values which act as higher order input terms to the network. 

The output of FLNN is determined as follows:   
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where f is a nonlinear transfer function and W0 is the adjustable threshold.  

FLNN suffers from the computational complexity as the number of input values is 

increased. Hence, second or third order functional link networks are considered in 

practice [20-21]. Furthermore, the network is trained using the backpropogation with 

gradient descent algorithm, which exhibits slow convergence [22-25]. 

3.2 Recurrent NARX Neural Network:  

This network can inherit the mapping capability of feed forward networks and 

meanwhile it is able to learn the dynamic features of the image information.  

The nonlinear autoregressive models with exogenous inputs (NARX) recurrent 

neural architectures [26] have feedback connections that come from the output 

neuron instead of the hidden neurons. In theory, it has been shown that the NARX 

networks can be used, rather than conventional recurrent networks, without 

computational loss and that they are equivalent to Turing machines [27]. 

Figure 4 shows the structure of the recurrent NARX neural network.  

Consider the following equation for the Nonlinear AutoRegressive with eXogenous 

inputs (NARX) model [12]: 

                                                             

(5) 

In this case, u(t) and y(t) represent the input and the output of the network at time t, 

respectively. While n and m are the input-memory and output-memory order w 

represents the weights matrix, and the function f is a nonlinear function. In this case, 

the output at time t depends on both m and n past values of the input and output. 



When the function f can be approximated by a multilayer perceptron (MLP), the 

system is defined as NARX network [26, 28]. 

4. The structure of the Hybrid Neural Network Predictive Wavelet Image 

Compression System (HNNPW):  

In this section, the structure of the novel neural network based hybrid image 

compression system will be discussed.  

The proposed system encoder consists of 3 stages. In the first stage, the FLNN 

neural network is utilised as predictor structure. The error signals which are the 

difference between the original and the predicted signals are forwarded to the 

second stage of the encoder. In this case, a Discrete Wavelet Transform (DWT) is 

utilised to transform the error signals into Wavelet coefficients. In the final stage, the 

transform coefficients of the most significant band will be Entropy encoded using 

Arithmetic Coding. Figure 5, shows the structure of the proposed HNNPWA encoder.  

 

 

 

 

Figure 5: The encoder of the proposed neural network hybrid image compression system. 
 

Let S(i) represents the input signal (which is the image grey level in our case). In this 

case, S(i) is forwarded to the nonlinear predictor. The predictor will use the previous 

encoded value to predict the current value of the signal. The difference between the 

predicted value and the original value is: 
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Where       is the output of the neural network. For third order FLNN using 1-D 

DPCM with three inputs values as shown in Figure 3, the output of the network is 

determined as follows:  
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(7) 

Where f is a nonlinear transfer function. 

    

Figure 6: Schematic representation of the probability density distribution of the error sequences. 
 

Given that the assumption of spatial causality holds, the error signal has smaller 

entropy than the original input signal S. Thus, the error signal is quantised with a 

smaller number of levels and subsequently forwarded to the DWT. This introduces 

an amount of quantisation error q(i), such that the quantised error signal is given by: 

)i(q)i(e)i(eq 
 

(8) 

The error sequences can have values twice the range of the original sequences, 

however, the probability density function of the difference signal is a two side 

exponential with the structure shown in Figure 6. This means that small error values 

occur more frequently than large error values. The next step is to feed the quantised 

prediction error array eq to the DWT module. The DWT technique is fairly simple, the 

1-D time-amplitude signal (the error image data) is decomposed into high frequency 

band and low frequency band by passing the signal through low pass and high pass 

filters respectively (level 1). This process is repeated by decomposing the low 

frequency band into low-low and low-high frequency bands and also decomposing 

the high frequency band into high-low and high-high frequency bands (level 2). The 

process may be repeated several times (level 3 and deeper levels). 

Figure 7 shows how the two dimensional array is divided after each level in sub‐band 

coding. Therefore, after decomposition level 3, the most significant data (transform 

P(x)

Level +1 +2 +3-3 -2 -1



coefficients of the error signal) will be in LL3. The data (transform coefficients of the 

error signal) in all other sub-arrays can be ignored and a zero will be assumed for 

their values by the inverse DWT algorithm at the decoder. 

 

 

 

 

 

 

 

Figure 7: The dyadic decomposition of an array into frequency sub-bands. 

HL: High frequency band with Low pass filters 
HH: High frequency band with High pass filters 
LL: Low frequency band with Low pass filters 
LH: Low frequency band with High pass filters 

 

5. Simulation Results: 

We have carried out two sets of experiments. In the first set of experiments, the aim 

is to determine a suitable neural network structure that can be used in the proposed 

image compression system, as well as the most suitable image that can be used in 

the training process of the neural network and the structure of the input combinations 

from the image data.  

TABLE 1: six test images, their sizes and the range of maximum and minimum values in each image. 

 
# Test Image Image Size Minimum Value  Maximum Value 

1 Baboon 512×512 0 230 

2 Barbara 512×512 8 36 

3 Cameraman 256×256 7 253 

4 Lena 512×512 8 35 

5 Peppers 512×512 0 229 

6 Zelda 512×512 0 187 
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In the second set of experiments, the information provided from the first set of 

experiments will be utilised for building the proposed neural network hybrid system.  

Six test images as shown in Table 1 were coded by the proposed HNNPWA system 

and then by JPEG2000 at decomposition levels 1 to 6.  

The performance of these schemes is characterised using different image quality 

metrics including the MSE, the mean absolute value and the Peak Signal to Noise 

Ratio (PSNR) as image quality metrics based error.  

The PSNR is defined as follows: 

PSNR = 10 log10 ((255)2 / MSE)  

(9) 

where MSE is the mean square of the error between the original and the 

reconstructed images, and it is defined as: 
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where MN is the total number of pixels in the image. 

The Mean absolute value of the error is determined as follows: 
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(11) 

5.1 First set of experiments:  

Test images such as Barbara and Lena are used extensively by almost all 

researchers in the field of still image compression. These test images were chosen 

because each image has certain feature which constitutes a challenge for the 

prediction algorithm used in image coding, for example, Barbara has many dark and 

light stripes and various edges which are difficult to predict. While the Lena image, 

which is one of the most popular images used in image processing, contains 

moderate amount of detail. It is characterised by strong edges defined by the head 

and the shoulder. 



These test images were initially selected for use with hard prediction algorithms 

(mathematical algorithms) rather than in soft prediction algorithms (neural prediction 

algorithms), as some of these images are not suitable for neural image prediction.  

The neural network is usually trained using part of an image (10% to 20%) or a 

complete image or several images combined together.  

In our experiments, the Peppers.bmp was first selected and used as test image for 

the neural predictive system. The number of rows used during the training was 

selected between 20, 40, 60, 100 and 200 rows. The training error and the mean 

square error were noted in each case.  

The same experiment was repeated for three other test images which are the 

Baboon.bmp, Zelda.png and Barbara.png test images  

The simulation results showed conflicting results. The training error and the mean 

square error (performance indicators) improved consistently as the number of tested 

image rows was increased for two of the test images (Peppers.bmp and Zelda.png) 

and the performance indicators reduced as the number of tested image rows for the 

Baboon.bmp and Barbara.png test images was increased. This indicates that when 

using neural network predictors for image compression, extensive simulations are 

required to train the neural network predictors. 

Then three test images Peppers.bmp, Zelda.png and Barbara.png combined 

together in one image file to train the same neural predictive system. Our simulation 

results indicated that the performance indicators in this case were poorer than all 

previous cases. 

The results indicate that marginal improvements can be achieved if large number of 

rows is used to train the neural predictive systems for some of the test images. 

Furthermore, combining several test images together in order to train the network 

does not guarantee good performance. 

All test images used in this experiment are grey level images with the extension of 

‗bmp‘ or ‗png‘, hence pixel values range between 0 and 255. As it can be noticed 

from Table 1, the ranges for the maximum and minimum data values for the Lena 

and the Barbara images are relatively small (around 30) whereas the pixel value 

ranges for the remaining images are relatively large and covers large range of the 

grey level. 



The simulation results showed that for hard predictive coding algorithms that use 

fixed (hard) mathematical formulas to predict the next value, using any test images 

with small or large pixel ranges does not affect the performance of the predictors. 

However, our experiments indicated that images with large number of grey level 

ranges showed much better performance in terms of the MSE than the Barbara and 

the Lena images when used to train neural predictive coding system.  
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Figure 5: P = pixel to be predicted, Xi are the input values for the neural prediction system, 
(a), (b) and (c) are three possible schemes for selecting the input values for the network. 

Furthermore, we have investigated the effect of choosing several schemes for input 

values on the performance of the neural prediction system as shown in Figure 5.  



In this case, three types of experiments were performed. In the first type of 

experiments as shown in Figure 5 (a), 8 previous pixels values to the left of the 

current pixel on the same row are used as inputs to the neural network system, the 

same experiments were repeated for 4 and then 2 previous pixel values.  No 

improvements were noted by reducing the number of pixels from 8 to 4, however, the 

performance of the system dropped when we reduced the number of pixels from 4 to 

2 previous pixel values. 

In the second type of experiments  as shown in Figure 5 (b),  2 pixels from the left, 2 

pixels from the upper left corner, 2 pixels above and 2 pixels from the upper right 

corner of the current pixel have been used as input values to the neural network, 

better simulation results were obtained in terms of PSNR. 

In the final type of experiments, the same inputs are used with one additional input 

from the left upper corner and one additional input from the right upper corner as 

shown in Figure 5 (c). The simulation results indicated that there were no major 

improvements in the PSNR when compared with the results obtained from the 

previous scheme. 

In conclusion, the choice of the test image that will be used for training and testing 

the neural predictive coding system, as well as the size of the training and test 

samples are all very important factors that determine the success of the neural 

network predictor. 

Various neural network architectures including the Multi-Layer Perceptron (MLP), 

Polynomial and recurrent NARX Neural Networks have been designed and tested to 

model the behaviour of nonlinear predictor. We have also tested linear predictor for 

comparison reasons.  

The simulation results indicated that the average MSE and PSNR for the test images 

are 146.8 and 28.19 respectively using the MLP network, which gives the nonlinear 

MLP predictor an average improvement of 2.22 dB over the linear predictor.  

The average MSE and PSNR for the test images are 139.2 and 28.59 dB, 

respectively using the FLNN predictor. This is an improved result when compared 

with the MLP predictor structure.  

Finally, the simulation results for the NARX predictor structure indicated that the 

average MSE and PSNR for the test images are 245.8 and 25.97, respectively. 



These results indicated that the FLNN has achieved better results in comparison with 

the NARX and the MLP predictors. Hence, a functional link neural network predictor 

was utilised in the proposed HNNPWA image compression system.  

It is worth mentioning that Billings et al. [29] demonstrated that neural network does 

not generate components of lagged system inputs and outputs that are not specified 

in the inputs nodes and that if insufficiently and inappropriately lagged values for the 

inputs and the previous outputs are assigned as input signals, the network cannot 

generate the missing dynamic terms. This illustrate that the network does not ―learn‖ 

the system behaviour completely and it will not be a general model of the system, 

and hence the network performance will be limited. As a result, there should be a 

trade-off of between the number of inputs and higher order terms passed to the 

FLNN neural network to generate good prediction when used as a predictor structure 

in the proposed system.   

5.2 Second set of experiments:  

In the second set of experiments, the proposed system was utilised for the 

compression of the grey level images shown in Table1. The discrete wavelet 

transform was looked at with the decomposition levels were tested from 1 to 6 and 

the results are tabulated in Tables 2 to 7. 

In terms of the compressed signal quality (MSE and PSNR), the JPEG2000 system 

performs better than the HNNPWA system at decomposition levels 1 and 2. It can be 

noted that JPEG2000 achieved better performance at these levels due to the type of 

redundancy (inter-pixel redundancy) that exists in the original image data. However, 

starting from level 3 and above, the HNNPWA system starts to perform better and 

the difference becomes greater as we move to higher decomposition levels.  

 

TABLE 2: Functional link network trained on test image peppers DWT level 1 (2 bpp or 
compression ratio of 4:1). 

 HNNPWA System JPEG2000 System 
# Test Image 

(bmp) 
Original 
File Size 
(Bytes) 

MSE MAE PSNR Compressed File 
Size (Bytes) 
(JPEG file size + 
DPCM overhead) 

MSE MAE PSNR Compressed 
File Size 
 (Bytes) 

1 Baboon 263,222 290 11.80 23.53 65,423 1,483 22 1.80 34.83 65,423 

2 Barbara 263,222 207 7.75 25.99 65,374 1,573 3 0.66 43.14 65,374 

3 Cameraman 66,614 153 6.12 26.30 16,314 663 3 0.58 44.00 16,314 

4 Lena 263,222 38 4.51 32.36 65,411 863 4 0.75 42.12 65,411 

5 Peppers 263,222 35 4.06 32.62 65,508 1,500 3 0.66 43.16 65,508 

6 Zelda 263,222 12 2.68 37.04 65,404 1,406 1 0.41 46.68 65,404 

 Average  122.5 6.15 29.64 57,239 1,248 6 0.81 42.32 57,239 

  



TABLE 3: Functional link network trained on test image peppers DWT level 2 (0.5 bpp or 
compression ratio of 16:1). 

 HNNPWA System JPEG2000 System 
# Test Image 

(bmp) 
Original 
File Size 
(Bytes) 

MSE MAE PSNR Compressed File 
Size (Bytes) 
(JPEG file size + 
DPCM overhead) 

MSE MAE PSNR Compressed 
File Size 
(Bytes) 

1 Baboon 263,222 396 13.75 22.95 16,163 1,483 182 5.04 25.55 16,163 

2 Barbara 263,222 249 8.88 25.22 16,156 1,573 39 2.28 32.20 16,156 

3 Cameraman 66,614 202 7.05 26.01 4,021 663 53 2.36 30.95 4,021 

4 Lena 263,222 51 5.11 32.05 16,378 863 19 1.69 35.31 16,378 

5 Peppers 263,222 49 4.62 32.20 16,378 1,500 17 1.53 35.94 16,378 

6 Zelda 263,222 16 2.98 36.35 16,071 1,406 7 1.08 39.62 16,071 

 Average  160.5 7.06 29.13 14,194 1,248 52.83 2.33 33.26 14,194 

 
TABLE 4: Functional link network trained on test image peppers, DWT level 3 (0.125 bpp or 

compression ratio of 64:1). 

 HNNPWA System JPEG2000 System 
# Test Image 

(bmp) 
Original 
File Size 
(Bytes) 

MSE MAE PSNR Compressed File 
Size (Bytes) 
(JPEG file size + 
DPCM overhead) 

MSE MAE PSNR Compressed 
File Size 
(Bytes) 

1 Baboon 263,222 405 14.05 22.55 3,901 1,483 453 7.74 21.60 3,901 

2 Barbara 263,222 245 9.14 24.82 3,943 1,573 199 4.83 29.27 3,943 

3 Cameraman 66,614 210 7.26 25.68 1,020 663 248 4.78 24.22 1,020 

4 Lena 263,222 53 5.29 31.15 4,090 863 60 2.76 30.40 4,090 

5 Peppers 263,222 54 4.82 31.10 4,036 1,500 57 2.59 30.60 4,036 

6 Zelda 263,222 17 3.11 35.95 4,079 1,406 22 1.69 34.77 4,079 

 Average  164 7.28 28.54 3,511 1,248 173.17 4.07 28.48 3,511 

 

Table 8 shows the average performance of the proposed HNNPWA and JPEG2000 

achieved at each decomposition levels using the MSE, the MAE and the PSNR. 

As can be seen from Table 8, the average MSE values for the HNNPWA system are 

9.17, 332, 2654 and 2,330 better than the JPEG2000 system at decomposition 

levels 3, 4, 5 and 6, respectively. Furthermore, Table 8 indicated that the average 

PSNR value for the HNNPWA system is 0.06 dB, 5.05 dB, 13.75 dB and 11.26 dB 

better than the JPEG2000 at decomposition levels 3, 4, 5 and 6, respectively. Using 

the MAE, the simulation results indicated an average improvement of 7.41 and 7.84 

at decomposition levels 5 and 6 respectively.  

A paired t-test [30] is conducted to determine if there is any significant difference 

among the proposed HNNPWA and JPEG2000 image compression techniques 

based on the MAE of the error image. The calculated t-value showed that the 

proposed technique outperform JPEG2000 with α = 5% significance level for a one-

tailed test at decomposition levels 4, 5 and 6. The t-test indicated that there is no 

significant difference between the two image compression techniques at 

decomposition level 3.   



TABLE 5: Functional link network trained on test image peppers, DWT level 4 (0.03125 bpp or 
compression ratio of 256:1). 

 HNNPWA System JPEG2000 System 
# Test Image Original 

File Size 
MSE MAE PSNR Compressed File 

Size (Bytes) 
(JPEG file size + 
DPCM overhead) 

MSE MAE PSNR Compressed 
File Size 
(Bytes) 

1 Baboon 263,222 418 14.07 21.95 974 1,483 663 9.32 19.95 974 

2 Barbara 263,222 257 9.26 24.05 1,025 1,573 430 7.32 21.83 1,025 

3 Cameraman 66,614 220 7.37 24.74 253 663 1,387 11.30 16.74 253 

4 Lena 263,222 58 5.38 30.46 996 863 203 4.95 25.08 996 

5 Peppers 263,222 59 4.93 30.39 1,024 1,500 255 5.20 24.09 1,024 

6 Zelda 263,222 19 3.19 35.25 998 1,406 85 3.17 28.86 998 

 Average  171.83 7.36 27.81 878 1,248 503.83 6.88 22.76 878 

 
 

TABLE 6: Functional link network trained on test image peppers DWT level 5 (0.0078 bpp or 
compression ratio of 1024:1). 

 HNNPWA System JPEG2000 System 
# Test Image Original 

File Size 
MSE MAE PSNR Compressed File 

Size (Bytes) 
(JPEG file size + 
DPCM overhead) 

MSE MAE PSNR Compressed 
File Size 
(Bytes) 

1 Baboon 263,222 425 14.08 21.94 248 1,483 1,473 17.3 16.48 248 

2 Barbara 263,222 261 9.37 24.02 231 1,573 3,094 18.15 13.25 231 

3 Cameraman 66,614 224 7.41 24.70 231 663 3,972 20.67 12.17 231 

4 Lena 263,222 62 5.45 30.38 253 863 1,584 15.34 16.16 253 

5 Peppers 263,222 64 5.06 30.21 231 1,500 3,861 14.28 12.29 231 

6 Zelda 263,222 22 3.31 35.00 231 1,406 2,998 3.37 13.39 231 

 Average  176 7.44 27.71 237 1,248 2,830.
3 

14.85 13.96 237 

 
TABLE 7: Functional link network trained on test image peppers DWT level 6 (0.00195 bpp or 

compression ratio of 4096:1). 

 HNNPWA System JPEG2000 System 
# Test Image Original 

File Size 
MSE MAE PSNR Compressed File 

Size (Bytes) 
(JPEG file size + 
DPCM overhead) 

MSE MAE PSNR Compressed 
File Size 
(Bytes) 

1 Baboon 263,222 725 14.11 19.93 248 1,483 1790 18.04 15.63 248 

2 Barbara 263,222 880 9.45 21.00 231 1,573 3,190 18.15 12.25 231 

3 Cameraman 66,614 824 7.65 21.66 231 663 3,972 20.67 12.17 231 

4 Lena 263,222 590 5.50 27.33 253 863 2,312 17.86 14.52 253 

5 Peppers 263,222 684 5.19 27.08 231 1,500 3,861 14.21 12.29 231 

6 Zelda 263,222 441 3.38 30.85 231 1,406 2,998 3.37 13.39 231 

 Average  690 7.54 24.64 237 1,248 3,020.5 15.38 13.38 237 

 

TABLE 8: The average MSE and PSNR values for the HPWA and JPEG2000 systems. 

 HNNPWA JPEG200 
Decomposition 
Level 

Average 
MSE 

Average 
MAE 

Average 
PSNR 

Average 
File Size 
(Bytes) 

Average 
MSE 

Average 
MAE 

Average 
PSNR 

Average 
File Size 
(Bytes) 

1 122 6.15 29.64 58,487 6 0.81 42.32 56,708 

2 160 7.06 29.13 15,885 52 2.33 33.26 14,104 

3 164 7.28 28.54 5,280 173 4.07 28.48 3,499 

4 171 7.36 27.81 2,647 503 6.88 22.76 866 

5 176 7.44 27.71 2,023 2,830 14.85 13.96 242 

6 690 7.54 24.64 1485 3,020 15.38 13.38 237 

 

As can be seen from Figure 8, at decomposition levels 1, 2 and 3, the visual quality 

of the reconstructed images for the proposed HPNNWA and JPEG2000 is very good 



and it is not easy to notice the difference between the original image and the 

constructed image for both systems. 

While at decomposition level 4 and 5 as shown in Figures 9(a) and 9(b), 

respectively, the visual quality of the reconstructed images in the JPEG2000 system 

starts to deteriorate. The visual quality of most reconstructed images for the 

JPEG2000 system is not acceptable. However, for the HNNPWA system, all 

reconstructed images are of a very good quality and cannot be distinguished from 

the original. 

Figure 9(c) demonstrated that the Baboon image compressed at decomposition level 

6. In this case, the visual quality of all reconstructed images for the JPEG2000 

system is not acceptable. Furthermore, for the HNNPWA system, the quality of the 

reconstructed images deteriorates to an unacceptable level. This is attributed to the 

size of the transform coefficients array which becomes too small to hold accurate 

information about the prediction errors. 

It should be noted that the average compressed file size in JPEG2000 system is 

smaller at all decomposition levels in comparison to the proposed system due to the 

additional fixed overhead data that has to be stored as a result of introducing 

Predictive Coding. However, the MSE and PSNR values as well as the visual quality 

for the HNNPWA system at both decomposition levels 4 and 5 are better than level 3 

of JPEG2000. 

  



 (a) The visual quality of the Baboon test image compressed by the HPWA and JPEG2000 systems  (DWT Compression Ratio 
4: 1) 

Original (bmp) image HPWA compressed image JPEG2000 (j2c) compressed image 

   
 
(b) The visual quality of the Baboon test image compressed by the HPWA and JPEG2000 systems (DWT Compression Ratio 

16: 1) 

Original (bmp) image HPWA compressed image JPEG2000 (j2c) compressed image 

   
 
 

(c) The visual quality of the Baboon test image compressed by the HPWA and JPEG2000 systems (DWT Compression Ratio 
64:1) 

Original (bmp) image HPWA compresses image JPEG2000 (j2c) compress image 

  
 

 

Figure 8: The visual quality of the Baboon test image compressed by the HPWA and JPEG2000 
systems at decomposition level (a) 1, (b) 2 and (c) 3.  

 



 (a) The visual quality of the six test images compresses by the HPWA and JPEG2000 system (DWT Compression Ration 
256:1) 

 

Original (bmp) image HPWA compressed image JPEG2000 (j2c) compressed image 

 
  

(b) The visual quality of the six test images compresses by the HPWA and JPEG2000 system (DWT Compression Ratio 
1024:1) 

Original (bmp) image HPWA compressed image JPEG2000 (j2c) compressed image 

 
  

(c) The visual quality of the six test images compresses by the HPWA and JPEG2000 system (DWT Compression Ratio 
4096:1) 

Original (bmp) image HPWA compressed image JPEG2000 (j2c) compressed image 

  
 

Figure 9: The visual quality of the Baboon test image compressed by the HPWA and JPEG2000 
systems at decomposition level (a) 4, (b) 5 and (c) 6.  

6. Conclusion and Future works: 

In this paper, a novel still image compression technique based on predictive coding 

transform coding, and neural network is proposed. The prediction errors produced in 

the first part of the proposed system are fed into the second part of the proposed 



system that is Discrete Wavelet Transform. The main compression is achieved at the 

second part which is greatly aided by the removal of inter-pixel redundancy in due to 

the used of prediction coding. The transform coefficients for all but the lowest 

frequency bands will be nearly zero and can be dropped out without any significant 

loss in image quality 

Simulation were carried out for the HNNPWA system and benched marked against 

JPEG2000 which is the still image coding standard. The results were most 

encouraging and have indicated a significant improvement over JPEG2000 at high 

compression ratios (64:1 and higher) as well as large size images. At a compression 

ratio of 1024:1 the reconstructed images of JPEG2000 became completely 

unrecognised, while the HNNPWA reconstructed images were still of a high visual 

quality and even better than the images compressed by JPEG2000 at compression 

ratio 64:1. The paired t-test was performed on the MAE of the error which indicated 

that the proposed HNNPWA is significantly better than JPEG2000 at decomposition 

4, 5 and 6. This means that at high decomposition levels using discrete wavelet 

transform, the proposed system showed high quality compressed images, while at 

low decomposition levels the visual quality of the compressed images using the 

proposed technique show similar quality to JPEG2000.  

As the proposed system requires the use of both predictive and transform coding in 

its structure, this means that this the HNNPWA requires more processing time than 

JPEG2000. 

Future work will involve the use of other types of neural network structures such as 

the support vector machine [31] and dynamic ridge polynomial neural network [32].  

Another direction of research is to use DWT, followed by neural network predictive 

coding system similar to reference [33]. This will allow the system to remove inter-

pixel redundancy from the transformed image coefficients.   
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