
Obtaining optimal quality measures for quantitative association 
rules

M. Martínez-Ballesteros, A. Troncoso, F. Martínez-Álvarez, J.C. Riquelme 

Keywords:
Quality measures
Quantitative association rules
Fitness function
Evolutionary algorithms

a b s t r a c t

There exist several works in the literature in which fitness functions based on a combination of weighted measures for 
the discovery of association rules have been proposed. Nevertheless, some differences in the measures used to assess 
the quality of association rules could be obtained according to the values of the weights of the measures included in the 
fitness function. Therefore, user's decision is very important in order to specify the weights of the measures involved in 
the optimization process. This paper presents a study of well-known quality measures with regard to the weights of the 
measures that appear in a fitness function. In particular, the fitness function of an existing evolutionary algorithm called 
QARGA has been considered with the purpose of suggesting the values that should be assigned to the weights, 
depending on the set of measures to be optimized. As initial step, several experiments have been carried out from 35 
public datasets in order to show how the weights for confidence, support, amplitude and number of attributes 
measures included in the fitness function have an influence on different quality measures according to several 
minimum support thresholds. Second, statistical tests have been conducted for evaluating when the differences in 
measures of the rules obtained by QARGA are significative, and thus, to provide the best weights to be considered 
depending on the group of measures to be optimized. Finally, the results obtained when using the recommended 
weights for two real-world applications related to ozone and earthquakes are reported.

1. Introduction

The discovery of association rules is an effective computational 
technique focused on the extraction and representation of mean-
ingful relationships among different variables. It was first defined 
by Agrawal et al. in [1] but the authors only considered the use of 
discrete variables. Nonetheless, when the domain of the variables 
involved in the rule extraction process is continuous, the rules 
obtained are called quantitative. In this case, they are called 
quantitative association rules and will hereinafter be referred to 
QAR. One of the first and most used algorithms is Apriori, which 
was also proposed by Agrawal et al. [2] one year later.

The mining of QAR is typically associated with the non-supervised 
learning, in which datasets lack a priori information about the internal 
structure of data or about how attributes are interrelated. Given this 
kind of input, the challenging task faced by QAR is to find groups of 
attributes that exhibit similar behavior. These groups must be 
formulated as comprehensive rules so that the relationships existing 
among the attributes can be easily interpreted.

There exist several measures to assess the quality of the QAR. All
these measures are conceived to separately evaluate different proper-
ties of the rules. In this sense, it is quite common to model the rule
extraction process by means of a multi-objective (MO) fitness
function. This function aims at jointly maximizing a set of measures
and its election depends on the type of rules searched for.

Different strategies can be found in the literature to solve MO
problems. On one hand, there exist Pareto-based MO algorithms,
which attempt at discovering the best trade-off among conflicting
objectives. On the other hand, many fitness functions seeking for the
optimization of a single objective can also be found in the literature.
In them, some input parameters are required to weight, and there-
fore favor or penalize, the relevance of the measures. The improve-
ment of certain measures is easily achieved by using these functions,
insofar as such measures do not assess conflicting properties.

A vast majority of works focused on QAR mining only include
the measures support and confidence in the fitness function.
Nevertheless, there are many other measures, as gathered and
reported in [17], that are ignored in this configuration. The
negative effect that might be caused in other properties is simply
not taken into account. All the measures considered in this work as
well as their mathematical formulation are summarized in Table 1,
where n(X) is the number of occurrences of the itemset X in the
dataset and N is the total number of instances in the dataset. ND
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stands for negatively dependent, PD for positively dependent and I
for independent.

A preliminary study about how the weights, in a fitness
function based on a sum of weighted measures, have an influence
on the quality measures was provided in [20]. However, this study
was reduced as it was applied only for the weights associated to
the support and confidence measures.

The main goal of this work is to conduct an extensive study to
evaluate the effect of varying different weights for different ranges
in a fitness function. Another significant goal is to provide the
researcher with several guidelines to set the weights of any fitness
function, according to the preset objectives that are wanted to be
maximized. Additionally, multiple relationships between the
weight variations and the quality measures are inferred in this
work. The algorithm selected to perform such tasks, to which
different experimental setups have been applied, is QARGA [16].

The remainder of the paper is as follows. Section 2 overviews
the most relevant works recently published with techniques using
a weighted sum-based fitness function. The QARGA algorithm as
well as the design of the experimental setup is described in
Section 3. Section 4 provides a description of the datasets. It also
includes the setup of the parameters involved in the process.
Moreover the analysis itself is reported as well as some statistical
tests. Finally, Section 5 summarizes the conclusions drawn from
the analysis conducted.

2. Related work

This section is devoted to examine the latest and most relevant
works recently published. In particular, those focused on the
extraction of QAR by means of fitness functions constructed as a
combination of weighted objectives.

Although the optimization of only support and confidence is a
usual strategy for defining fitness functions, some works use
fitness functions even simpler. Such is the case of EARMGA, an
evolutionary algorithm introduced in [28] that only considered the
confidence as quality measure to be maximized. It is worth
mentioning that the authors did not compute the actual minimum
support.

An approach called QuantMiner was introduced in [26]. It used
confidence and support as metrics to evaluate its performance.
This genetic algorithm was defined in order to provide satisfactory
intervals for numeric attributes. The algorithm was compared to
GAR [22,23], another algorithm with similar features, to assess the
accuracy.

An approach based on an evolutionary algorithm providing an
antecedent with a variable number of attributes was published in
2001 [21]. This algorithm, called GENAR, included support, con-
fidence and number of recovered instances in the fitness function.
A similar fitness function, but adding the comprehensibility and
the amplitude of the intervals to the aforementioned set of
attributes, was used in Pachón et al. [24] naming the algorithm
GAR-Plus. A comparative analysis of the quality of EARMGA, GAR
and EARMGA was presented in [5], where all the three algorithms
were applied to two different datasets than those of the original
papers. The coverage and their efficiency were reported.

Another genetic algorithm was proposed in 2011 by Soto and
Olaya-Benavides [27]. This algorithm included four weighted
measures in the fitness function: support, confidence, comprehen-
sibility and interest. A weighted support based on the individual
weight of the items according to their importance in the dataset
was calculated in [25].

The extraction of QAR can also be found in bioinformatics. For
instance, the analysis of microarray gene-expression data by
means of QAR based on half-spaces was introduced in [10]. The
measures selected to form the fitness function were interesting-
ness, support, confidence and coverage.

All the algorithms mentioned so far only explored positive
dependencies. However, it is well-known that negative dependen-
cies can also provide meaningful information. In this sense, a
genetic algorithm to extract QAR with positive and negative
dependencies was proposed in [3]. To achieve such task, the
authors formed a fitness function composed of the five quality
measures: support, confidence, number of attributes, recovered
records and amplitude. A multiobjective version was introduced
two years later by the same authors using, this time, a Pareto-
based evolutionary algorithm [4].

Recently, the study of the positive and negative dependencies
by means of a multi-objective evolutionary algorithm has been
proposed [19]. MOPNAR's fitness function consists of three mea-
sures to be optimized: the interestingness, the comprehensibility
and what they named performance, a modification of the cover-
age. The performance and efficiency of MOPNAR was evaluated by
comparing the algorithm to up to nine different approaches. One
of the main benefits of this algorithm claimed by the authors is its
low computational cost. Note that this algorithm extends MOEA/D
[14] by introducing two new components into the evolutionary
model: an external population and a restarting process. MOEA/D
was designed to deal with especially complicated Pareto sets.

The extraction of fuzzy QAR has also been addressed. In
particular, the use of Pareto-optimal fuzzy rules as candidate rules

Table 1
Measures to assess the quality of QAR.

Measures Equation Description Range

Sup(X) nðXÞ=N Coverage of X [0, 1]
Sup(X⟹Y) nðX \ YÞ=N Generality of the rule [0, 1]
Conf ðX⟹Y) supðX⟹YÞ=supðXÞ Reliability of the rule [0, 1]

Interest of the rule
Lift(X⟹Y) supðX⟹YÞ=ðsupðXÞ � supðYÞÞ � Value o1 : X and Y (ND) [0, þ1)

� Value¼1: X and Y (I)
� Value 41 : X and Y (PD)

Gain(X⟹Y) conf ðX⟹YÞ�supðYÞ Implication of the rule [�0.5, 1]
� If conf ðX⟹YÞ4supðYÞ: Gain normalized

Certainty Factor(X⟹Y) ðconf ðX⟹YÞ�supðYÞÞ=ð1�supðYÞÞ � Value o0 : X and Y (ND) [�1, 1]
� If conf ðX⟹YÞo ¼ supðYÞ: � Value¼0: X and Y (I)
ðconf ðX⟹YÞ�supðYÞÞ=supðYÞ � Value 40 : X and Y (PD)

Strength of the rule
Leverage(X⟹Y) supðX⟹YÞ�supðXÞsupðYÞ � Value o0 : X and Y (ND) [�0.25, 0.25]

� Value¼0: X and Y (I)
� Value 40 : X and Y (PD)

Accuracy(X⟹Y) supðX⟹YÞþsupð:X⟹:YÞ Veracity of the rule [0, 1]



in classification problems by means of a genetic algorithm was
proposed in [12]. The standard single objective genetic algorithm
(SOGA) maximizes a weighted sum-based fitness function com-
posed of the number of correctly classified training patterns, the
number of fuzzy rules of such set and the total number of
attributes in the antecedent of the rule. Almost the same authors
examined the effect of using weighted sum-based fitness functions
for parent selection and generation update [13]. That effect was
tested on the performance of NSGA-II [7] for a high-dimensional
space of a multi-objective problem. An interesting review of QAR
learning was presented in [8]. It explores fuzzy (and also crisp)
rule extraction processes by means of evolutionary algorithms.

Table 2 summarizes the measures used in the works reviewed
in this section. It can be noted that support and confidence present
a generalized use. However, the optimization of only these
measures is not usually enough since: (a) if only the support is
maximized, very general QAR could be obtained since the interval
amplitudes might reach the whole domain of each attribute and
(b) if only the confidence is maximized, rules with few instances
might be generated and negative dependencies among attributes
might be missed. For this reason, other existing measures to assess
the quality of QAR were introduced in Section 1 and will be jointly
used for the rest of this work.

From the analysis of this section, it can be easily concluded that
there exist many fitness function proposals based on a combina-
tion of weighted objectives in a single equation. However, their
performance is very sensitive to the choice of the weights of the
measures included within the fitness function and there is no even
consensus on which measures and what weights have to be used.
Therefore, there exists a need to provide some hints to create and
initialize fitness functions to mine QAR. To fill such a gap is,
precisely, the main goal of the work proposed here.

3. Methodology

This section presents a general description of the QARGA
algorithm used to obtain QAR. The experimentation framework
carried out in order to analyze how QAR are influenced regarding
the weights of the fitness function is also described.

3.1. Description of QARGA

The QARGA algorithm is used to study the QAR obtained,
according to the weights which provide more or less relevance
to the measures included in the fitness function. A detailed
description of the algorithm can be found in [18].

QARGA is a real-coded genetic algorithm designed to discover
existing relationships, specifically QAR, among several variables.
Namely, each individual of the population constitutes a rule. These

rules are then subjected to an evolutionary process, in which the
mutation and crossover operators are applied and, at the end of
the process, the individual that presents the best fitness is
designated as the best rule.

The individuals are codified using two arrays, each of them
with a number of elements equal to the number of attributes of
the dataset. The first array is composed of upper and lower limits
of intervals to which the attributes belong to, and the second one
is composed of values 1 and 2, depending on if the attribute
belongs to antecedent or consequent, respectively, or value 0 if the
attribute is not in the rule.

The individuals of the initial population are randomly generated.
That is, the number of attributes appearing in the rule, the values
that indicate if the attribute belongs to antecedent or consequent
and the intervals for each attribute are randomly generated. Several

Table 2
Summary of measures used in fitness functions reviewed in Section 2.

Algorithms Quality measures considered

Support Confidence Re-covered # Attributes Amplitude Interest Coverage

GENAR, 2001 [21] √ √ √
Georgii et al., 2005 [10] √ √ √ √
Alatas and Akin, 2006 [3] √ √ √ √
QuantMiner, 2007 [26] √ √
EARMGA, 2009 [28] √
MOEA/D, 2009 [14] √ √
Soto et al., 2011 [27] √ √ √ √
GAR-Plus, 2012 [24] √ √ √ √ √
Pears et al., 2013 [25] √
MOPNAR, 2014 [19] √ √

Table 3
Public datasets.

Dataset Records Attributes

Ailerons (AI) 7154 41
Baseball (BA) 337 17
Basketball (BK) 96 5
Bodyfat (FA) 252 18
Bolts (BL) 40 8
Buying (BU) 100 40
Computer activity (CA) 8192 22
Country (CN) 122 21
College (CO) 236 21
Education (ED) 1500 44
Elevators (EV) 16 599 19
Fried (FR) 40 768 11
House_16H (HH) 22 784 17
Kinematics (KI) 8192 9
Longley (LO) 16 7
Mortgage (MO) 1049 17
Normal Body Temperature (NT) 130 3
Plastic (PL) 1650 3
2Dplanes (PN) 40 768 11
Pw Linear (PW) 200 11
Pollution (PO) 60 16
Pole Telecomm (PT) 9065 49
Pyramidines (PY) 74 28
Quake (QU) 2178 4
Read (RE) 681 26
School (SC) 62 20
Sleep (SL) 57 8
Stock price (SP) 950 10
Televisions (TV) 40 5
Treasury (TR) 1049 17
Triazines (TZ) 186 61
Usnews College (US) 1269 32
Vineyard (VY) 52 4
Weather Ankara (WA) 1609 11
Weather Izmir (WI) 1641 11



constraints are considered to assure that the individuals represent
sound rules when the genes are generated.

The genetic operators are briefly described as follows.

1. Selection: An elitist strategy is used to replicate the individual
with the best fitness. By contrast, a roulette selection method is
used for the remaining individuals rewarding the best indivi-
duals according to the fitness.

2. Crossover: Two parent individuals, chosen by means of the
roulette selection, are combined to generate a new individual.
First, all the attributes associated to each parent are analyzed.
The attribute would belong to the antecedent in the new
individual if the attribute in both parents belongs to the
antecedent, and to the consequent if the attribute belongs to
the consequent in both parents. Moreover, in these two cases,
the interval is obtained generating two random numbers
among the limits of the intervals of both parents. Thus, the
lower interval is generated by means of a random number that
belongs to the interval formed by both lower intervals of the
parents; the upper interval is analogously calculated. Other-
wise, if the attribute belongs to the antecedent in the father
individual and to the consequent in the mother individual or
vice versa, then the attribute would be randomly chosen
between both parents. In this case, the interval of such attribute
is the interval of the ancestor selected.

3. Mutation: It consists in varying one gene of the individuals. The
mutation can be focused on the modification of the attribute
from antecedent to consequent, from consequent to antecedent
or from antecedent or consequent to null, or on the intervals, in
which three different cases are possible: equiprobable muta-
tion of the upper limit, of the lower limit or of both limits of the
interval. For this aim, a random value between 0 and the
maximum amplitude is generated and will be added or sub-
tracted to the limit of the interval which is randomly selected.

The fitness of each individual in the evolutionary process
allows determining which are the best candidates to remain in
subsequent generations. In order to make this decision, its calcula-
tion involves several measures that provide information about the
rules. The fitness function has been designed to maximize a
combination of different measures of QAR. The fitness function
proposed in [16] to be maximized by QARGA was

f ðruleÞ ¼ws � supþwc � conf þwn � nAttrib
�wa � ampl�wr � recov ð1Þ

where sup is the support of the rule, conf is the confidence of the
rule, recov is the ratio of instances which had already been
covered, nAttrib is the number of attributes appearing in the rule
and ampl is the average size of intervals of the attributes belonging
to the rule.

It can be appreciated that the fitness function presents a set of
weights, ws;wc;wn;wa and wr, to drive the process of search of
rules and will vary depending on the required rules. Therefore, the
user should be aware of the importance of each measure in order
to specify the weights considering that significant differences in
the QAR quality measures could be obtained.

3.2. Experimental design

It is well known that one of the shortcomings of a fitness
function defined as a sum of weighted measures is the parame-
trization of such weights. A detailed study of the relative influence
of each weight on the rules obtained by QARGA is provided in
Section 4.

With that purpose, several experiments were designed to high-
light the main differences in measures performance when the

weights of the fitness function are modified according to several
minimum support thresholds, namely 0, 0.05 and 0.1. Thus, QAR-
GA is forced to learn QAR with an established minimum support as
it penalizes the fitness function of the individuals of the population
which do not satisfy the minimum support threshold.

First of all, the experimentation is based on the analysis with
regard to the weights for the confidence and support measures,
and second, with regard to the number of attributes and the
amplitude of the intervals. In particular, two experiments, one for
each pair of measures, have been carried out.

The first experiment consists in varying the weights for con-
fidence and support measures by using a given minimum support
threshold. Specifically, the weight values for support and con-
fidence measures, ws and wc, vary from 0 to 1 with increments of
0.1 (11 different values for both weights). Hence, QARGA was run
363 (3�11�11) times in total for each dataset. The results are
summarized in a table for each minimum support threshold as
follows: the weight of confidence is fixed and the weight of
support varies from 0 to 1 (or vice versa) in order to analyze
how the weight of the confidence measure (or the support
measure) affects on the remaining measures, independently of
the weights of last ones. Note that the rest of the weights included
in QARGA's fitness function have been set to 1 in order to avoid
their influence in the results and to ensure that the remaining
measures are present in the fitness function.

The same experiment for the weights of the amplitude and
number of attributes measures is made with a minimum support
threshold of 0.05. In this case, the weights considered for the
remaining measures have been set to 1 for ws and 0.5 for wc. Thus,
QARGA was run 121 (11�11) times for each dataset.

Second, statistical tests have been conducted for all measures
to evaluate if the differences in measures of the rules obtained by
QARGA, reported from two previous experiments, are significative.
For that, a minimum support threshold of 0.05 has been consid-
ered, for each dataset a weight, wn, wa, ws or wc, is set and the
mean of each measure for the 11 different values of the weight, wa,
wn, wc or ws, respectively, is computed. For example, wn is fixed
and the mean of each measure for the 11 values of wa is calculated.

Finally, QARGA was executed 5 times and 20 rules were
obtained in each execution to compare the measures when using
a set of default weights and the recommended weights provided
for the results of statistical tests for two real-world applications
related to ozone and earthquakes.

4. Experimental study

4.1. Datasets description

This section presents the main features of the datasets used in
the study carried out in this work. Several datasets have been
retrieved from the public BUFA repository [11]. In particular, the
thirty-five public datasets from BUFA repository used in [17]. Note
that Buying, Country, College, Education, Read and Usnews College
have been preprocessed using K-means Imputation method pro-
posed in [9] (available in the KEEL tool [6]) in order to deal with
missing values. Table 3 describes the number of attributes and
instances for the datasets from BUFA repository.

Likewise, two different real-world datasets have been analyzed
to validate the conclusions achieved after the study performed.
Specifically, datasets from a meteorological and seismological con-
text have been used.

First, the tropospheric ozone dataset is composed of climatologi-
cal time series such as temperature, humidity, direction and speed of
the wind, several variables such as the hour of the day and the day of
the week and, finally, the tropospheric ozone. These variables have



influence on the ozone concentration in the atmosphere, which is
the target agent. All variables have been retrieved from the meteor-
ological station of the city of Seville in Spain for the months from July
to August during the years 2003 and 2004, generating a dataset with
7 quantitative attributes and 1488 instances. These months have
been selected due to the highest concentration of ozone reported.

The earthquake dataset [15] has been retrieved from the
Spanish's National Geographical Institute. This dataset consists of
4 quantitative attributes and 873 instances related to the location
and the magnitude of Spanish earthquakes collected from 1981 to
2008. Table 4 summarizes the number of attributes and instances
for the ozone and earthquakes datasets.

4.2. Parameters setup

As for the values for the main parameters of QARGA, it is
noteworthy that these values have been used for all executions
independently of the different values for the weights.

The main parameters of QARGA are 100 for the size of the
population, 100 for the number of generations, 0.1 for the muta-
tion probability pmut of the individuals and 0.2 for the mutation
probability pmutgen of each gene in the individual. The maximum
number of attributes which could be included in both the ante-
cedent and consequent are 10 and 5, respectively. Note that
antecedent and consequent must contain one attribute at least.
QARGA has obtained 100 QAR for each public dataset and for each
configuration of the weights of the fitness function.

In contrast, only 20 QAR have been found for the two real-
world datasets.

4.3. Analysis of the quality measures

A detailed analysis of the QAR quality measures according to
variations in the weights of the measures included in the fitness

function to be optimized by QARGA is presented in this section. To
this aim, QARGA has been applied following two phases.

In the first phase, the performance of several quality measures
is studied according to different minimum support thresholds and
variations of ws and wc. In the second phase, the behavior of the
same set of quality measures is analyzed regarding variations of wn

and wa. The results obtained by QARGA when optimizing the
fitness function with variations in the weights of the measures
are discussed. Afterwards, a non-parametric statistical analysis
will be conducted to detect significant differences in the quality
measures of the rules obtained by QARGA. Finally, the conclusions
achieved will be applied to real-world datasets to show if better
results are obtained when the best sets of weights are applied
instead of using non-weighted objectives in the fitness function.

As described in Section 3.2, QARGA has been executed 363
times for each dataset, that is, a total of 12 705 executions in the
first phase. In addition, QARGA has been run 121 times for each
dataset, that is, 4235 executions in the second phase. In order to
perform the study, the average results for the 35 datasets using the
same values of the weights as much in the first as the second
phase have been retrieved. Several interestingness measures have
been calculated to assess the quality of the QAR obtained by
QARGA for each execution. In particular, support, confidence, lift,
gain, leverage, accuracy, number of attributes, amplitude of the
attributes, number of the rules obtained and percentage of covered
records have been computed. The equation of these measures can
be found in Table 1 and are thoroughly detailed in [16].

4.3.1. Analyzing the influence of ws and wc

Regarding the first phase, the average results of the 12 705 runs
for each minimum support threshold are reported in Tables 5,
7 and 9, respectively.

Tables 6, 8 and 10 show the studied quality measures grouped
by similar behavior according to the ws and wc variations and the
minimum support threshold 0, 0.05 and 0.1, respectively.

Tables 5, 7 and 9 are described as follows:

� In the first rows from 0 to 10, each row represents the average
values of the considered quality measures for the QAR obtained
in each dataset from executions that have a fixed ws value and
values for wc (11 values) that vary from 0 to 1 summing up

Table 4
Ozone and earthquakes datasets.

Dataset Records Attributes

Ozone 1488 7
Earthquakes 873 4

Table 5
Average values obtained by QARGA with minimum support threshold of 0 according to ws and wc.

ID ws wc Covered instances (%) Rule support (%) Lift Confidence (%) Accuracy (%) Amplitude (%) #Attributes Leverage Certainty factor Gain

0 0.0 [0–1] 43.8 0.82 2354.4 99.2 93.3 0.59 13.9 0.0076 0.99 0.92
1 0.1 [0–1] 46.4 0.85 2347.1 99.2 93.3 0.62 13.7 0.0076 0.98 0.92
2 0.2 [0–1] 48.0 0.88 2331.9 99.2 93.3 0.64 13.6 0.0077 0.99 0.92
3 0.3 [0–1] 50.3 0.92 2342.7 99.2 93.4 0.63 13.5 0.0078 0.99 0.92
4 0.4 [0–1] 53.1 0.95 2365.6 99.2 93.2 0.64 13.4 0.0078 0.99 0.92
5 0.5 [0–1] 55.9 0.99 2335.4 99.1 93.3 0.66 13.4 0.0079 0.98 0.92
6 0.6 [0–1] 60.0 1.04 2322.7 99.2 93.4 0.67 13.4 0.0079 0.98 0.92
7 0.7 [0–1] 63.1 1.09 2319.7 99.1 93.3 0.71 13.4 0.0080 0.98 0.91
8 0.8 [0–1] 67.3 1.16 2343.9 99.2 93.4 0.71 13.4 0.0081 0.98 0.91
9 0.9 [0–1] 70.0 1.22 2345.0 99.1 93.5 0.73 13.4 0.0081 0.98 0.91

10 1.0 [0–1] 74.6 1.30 2365.0 99.2 93.5 0.77 13.5 0.0081 0.98 0.91

11 [0–1] 0.0 57.1 1.00 2224.7 92.3 95.4 0.79 13.4 0.0078 0.91 0.87
12 [0–1] 0.1 57.8 1.02 2256.5 99.2 93.2 0.75 13.6 0.0078 0.98 0.91
13 [0–1] 0.2 58.1 1.03 2328.7 99.8 93.0 0.68 13.5 0.0079 0.99 0.92
14 [0–1] 0.3 57.8 1.03 2316.9 99.9 93.1 0.68 13.5 0.0079 0.99 0.92
15 [0–1] 0.4 57.9 1.03 2347.5 100.0 93.2 0.65 13.5 0.0079 0.99 0.92
16 [0–1] 0.5 57.0 1.01 2369.5 100.0 93.2 0.65 13.6 0.0079 0.99 0.92
17 [0–1] 0.6 58.2 1.03 2367.5 100.0 93.1 0.66 13.6 0.0079 0.99 0.92
18 [0–1] 0.7 57.9 1.03 2387.5 100.0 93.2 0.65 13.5 0.0079 0.99 0.92
19 [0–1] 0.8 56.8 1.02 2382.0 100.0 93.2 0.63 13.5 0.0079 0.99 0.92
20 [0–1] 0.9 57.1 1.01 2386.2 100.0 93.2 0.62 13.4 0.0078 0.99 0.92
21 [0–1] 1.0 57.0 1.01 2406.3 100.0 93.3 0.61 13.5 0.0079 0.99 0.92



11�35 runs for each row. Thus, the average results of the row
identified by 0 correspond to the runs that use ws¼0 and wc

A ½0;1� in the fitness function for each dataset. The rest of the
rows corresponds to each fixed value for ws, respectively.� According to the rows from 11 to 21, each row indicates the
average values of the considered quality measures of the QAR
found in each dataset from the runs that have a fixed wc value
and ws varies from 0 to 1 (11 values for ws�35 executions for
each row).

Table 5 shows the average values in terms of covered instances,
rule support, lift, confidence, accuracy, number of attributes,
leverage, certainty factor and gain of the QAR obtained by QARGA
with a minimum support threshold set to 0. It can be observed
that the average confidence, accuracy, certainty factor and gain
reach values close to 100% and 1. However, the average support
obtained is around 1%, the rules found have extremely narrow
intervals and a high number of attributes is obtained. In general
terms, all the measures present a similar behavior regardless of ws

and wc values. However, the percentage of covered instances is
highly increased when increasing the ws value. This measure
achieves the maximum value when ws is 1 but no dataset is
completely covered due to the low support of the rules.

Table 6 shows the ten studied quality measures split into six
groups according to the results reported in Table 5. It can be noted

that ws is positively correlated with support, leverage, covered
instances and amplitude, whereas the remaining quality measures
are not affected by the variations of ws. With respect to wc, some
differences can be observed from this table. For instance, although
support, leverage and covered instances measures are dependent
of ws, these measures are not influenced by wc. Alternatively, the
lift is positively correlated with wc but the amplitude is negatively
correlated. However, confidence, gain and certainty factor are only
increased when wc achieves values between 0 and 0.1, contrary to
the accuracy that presents an opposite behavior. A wc greater than
0.1 does not cause alterations in the performance of these last
three measures.

Figs. 1–3 summarize the values obtained for each group of
measures when the minimum support threshold is 0. Note that
only the three most representative measures are displayed due to
the similar performance among the measures of the same group.
Fig. 1 represents the support, leverage and covered instances
measures. It can be observed that their values form an increasing
inclined plane according to ws. Fig. 2 visualizes the values obtained
for the confidence, certainty factor and gain measures. These
measures present an awning model reaching the highest values
when wc is greater than 0.1. Finally, the accuracy measure is shown
in Fig. 3. It achieves the highest value when wc is 0. The perfor-
mance of this measure can be considered as a valley model.

Table 7 summarizes the average values in terms of covered
instances, rule support, lift, confidence, accuracy, number of attri-
butes, leverage, certainty factor and gain of the QAR found by
QARGA when considering a minimum support threshold of 0.05.

Even though confidence, accuracy, certainty factor and gain
have lesser values than those obtained for a minimum support
threshold of 0, the percentage of covered records reaches values
close to 100% and the support of the rules achieves values around
5%. On the other hand, the rules present a stronger dependency
between the antecedent and consequent (leverage measure) when
a minimum support threshold of 0.05 is considered. Furthermore,
QAR have a less number of attributes and broader intervals, then
the rules provided are more comprehensible for the user.

Table 8 displays the ten measures under study clustered into only
three groups when a minimum support threshold of 0.05 is applied. It
can be appreciated that the performance of these measures is
completely different when no minimum support threshold is applied.

Table 6
Performance of quality measures with minimum support equal to 0 according to ws

and wc.

Weights Quality measures grouped by similar behavior with minimum
support 0

Support Gain Accuracy Lift #Attributes Amplitude
Leverage Confidence
Covered
instances

Certainty
factor

ws ↑ ↑ ¼ ¼ ¼ ¼ ↑
wc ↑ ¼ ↑ if wcr0:1 ↓ if

wcr0:1
↑ ¼ ↓

¼ if
wc40:1

¼ if
wc40:1

Table 7
Average values obtained by QARGA with minimum support threshold of 0.05 according to ws and wc.

ID ws wc Covered instances (%) Rules support (%) Lift Confidence (%) Accuracy (%) Amplitude (%) #Attributes Leverage Certainty factor Gain

1 0.0 [0–1] 96.1 4.4 519.8 86.0 68.0 11.3 7.3 0.0222 0.76 0.52
2 0.1 [0–1] 96.3 4.4 534.4 86.0 68.2 11.3 7.3 0.0223 0.76 0.52
3 0.2 [0–1] 96.6 4.5 521.5 85.8 68.3 11.3 7.2 0.0223 0.76 0.52
4 0.3 [0–1] 96.8 4.5 518.9 85.8 68.5 11.3 7.3 0.0223 0.76 0.52
5 0.4 [0–1] 97.1 4.5 520.9 85.8 68.7 11.2 7.2 0.0224 0.76 0.52
6 0.5 [0–1] 97.4 4.6 515.1 85.5 68.7 11.1 7.2 0.0221 0.75 0.52
7 0.6 [0–1] 97.5 4.6 531.2 85.5 68.8 11.2 7.2 0.0220 0.75 0.52
8 0.7 [0–1] 98.0 4.7 557.6 85.2 69.0 11.1 7.2 0.0221 0.75 0.52
9 0.8 [0–1] 98.3 4.8 583.8 85.4 69.3 11.0 7.2 0.0220 0.75 0.52

10 0.9 [0–1] 98.5 4.8 617.0 85.3 69.7 10.9 7.2 0.0220 0.75 0.53
11 1.0 [0–1] 98.7 4.8 610.4 85.4 69.5 10.9 7.2 0.0219 0.75 0.52

12 [0–1] 0.0 91.3 3.1 968.6 70.2 83.2 6.6 7.7 0.0172 0.63 0.56
13 [0–1] 0.1 93.6 3.4 951.4 75.5 80.8 7.2 7.7 0.0183 0.68 0.57
14 [0–1] 0.2 95.7 3.7 844.5 78.7 78.0 8.0 7.6 0.0194 0.70 0.56
15 [0–1] 0.3 97.2 4.0 782.7 82.2 75.1 8.9 7.5 0.0205 0.73 0.56
16 [0–1] 0.4 98.2 4.3 681.0 84.7 71.7 10.0 7.4 0.0216 0.75 0.54
17 [0–1] 0.5 98.8 4.7 583.2 87.3 68.5 11.0 7.2 0.0225 0.77 0.53
18 [0–1] 0.6 99.1 5.0 444.5 89.2 65.2 12.2 7.1 0.0234 0.78 0.51
19 [0–1] 0.7 99.3 5.3 334.4 91.3 62.2 13.3 7.0 0.0243 0.80 0.49
20 [0–1] 0.8 99.3 5.5 233.1 92.9 59.6 14.2 6.8 0.0250 0.81 0.48
21 [0–1] 0.9 99.4 5.7 145.9 94.3 57.2 15.1 6.7 0.0255 0.82 0.46
22 [0–1] 1.0 99.5 5.9 61.2 95.5 55.4 15.9 6.7 0.0259 0.83 0.45



For instance, the group composed of support, confidence, certainty
factor, leverage and amplitude and the group formed by lift, accuracy,
gain and number of attributes are only affected by wc. These groups
are positively and negatively correlated respectively according to wc.
Regarding the percentage of covered instances, it is positively corre-
lated with ws and wc.

Figs. 4 and 5 illustrate the values obtained for two groups of
measures when the minimum support threshold is 0.05. Fig. 4
represents the performance of confidence, support, leverage,
amplitude and certainty factor measures. These measures reach
the highest values when wc is 1. Note that the confidence behaves
as an increasing inclined plane with respect to wc instead of
presenting an awning model as in Fig. 2. Fig. 5 shows the values
obtained for the accuracy measure and summarizes the behavior

of lift, gain and number of attributes. In this case, these measures
get the highest values when wc is 0 and perform as a decreasing
inclined plane relative to wc. The percentage of covered records
does not exhibit the same behavior and it is positively correlated
according to ws and wc.

Table 9 presents the average values in terms of covered
instances, rule support, lift, confidence, accuracy, number of
attributes, leverage, certainty factor and gain of the QAR discov-
ered by QARGA with a minimum support threshold of 0.1. It can be
observed that support of the rules is above 10% and leverage
measure is better than that of other minimum support thresholds,
in particular, 0 and 0.05. Nevertheless, confidence, accuracy,
certainty factor and gain measures present the worst values
compared to the values achieved when a minimum support
threshold of 0 or 0.05 is used. Specifically, confidence and accuracy
are below 70% and certainty factor never reaches values above
50%. From this observation, if a minimum support threshold of
0.1 is applied, QARGA discovers rules less accurate, less interesting
and reaches lesser gain of information on the rules regarding the
consequent when the antecedent is also present.

Table 10 summarizes the ten measures under study grouped
into only two groups when a minimum support threshold of 0.1 is
considered. It can be noticed that all the measures behave equally
regardless of the values of ws and wc. Only the confidence and
certainty factor are slightly increased when increasing wc.

Fig. 6 shows the average values obtained by the group of the
confidence and certainty factor. These measures reach the highest
values when wc is 1. Similar to Fig. 4, the confidence behaves as an
increasing inclined plane with regard to wc.

From the first phase of the experimentation, we provide the
following final remarks. First, the QAR obtained when the minimum
support threshold is 0 are more specific. Therefore, the support and
instances covered values are lesser and the number of attributes
and accuracy are greater compared to the values obtained when the
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Fig. 1. Covered instances with minimum support 0 according to ws and wc.
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Table 8
Performance of quality measures with minimum support 0.05 according to ws and
wc.

Weights Quality measures grouped by similar behavior with minimum
support 0.05

Support Lift Covered instances
Leverage Gain
Amplitude Accuracy
Confidence #Attributes
Certainty factor

ws ↑ ¼ ¼ ↑
wc ↑ ↑ ↓ ↑
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minimum support threshold is 0.05 or 0.1. Second, although the
confidence, gain, accuracy, and lift are better when the minimum
support threshold is 0, it is desirable to apply a minimum support
threshold in order to avoid support values below 1%. Moreover, it
can be observed that better results are obtained if a minimum
support threshold of 0.05 is applied instead of using 0.1. Taking into
account this fact, the ws setting is not important in the final results.
And third, it has been observed that wc is the most influential
weight. Thus, values of wc around 0.5 are desirable because not all
measures are increased according to wc.

Thereafter, it would be interesting to study the influence on the
QAR quality measures of the rest of weights included in the fitness
function of QARGA. Hence, a second phase has been carried out to
analyze the influence of wn and wa over the quality measures
under study.

4.3.2. Analyzing the influence of wn and wa

In the light of the results obtained in the first phase, a
minimum support threshold of 0.05 is only considered and the
remaining measures have been set to 1 for wr and ws, respectively,
and 0.5 for wc.

The average results of the 4235 runs are in Table 11 in a similar
way to Tables 5, 7 and 9. Table 11 reports the average values in
terms of covered instances, rule support, lift, confidence, accuracy,
number of attributes, leverage, certainty factor and gain of the
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Fig. 5. Accuracy instances with minimum support 0.05 according to ws and wc.

Table 9
Average values obtained by QARGA with minimum support threshold of 0.1 according to ws and wc.

ID ws wc Covered instances (%) Rule support (%) Lift Confidence (%) Accuracy (%) Amplitude (%) #Attributes Leverage Certainty factor Gain

1 0.0 [0–1] 99.9 12.7 702.0 66.8 68.2 12.1 4.5 0.0404 0.47 0.35
2 0.1 [0–1] 99.9 12.8 687.6 66.7 68.0 12.2 4.5 0.0402 0.47 0.35
3 0.2 [0–1] 99.9 12.8 694.8 66.7 68.0 12.2 4.5 0.0402 0.47 0.35
4 0.3 [0–1] 99.9 12.9 745.8 66.9 68.1 12.2 4.5 0.0403 0.47 0.35
5 0.4 [0–1] 99.9 12.9 708.5 66.8 68.0 12.2 4.5 0.0400 0.47 0.35
6 0.5 [0–1] 100.0 13.2 194.3 66.8 67.7 12.2 4.4 0.0414 0.47 0.35
7 0.6 [0–1] 99.9 12.9 677.2 66.8 68.2 12.3 4.5 0.0403 0.47 0.35
8 0.7 [0–1] 99.9 12.9 745.3 67.0 68.1 12.2 4.5 0.0402 0.47 0.35
9 0.8 [0–1] 99.9 13.0 736.2 67.1 68.3 12.2 4.5 0.0403 0.47 0.35

10 0.9 [0–1] 99.9 13.0 712.7 66.6 68.2 12.2 4.5 0.0401 0.47 0.35
11 1.0 [0–1] 99.8 12.8 715.8 66.8 67.7 12.2 4.5 0.0393 0.47 0.35

12 [0–1] 0.0 99.9 12.8 683.3 64.2 68.6 12.2 4.5 0.0399 0.45 0.35
13 [0–1] 0.1 99.9 12.9 650.9 64.5 68.4 12.2 4.5 0.0401 0.45 0.34
14 [0–1] 0.2 99.9 12.9 680.5 65.6 68.4 12.2 4.5 0.0402 0.46 0.35
15 [0–1] 0.3 99.9 12.9 652.3 66.0 68.2 12.2 4.5 0.0405 0.46 0.35
16 [0–1] 0.4 99.9 12.8 640.2 66.4 68.3 12.3 4.5 0.0405 0.47 0.35
17 [0–1] 0.5 99.9 12.9 653.7 67.0 68.0 12.2 4.5 0.0401 0.47 0.35
18 [0–1] 0.6 99.9 12.9 685.6 67.4 68.0 12.2 4.5 0.0402 0.48 0.35
19 [0–1] 0.7 99.9 12.9 675.9 67.9 68.0 12.2 4.5 0.0401 0.48 0.35
20 [0–1] 0.8 99.9 12.9 678.7 68.3 67.8 12.2 4.5 0.0406 0.48 0.35
21 [0–1] 0.9 99.9 13.0 675.7 68.8 67.6 12.2 4.5 0.0402 0.49 0.36
22 [0–1] 1.0 99.9 13.0 658.4 68.8 67.3 12.2 4.5 0.0402 0.49 0.35

Table 10
Performance of quality measures with minimum support 0.1 according to ws and
wc.

Weights Quality measures grouped by similar behavior with minimum
support 0.1

Lift Confidence
Gain Certainty factor
Support
Leverage
Accuracy
Amplitude
#Attributes
Covered instances

ws ↑ ¼ ¼
wc ↑ ¼ ↑
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QAR obtained by QARGA with a minimum support threshold of
0.05 and variations in wn and wa.

It can be observed that the percentage of covered instances is
100% and the support of the rules is around 7% regardless of wn

and wa values. The lift measure achieves the maximum value
when wn is fixed to 0. Regarding the confidence, accuracy and
certainty factor, these measures reach values above 90%, 70% and
80%, respectively, for almost all the variations of weights. In
addition, the maximum value is achieved when wn is lesser than
0.2 for the confidence, wn is 1 for the accuracy and wn is lesser
than 0.5 and wa is greater than 0.8 for the certainty factor. The
leverage and gain measures obtain the maximum values for high
values of wn and wa. It can be appreciated that confidence and
accuracy are the most influenced measures by the variations of wn

and wa showing an opposite behavior when wn is increased.
Table 12 summarizes the studied quality measures grouped by

similar behavior according to the wa and wn variations and a
minimum support threshold of 0.05. Four groups have been
formed from the results reported in Table 11. It can be noted that
wn is positively correlated with gain, leverage, accuracy and
number of attributes, whereas the confidence, certainty factor
and the lift when wn is less than or equal to 0.1 are negatively
correlated. The remaining quality measures are not affected by the
variations of wn. Similar conclusions can be extended to wa.
However, confidence and certainty factor are positively correlated
with respect to wa as the group of the accuracy measure. Alter-
natively, the lift measure presents an irregular behavior in refer-
ence to wa (represented by the symbol �). Figs. 7 and 8
summarize the average values obtained for the groups represented
by the confidence and accuracy, respectively.

4.4. Statistical tests analysis

Finally, a non-parametric statistical analysis [6] has been
carried out for all the measures to prove if significant differences
are presented in the measures of QAR obtained by QARGA from the
experimentation described in Section 4.3. The statistical analysis
has been performed using the results retrieved when a minimum
support threshold of 0.05 is considered. For each dataset, a weight
ws, wc, wn or wa is set and the average of each quality measure for
the 11 values of ws, wc, wn or wa, respectively, is calculated.

First, the Friedman and Iman–Davenport tests for a level of
significance equals to 0.05 have been applied for the support,
confidence, leverage, accuracy, gain, certainty factor and lift
measures to find the control configuration for each weight fixed
and for each measure. Afterwards, a post hoc statistical analysis
has been carried out since p-values lower than the level of
significance considered have been obtained. Namely, Holm has
been the post hoc statistical test applied to detect significant

Table 11
Average values obtained by QARGA with minimum support threshold of 0.05 according to wn and wa.

ID wn wa Covered instances (%) Rule support (%) Lift Confidence (%) Accuracy (%) Amplitude (%) #Attributes Leverage Certainty factor Gain

1 0.00 [0–1] 100.0 7.1 14.61 95.5 65.2 17.9 4.92 0.0361 0.86 0.54
2 0.10 [0–1] 100.0 7.2 9.86 95.2 68.2 18.0 5.04 0.0383 0.86 0.57
3 0.20 [0–1] 100.0 7.3 7.53 94.7 70.8 18.0 5.12 0.0401 0.86 0.59
4 0.30 [0–1] 100.0 7.3 8.25 94.1 73.2 18.0 5.24 0.0416 0.86 0.61
5 0.40 [0–1] 100.0 7.4 6.85 93.4 75.3 17.9 5.33 0.0431 0.86 0.62
6 0.50 [0–1] 100.0 7.4 8.73 92.4 77.4 17.9 5.38 0.0442 0.85 0.63
7 0.60 [0–1] 100.0 7.4 7.28 91.3 79.4 17.9 5.46 0.0453 0.84 0.64
8 0.70 [0–1] 100.0 7.4 8.68 89.9 81.0 17.8 5.47 0.0460 0.83 0.65
9 0.80 [0–1] 100.0 7.5 8.00 89.1 82.2 17.7 5.51 0.0465 0.83 0.65

10 0.90 [0–1] 100.0 7.5 9.02 88.2 83.2 17.7 5.54 0.0472 0.82 0.65
11 1.00 [0–1] 100.0 7.5 8.13 87.6 84.1 17.7 5.56 0.0479 0.81 0.66

12 [0–1] 0.00 100.0 7.4 7.93 91.2 71.1 17.7 5.10 0.0379 0.81 0.56
13 [0–1] 0.10 100.0 7.3 9.69 91.6 73.1 17.8 5.17 0.0396 0.82 0.58
14 [0–1] 0.20 100.0 7.3 8.92 91.8 74.6 17.7 5.26 0.0413 0.83 0.60
15 [0–1] 0.30 100.0 7.3 10.63 91.8 75.6 17.8 5.28 0.0421 0.84 0.61
16 [0–1] 0.40 100.0 7.3 7.75 91.9 76.3 17.9 5.33 0.0431 0.84 0.62
17 [0–1] 0.50 100.0 7.4 8.47 91.9 77.0 17.8 5.34 0.0438 0.84 0.62
18 [0–1] 0.60 100.0 7.4 11.32 92.2 77.6 17.8 5.37 0.0446 0.85 0.63
19 [0–1] 0.70 100.0 7.4 7.01 92.2 78.0 17.9 5.39 0.0451 0.85 0.64
20 [0–1] 0.80 100.0 7.4 8.51 92.2 78.6 18.0 5.42 0.0457 0.85 0.64
21 [0–1] 0.90 100.0 7.3 8.56 92.3 78.8 18.0 5.45 0.0463 0.86 0.65
22 [0–1] 1.00 100.0 7.3 8.18 92.4 79.3 18.0 5.46 0.0466 0.86 0.65

Table 12
Performance of quality measures with minimum support threshold of 0.05
according to wn and wa.

Weights Quality measures grouped by similar behavior with minimum
support threshold of 0.05

Support Gain Confidence Lift
Amplitude Leverage Certainty factor
Covered Instances Accuracy

#Attributes

wn ↑ ¼ ↑ ↓ ↓ if wnr0:1
¼ if wn 4 0.1

wa ↑ ¼ ↑ ↑ �
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Fig. 7. Confidence with minimum support 0.05 according to wa and wn.



differences between the control configuration for each weight
and the remaining values.

Table 13 reports the conclusions reached after applying the
Friedman and Iman–Davenport tests in addition to the Holm test.
Note that only the results obtained for the support, confidence and
accuracy measures are reported due to similar conclusions have
been obtained for the remaining measures. Each column shows
the control configuration for each phase of the experimentation
and for each measure. To analyze the first phase, ws has been fixed
and wc has been ranged from 0 to 1 and vice versa. In the case of
the second phase, wn has been fixed and wa has been ranged from
0 to 1 and vice versa. Symbol √ represents if the null hypothesis is
rejected, that is, if significant differences exist between the control
configuration and the remaining weights.

Table 14 summarizes the best configurations for each measure
to be optimized and the measures grouped by similar behavior
according to variations in the weights. The first column shows the
groups identified, second column reports the best values found for
ws, wc, wn and wa for each measure and third column details the
recommended weights to maximize each group of measures. The
three groups are composed of accuracy, gain and lift for the first
group, confidence and certainty factor for the second group and
finally support and leverage for the third group. It can be observed
that, high values for wn, wa and ws and low values for wc are
recommended to maximize the accuracy, gain and lift measures,
henceforth named Accuracy group. Alternatively, low values for wn

and ws, and high values for wa and wc are desirable to maximize
the confidence and certainty factor measures, from now consid-
ered as Confidence group. Finally, values close to 1 for wn, wa, ws

and wc are needed to maximize the support and leverage
measures.

4.5. Application to real-world datasets

QARGA has been applied to the two real-world datasets related
to ozone and earthquakes described in Section 4.1. This study aims
at analyzing if better results are obtained when the recommended
weights provided in Table 14 are used instead of set wn, wa, ws and
wc with the value 1, hereinafter considered as Default group. Note
that no group has been considered to maximize the support and
leverage measures due to values close to 1 are needed, hence,
these measures can be optimized with the Default group.

Tables 15 and 16 summarize the results obtained after execut-
ing QARGA 5 times for the ozone and earthquake datasets,
respectively. Note that the best results have been highlighted
in bold.

In Table 15, it can be observed that the lift, confidence, certainty
factor and gain measures are improved with regard to the Default

group when the Confidence group of weights is used. Finally, if
QARGA is executed using the weight set from the Accuracy group,
the lift, accuracy, leverage and gain are improved in contrast to the
Default group.

Similar conclusions can be extended in the results obtained for
the earthquake dataset. In Table 16, it can be appreciated that the
same set of measures is optimized using the two groups of weights
except for the lift measure for the Confidence group and gain for
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Fig. 8. Accuracy with minimum support 0.05 according to wa and wn.

Table 13
Summary of statistical tests according to the ws, wc, wn and wa with minimum
support threshold 0.05.

Accuracy Confidence Support
Control algorithm Control algorithm Control algorithm
ws ¼ 0:9;wcA ½0;1� ws ¼ 0:0;wcA ½0;1� ws ¼ 1:0;wcA ½0;1�

Weights H0 Weights H0 Weights H0

ws rejected ws rejected ws rejected

0.0 √ 0.7 √ 0.0 √
0.1 √ 0.9 √ 0.1 √
0.2 √ 1.0 √ 0.2 √
0.3 √ 0.8 √ 0.3 √
0.4 √ 0.6 0.4 √
0.6 √ 0.5 0.5 √
0.5 √ 0.3 0.6 √
0.7 √ 0.4 0.7 √
0.8 0.2 0.8
1.0 0.1 0.9

Control algorithm Control algorithm Control algorithm
wc ¼ 0:0;wsA ½0;1� wc ¼ 1:0;wsA ½0;1� wc ¼ 1:0;wsA ½0;1�
Weights H0 Weights H0 Weights H0

wc rejected wc rejected wc rejected

1.0 √ 0.0 √ 0.0 √
0.9 √ 0.1 √ 0.1 √
0.8 √ 0.2 √ 0.2 √
0.7 √ 0.3 √ 0.3 √
0.4 √ 0.6 √ 0.4 √
0.5 √ 0.5 √ 0.5 √
0.4 √ 0.6 √ 0.6 √
0.3 √ 0.7 √ 0.7 √
0.2 √ 0.8 √ 0.8
0.1 0.9 0.9

Control algorithm Control algorithm Control algorithm
wn ¼ 1:0;waA ½0;1� wn ¼ 0:0;waA ½0;1� wn ¼ 1:0;waA ½0;1�
Weights H0 Weights H0 Weights H0

wn rejected wn rejected wn rejected

0.0 √ 1.0 √ 0.0 √
0.1 √ 0.9 √ 0.1 √
0.2 √ 0.8 √ 0.2 √
0.3 √ 0.7 √ 0.3 √
0.4 √ 0.6 √ 0.4 √
0.5 √ 0.5 √ 0.5 √
0.6 √ 0.4 √ 0.7 √
0.7 √ 0.3 0.6 √
0.8 √ 0.2 0.8
0.9 0.1 0.9

Control algorithm Control algorithm Control algorithm
wa ¼ 1:0;wnA ½0;1� wa ¼ 1:0;wnA ½0;1� wa ¼ 0;wnA ½0;1�
Weights H0 Weights H0 Weights H0

wa rejected wa rejected wa rejected

0.0 √ 0.0 √ 1.0 √
0.1 √ 0.1 √ 0.9 √
0.2 √ 0.2 √ 0.4
0.3 √ 0.3 √ 0.3
0.4 √ 0.5 √ 0.2
0.5 √ 0.4 √ 0.1
0.6 √ 0.7 0.6
0.7 √ 0.6 0.8
0.8 0.9 0.7
0.9 0.8 0.5



the Accuracy group. The number of attributes and amplitude of
intervals are quite similar to that of the Default group.

From this observation, it can be concluded that QARGA dis-
covers rules more accurate, more interesting and reaches higher
gain of information on the rules when the set of recommended
weights is used.

Some other interesting conclusions can be drawn from these
results. Once the minimum support is reached according to the
fixed threshold of minimum support, the weight of the support
does not have an influence on the support of the rule. If all the
weights are set to 1, the maximum support allowed for each dataset
is reached. Although the support is never improved, recommended
weights can be used to improve the confidence and accuracy in
addition to the certainty factor, gain, lift and leverage.

5. Conclusions

An analysis of the quality measures based on the variations of
the weights included in the fitness function of the QARGA algorithm
has been carried out in this paper. Specifically, QARGA has been
applied to several public datasets with the aim of studying how its
performance is affected according to the choice of the weights. First,
QARGA has been applied to 35 datasets in order to determine the
values of the weights that lead to optimal QAR. Later, these
assumptions have been tested on two datasets of different nature,
related to ozone and earthquakes, thus confirming that the new set
of weights generates better rules. Significant differences have been
observed within the results of several quality measures calculated
from the QAR obtained by QARGA when ws, wc, wn and wa were
ranged from 0 to 1. However, wc and wn have been more influential
than ws and wa over the set of quality measures studied. Further-
more, several groups of measures have been identified according to
their behavior against the weight variations. The use of recom-
mended weights outperforms the results of QARGA in real-world

applications to those obtained when non-weighted objectives are
optimized in the fitness function.
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