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Abstract- Globally, the rate of preterm births are increasing, thus resulting in 

significant health, development and economic problems. Current methods for the 

early detection of such births are inadequate. Nevertheless, there has been some 

evidence that the analysis of uterine electrical signals, collected from the abdominal 

surface, could provide an independent and easier way to diagnose true labour and 

detect the onset of preterm delivery. Using advanced machine learning algorithms, in 

conjunction with Electrohysterography signal processing, numerous studies have 

focused on detecting true labour several days prior to the event. However, in this 

paper, the Electrohysterography signals have been used to detect preterm births. 

This has been achieved using an open dataset, which contains 262 records for 

women who delivered at term and 38 who delivered prematurely. Several new 

features from Electromyography studies have been utilized, as well as feature-

ranking techniques to determine their discriminative capabilities in detecting term 

and preterm records. Seven different artificial neural networks were then used to 

identify these records. The results illustrate that the combination of the Levenberg-

Marquardt trained Feed-Forward Neural Network, Radial Basis Function Neural 

Network and the Random Neural Network classifiers performed the best, with 91% 

for sensitivity, 84% for specificity, 94% for the area under the curve and 12% for the 

mean error rate. 
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1. Introduction:  

The World Health Organisation (WHO) defines preterm birth as the delivery of any 

baby born alive before 37 weeks of gestation. In other words, births that occur before 

259 days of pregnancy are defined as preterm and births that occur between 259 

and 294 days, term (WHO, 2012). Preterm births have a significant adverse impact 

on the new born, including an increased risk of death and other health defects. In 

particular, infant death rates (less than 24 weeks) are increasing. In 2009, preterm 

births accounted for approximately 7% of live births, in England and Wales (Bulletin, 

2011). 

During pregnancy, the monitoring of uterine contractions is vital in order to 

differentiate between those that are normal and those that may lead to premature 

birth. The early onset of such contractions can be caused by a number of conditions, 

including abnormalities in the cervix and uterus, recurrent antepartum haemorrhage 

and infection (Lucovnik et al., 2011). In the USA, the cost of treatment is reportedly 

$25.6 billion, whilst in England and Wales, it is estimated to be £2.95 billion, annually 

(Bulletin, 2011). Consequently, in the last twenty years, a great deal of research has 

been undertaken to detect and prevent the threat of preterm birth. This has been 

achieved using different monitoring techniques, which detect uterine contractility. 

Many approaches have focused on the use of external Tocography and Intrauterine 

Pressure Catheters. However, they have proven ineffective in the detection of 

preterm births. 

One promising technique, which has gained recognition in monitoring uterine 

activity, is the use of advanced machine learning algorithms and 

Electrohysterography (EHG) signal processing. This method records signals from the 

abdominal surface of pregnant women. These readings are then used to study the 

electrical activity produced by the uterus. The results are convincing, suggesting that 

it is an interesting line of enquiry to pursue. 

In conjunction with EHG signal processing, the research in Lucovnik et al. 

(Lucovnik et al., 2011) and Hassan et al. (Hassan, Muszynski, Alexandersson, & 

Marque, 2013) illustrates that extracting features from EHG signals is key to finding 

particular spectral information that is specific to term and preterm deliveries. The aim 



of this paper is to evaluate the use of selected features in conjunction with several 

advanced artificial neural network classification algorithms and their ability to 

distinguish between term and preterm births.  

There are several features of the artificial neural networks which make them 

attractive to medical data classifications. First, artificial neural networks are data 

driven in that there is no need to make prior assumptions about the model under 

study. This means that neural network are well suited to problems where their 

solutions requires some knowledge that is difficult to specify however there enough 

data or observations. Second, neural network can generalise (Huang, 1998). This 

means that after the training, they often can produce good results even if the training 

data contains unseen input patterns. Third, neural networks with the flexible parallel 

structures can obtain simultaneously the problem solutions (Huang, 2004).  

An open dataset has been used, which contains 300 records of pregnant subjects 

(262 term and 38 preterm). To enable classification, several features have been 

extracted from the raw EHG signals. These features have not been previously 

considered in preterm studies. The results indicate that the selected classifiers, in 

conjunction with the new features, outperform a number of previous approaches. 

The remainder of the paper is structured as follows. Section 2 discusses related 

studies in this field. Section 3 describes the experimental methodology and the 

selected extracted feature sets, including the design of the experiment. The results 

have been presented in section 4 and are discussed in Section 5, before the paper is 

concluded in Section 6. 

2. Related Studies 

Over the past 20 years, an extensive amount of research has focused on the use of 

pattern recognition techniques to extract features from EHG signals. These include 

linear and nonlinear methods, in both the time and frequency domains, to improve 

the results obtained from classification algorithms. The extraction of features often 

forms part of the data pre-processing stage. In one study, Zardoshti et al. (M. 

Zardoshti, B. C. Wheeler, K. Badie, 1993), evaluated a number of features 

commonly used when dealing with EHG signals. These include integrated absolute 

value, zero crossings and auto-regression coefficient. However, despite their good 



discriminant capabilities, a precise frequency threshold for accurate contraction 

distinction and delivery prediction, over different patients, could not be determined. In 

our previous work (Paul Fergus et al., 2013), features such as peak frequency, 

median frequency, root mean square and sample entropy, performed particularly 

well when discriminating between term and preterm records. Furthermore, several 

studies have also mentioned very good results, within their reporting, using the same 

features.  

However, it is in the Electromyography (EMG) domain that we find new and 

interesting works. In one study, Lucovnik et al. (Lucovnik et al., 2011) investigated 

whether uterine EMG could be used to evaluate propagation velocity (PV). In this 

study, the electrical signals of the uterus were measured both in labour and non-

labour patients who delivered at term and prematurely. The results indicate that, the 

combination of power spectrum (PS) and PV peak frequency parameters yielded the 

best predictive results in identifying true preterm labour. However, only one 

dimension of propagation is considered at a time, which is based on the estimation 

of time delays between spikes. In comparison, Lange et al. (Lange et al., 2014) 

estimate the PV of the entire EHG burst that occurs during a contraction. This has 

been achieved by calculating the bursts corresponding to a full contraction event. 

The results illustrate that the estimated average propagation velocity is 2.18 (60.68) 

cm/s. No single preferred direction of propagation was found. 

Meanwhile, Alamedine et al. (Alamedine, Khalil, & Marque, 2013) have presented 

three techniques to identify the most useful features relevant for contraction 

classification. These include linear features, such as peak frequency, mean 

frequency and root mean square, and nonlinear features, such as the Lyapunov 

exponent and sample entropy. In order to choose the most suitable features that 

represent contractions, feature selection algorithms have also been used. This 

process involved using a binary particle swarm-optimization (BPSO) algorithm and 

calculating the Jeffrey Divergence (JD) distance. This is a sequential forward 

selection (SFS) algorithm. The results show that the BPSO and SFS algorithms 

could select features with the greatest discriminant capabilities. In this case, out of 

the six features considered, sample entropy produced the best results. 



There is increased interest in detecting term and preterm labour earlier, using non-

linear EMG and EHG signals. In one example, Diab et al. (Diab, Hassan, Karlsson, & 

Marque, 2013) used four non-linear features to distinguish between pregnancy and 

labour contractions. These features were time reversibility, sample entropy, 

Lyapunov exponents and delay vector variance. The results show that time 

reversibility produced the highest classification rate. 

In comparison, SooYoung et al. (Sim, Ryou, Kim, Han, & Park, 2014) have used 

26 features in their experiment. These include 18 time domain features and 8 

frequency domain features. The features have been extracted from 40 signals in the 

TPEHG database to determine the characteristic differences in uterine muscle 

activities between term and preterm delivery. The signals are divided into four 

groups depending on the time of recording (before or after the 26th week of 

gestation) and the length of gestation (term delivery ≥ 37 weeks and preterm delivery 

< 37 weeks). The results show significant differences between term and preterm 

records before 26 weeks when, Frequency Ratio (FR) and Mean Absolute Value 

Slope1 (MAVSLP1) are used. While other features, such as Willison amplitude 

(WAMP), Slope Sign Change (SSC), and 3rd Spectral Moments (SM3) show 

substantial differences between preterm and term delivery data recorded during the 

later period of gestation.  

Yiyao et al (Ye-Lin, Garcia-Casado, Prats-Boluda, Alberola-Rubio, & Perales, 

2014) have developed a tool that provides automatic segmentation of EHG 

recordings, whilst distinguishing between uterine contractions and other artefacts. 

This has been achieved by using an algorithm that generates the Tocography TOCO 

signal, derived from the EHG, and detects windows with significant changes in 

amplitude. In order to develop the classifier, a total of eleven spectral, temporal, and 

nonlinear features were extracted from the EHG signal windows of 12 women, which 

were classed by experts as being in the first stages of labour. The combination of 

characteristics that led to the highest degree of accuracy in detecting artefacts was 

then determined. Using only seven features, the results produced a precision of 

92.2%. This study determined that it is possible to obtain automatic detection of 

motion artefacts in segmented EHG recordings. 



Furthermore, Venugopal et al (Venugopal, Navaneethakrishna, & Ramakrishnan, 

2014) have attempted to analyse surface electromyography (sEMG) signals in 

patients with and without muscle fatigue, using multiple time window (MTW) 

features. In their experiment, sEMG signals were recorded from the muscles in the 

biceps brachii of fifty volunteers. Using four window functions (rectangular, 

Hamming, trapezoidal, and Slepian windows), eleven multiple time window features 

were acquired. These were selected using a genetic algorithm and information gain 

based ranking. In addition to this experiment, four different algorithms (naïve Bayes, 

support vector machines, k-nearest neighbour, and linear discriminant analysis) have 

also been evaluated to see the impact of the features on each of the classifiers. The 

results show that, under fatigue, there was a reduction in mean and median 

frequencies of the signals. The k-nearest neighbour algorithm was the most precise 

in classifying the features, with a maximum accuracy of 93%. 

Meanwhile, Vasak et al. (Vasak et al., 2013) studied whether uterine EMG can 

identify inefficient contractions. This can lead to first-stage labour and caesarean 

delivery in term nulliparous women, with the unplanned onset of labour. In this study, 

EMG was recorded during spontaneous labour in 119 such cases, with singleton 

term pregnancies in the cephalic position. Electrical activity of the myometrium, 

during contractions, is characterized by its power density spectrum (PDS). The 

diagnosis of labour has been made if the patient was in active labour, with no 

increase in dilation, for at least two hours. The data was analysed to calculate the 

Intra-class correlation coefficients. This has been achieved by comparing the 

variance of contraction characteristics, within subjects, to the variance between 

subjects. The result illustrated that mean peak frequency in women undergoing 

caesarean delivery, for first-stage labour, was significantly higher (0.55 Hz), than in 

women delivering vaginally without (0.49 Hz) or with (0.51 Hz) augmentation of 

labour (P = .001 and P = .01, respectively). Augmentation of labour increased the 

mean PDS frequency when comparing contractions before and after the start of 

augmentation. This increase was only significant in women who eventually delivered 

vaginally. However, the paper fails to use additional aspects of intra-partum 

recordings into vitro analysis, testing the hypothesis of a link between an increase in 

peak frequency and lactic acidosis and impaired in vitro contractility. Furthermore, it 

also fails to consider other parameter analysis subsets (i.e. sample entropy, root 



mean square or wavelet). This could be because, depending on the dataset and 

parameter analysis equation, the use of different parameter analysis techniques is 

more challenging in getting meaningful EMG signals. Additionally, if these methods 

had been applied effectively, it would have led to greater classification results. 

3. Methodology 

This paper uses the TPEHG dataset, which contains the raw EHG signals that are 

necessary for our study (PhysioNet, 2012). This data has been pre-processed using 

data segmentation, feature extraction and classification. The study in (Leman H, 

Marque C, 1999) illustrates how EHG signals can be pre-processed using various 

frequency related parameters. The study uses several linear and non-linear signal 

pre-processing techniques, via three different channels, to discern term and preterm 

deliveries. The pre-processing technique used in (Leman H, Marque C, 1999) 

passed the EHG signal through a Butterworth filter configured to filter 0.8-4 Hz, 0.3-4 

Hz, and 0.3-3Hz frequencies. However, (Maner, 2003) found that uterine electrical 

activity occurred within 1Hz and that the maternal heart-rate was always higher than 

1Hz. Furthermore, 95% of the patients measured had respiration rates of 0.33 Hz or 

less. Based on these findings, in this paper, the raw TPEHG signals have been 

passed through the same Butterworth filter to focus on data between 0.34 and 1Hz. 

3.1 Raw Data Collection 

The raw EHG signals, obtained from the Physionet database (PhysioNet, 2012), 

have been recorded using four bipolar electrodes. These have been adhered to the 

abdominal surface and spaced at a horizontal and vertical distance between 2.5 and 

7cm apart. The total number of records in the EHG dataset is 300 (38 preterm 

records and 262 term records). Each of the signals have been either recorded early, 

<26 weeks (at around 23 weeks of gestation) or later, =>26 weeks (at around 31 

weeks). Within the dataset, three signals have been obtained simultaneously, ‘per 

record’. This has been achieved by recording through three different channels. 



3.2 Feature Extraction 

In this paper, several feature extraction techniques have been utilized from (Angkoon 

Phinyomark, 2009), (Phinyomark, A. Nuidod, P.Phukpattaranont, 2012), (Fele-Zorz, 

Kavsek, Novak-Antolic, & Jager, 2008) to extract features from the records on 

channel 3. Table 1, below, describes the features that have been used. In this list, 

xn represents the nth sample in the EHG signals in the segment; P represents the 

power spectrum (calculated using the Fast Discrete Fourier Transform), while N 

denotes the length of the EHG signal. The main difference between our work and 

(Angkoon Phinyomark, 2009; Phinyomark, A. Nuidod, P.Phukpattaranont, 2012) is in 

the analysis of the electrical activity in the uterus, rather than other muscle activity. 

Given that the uterus is a muscle, this paper investigates whether techniques used to 

capture EMG activity can also work as well on EHG activity. 

3.3 Feature Selection 

Using the features defined in Table 1, feature vectors have then been generated. 

The literature reports that peak frequency, median frequency, sample entropy and 

root mean squares have the most potential to discriminate between term and 

preterm records. Furthermore, the literature also reports that in EMG studies, the 

features described in Table 1 are equally as good at discriminating between different 

muscle activities. However, there is no mention of the uterus in many studies on 

EMG. To validate these findings, the discriminate capabilities of all the features 

reported in Table 1 (i.e. feature ranking) have been determined. This has been 

achieved using several measures, including statistical significance, linear 

discriminant analysis using independent search (LDAi), linear discriminant analysis 

using forward search (LDAf), linear discriminant analysis using backward search 

(LDAb) and gram-schmidt (GS) analysis. Using these measures, the features have 

been ranked, and the top four uncorrelated features have been selected from the 

feature space. 

Table 1: Feature Extraction Techniques used in EMG 

Equation Name Mathematic Abbreviation 

Integrated EMG  IEMG = ∑ |(xn)|N
n=1    

Mean absolute value of EMG MAV =
1

N
∑ |xn|N

n=0    



Simple Square Integral of 
EMG 

SI = ∑ |xn|N
n=0

2
   

Wavelet length of EMG Signal WL = ∑ |xn − xn−1|N−1
n=0                                                                                                             

Log Detector of EMG Signal LOG = e1/N ∑ log (|xn|)N
n=1  

Root Mean Square of EMG 
Signal RMS = √1/N ∑ xn

2N
n=1                                                                                                                   

Variance of EMG VAR =
1

N
− 1 ∑ xn

2N
n=1                                                                                                     

Difference Absolute Standard 
Deviation Value of EMG 
Signal 

DAS = 1
N − 1 ⁄ ∑(xn+1 − xn)2

N−1

n=1

 

Maximum Fractal Length of 
EMG Signal MFL = log 10(√∑ (xn − xn+1)2N−1

n=1 )                                                                    

Average Amplitude Change of 
EMG Signal AAC =

1

N
∑ |xn+1 − xn|

N−1

n=1

 

Peak Frequency of EMG 
Signal 

fmax = arg(
fs

N
maxi=0

N−1P(i)) 

Median Frequency 
 

fmed

=  im

fs

N
,      ∑ P(i) =̇

i=im

i=0

∑ P(i)

i=N−1

i=im

 

 

These four features have been used in the classification stage to determine which 

set produced the greatest area under the curve (AUC), sensitivity and specificity 

values. Table 2 illustrates that the best performing classifier was the Radial Basis 

Function Neural Network (RBNC), using the Linear Discriminant Analysis Forward 

Search feature ranking technique. This classifier achieved the best result using the 

features, sample entropy, waveform length, log detector, and variance. 

Table 2: Results for Feature Selection Techniques 

AUCs for Feature Selection Techniques 

RBNC RBNC RBNC RBNC RBNC 

p LDAi LDAf LDAb GS 

85% 87% 89% 85% 87% 

 

Sensitivities for Feature Selection Techniques 

RBNC RBNC RBNC RBNC RBNC 

p LDAi LDAf LDAb GS 

79% 89% 86% 81% 84% 

 

Specificities for Feature Selection Techniques 

RBNC RBNC RBNC RBNC RBNC 

p LDAi LDAf LDAb GS 



74% 74% 79% 74% 78% 

 

As a result, this set of features have been used to evaluate the capabilities of the 

classifiers considered in this paper. 

3.4 Oversampling of EHG Signals 

The TPEHG dataset is unbalanced and contains 262 term and 38 preterm records. 

This has a significant impact on machine learning algorithms, as classifiers are more 

prone to detecting the majority class. Therefore, given that there are more term 

records, the probability of detecting a preterm record is low. To address this issue, 

the minority class (preterm) is oversampled using the Synthetic Minority Over-

Sampling Technique (SMOTE). The technique is effective in solving class skew 

problems (Richman & Moorman, 2000). Using the 38 preterm records that are 

already available, SMOTE has been utilized to generate 262 preterm records. The 

oversampled results have then been compared with the original feature set extracted 

from the original TPEHG database (262 term and 38 preterm). 

3.5 Validation Method Used in Experiment 

In order to determine the overall accuracy of each of the classifiers several validation 

techniques have been considered. These include Holdout Cross-validation, K-fold 

Cross-validation, Sensitivities, Specificities, Receiver Operating Curve (ROC) and 

Area Under the Curve (AUC).  

3.6 Classifiers 

This study evaluates the use of seven advanced artificial neural network classifiers. 

This includes the back-propagation trained feed-forward neural network classifier 

(BPXNC), levenberg-marquardt  trained feed-forward neural network classifier 

(LMNC), the perceptron linear classifier (PERLC), radial basis function neural 

network classifier (RBNC), random neural network classifier (RNNC), the Voted 

Perceptron classifier (VPC) and the Discriminative Restricted Boltzmann Machine 

classifier (DRBMC) (37steps, 2013).  



In the BPXNC, the network is trained to map a set of input data by iterative 

adjustment of the weights. The information from inputs is fed forward through the 

network to optimize the weights between neurons. Moreover, the optimization of the 

weights is made by backward propagation of the error during the training or learning 

stage. The BPXNC then reads the input and output values in the training dataset and 

changes the value of the weighted links to reduce the differentiation between the 

predicted and observed values. The error in prediction is reduced across several 

training cycles (epoch 50) until the network reaches the best level of classification 

accuracy, while avoiding overfitting (Ghaffari et al., 2006). 

The Levenberg-Marquardt trained feed-forward neural network classifier (LMNC) is 

similar to the BPXNC, in terms of functionality. However, it is much more memory 

intensive. Furthermore, during the training stage, training is stopped when the 

performance on an artificially generated tuning set of 1000 samples per class has 

been reached (based on k-nearest neighbour interpolation) and thereafter does not 

improve (37steps, 2013). 

Linear perceptron linear classifiers (PERLC) are the simplest type of neural 

network classifier and are trained with a supervised training algorithm. This classifier 

assumes that the true classes of the training data are available and incorporated in 

the training process. The input weights in this classifier can be adjusted iteratively by 

the training algorithm so as to produce the correct class mapping for the output. 

However, the problem with this classifier is that it does not have a hidden layer 

therefore this leads to bias in result accuracy.   

The radial basis function neural network classifier (RBNC) is mostly used in 

complicated pattern recognition and classification problems, such as biomedical 

datasets that are nonlinear (Huang, 1999). The classifier has one hidden layer with 

unit radial basis units. The mapping properties of the RBCN can be modified through 

the weights in the output layer.  

The Random neural net classifier (RNNC) is a feed-forward neural network with 

one hidden layer consisting of N sigmoid neurons. The input layer rescales the input 

features to unit variance; the hidden layer has normally distributed weights and 

biases with zero mean and standard deviation (37steps, 2013). 



The voted perceptron classifier is an improved version of perceptron networks 

which was proposed by (Freund and Schapire, 1999). The algorithm takes 

advantages of the data that are linearly separable with a large margin. Similar the 

support vector machine, the network can be used with the kernel function.  

Discriminative Restricted Boltzmann Machine classifier (DRBMC) is a powerful 

classifier based on latent variables which are usually binary numbers for the 

modelling of input distributions (Larochelle, Bengio, 2008). In this case, the variables 

in the visible layer are separated into two parts. The first represents the input data 

and the second represents the label of input. 

4. Results 

This section presents the classification results for term and preterm delivery records. 

This has been achieved using the extracted feature set from the 0.34-1 Hz filter on 

Channel 3. Using the 80% holdout technique and k-fold cross-validation, the initial 

validation results are presented. This provides a baseline for comparison against all 

subsequent evaluations that have been performed, using the oversampled dataset, 

clinical data and the combination of classifiers. 

4.1 Original Results for 0.34-1 Hz Filter on Channel 3 

The performance of each classifier has been evaluated using the mean sensitivity, 

specificity, errors, standard deviation, and AUC values. Each experiment has been 

repeated 30 times, with randomly selected training and test sets for each run. 

Classifier Performance 

The first evaluation uses the original TPEHG dataset, which contains 38 preterm and 

262 term observations. Table 3, illustrates the mean averages obtained over 30 

simulations for the sensitivity, specificity, and AUC values. As it can be noticed, the 

sensitivities (i.e. the ability to classify a preterm record), in this initial test, are low for 

all classifiers. This is expected since the dataset is unbalanced in favour of term 

observations, thus there are a limited number of preterm records from which the 

classifiers can learn. Consequently, specificities are much higher than sensitivities.  



Table 3: Original TPEHG Signal (262 Term And 38 Preterm) 

Classifiers Sensitivity Specificity AUC 

BPXNC 0.0000 0.9987 54% 

LMNC 0.0667 0.9519 58% 

PERLC 0.1619 0.8647 57% 

RBNC 0.1286 0.9622 56% 

RNNC 0.0667 0.9474 56% 

VPC 0.0000 1.0000 50% 

DRBMC 0.0000 0.9981 58% 

 

Table 4, illustrates the results obtained from k-fold cross-validation. This has been 

used to determine whether the results from the holdout method can be improved. 

Table 4: Original TPEHG signal (262 Term and 38 Preterm) cross-validation 

 
            80% Holdout: 30 
Repetitions 

Cross Val, 
5 Folds, 1 
Repetition 

Classifiers Mean 
Err 

Standard 
Deviation 

Mean Err 

BPXNC 0.1278 0.0043 0.1333 

LMNC 0.1602 0.0331 0.1767 

PERLC 0.2243 0.1186 0.2400 

RBNC 0.1434 0.0342 0.1333 

RNNC 0.1641 0.0363 0.1567 

VPC 0.1267 0.0000 0.1267 

DRBMC 0.1283 0.0068 0.1267 

 

The k-fold cross-validation results, using five folds and one repetition illustrate that 

k-fold cross-validation has improved the error rates, for some of the classifiers. 

However, these are negligible. Furthermore, the lowest error rates could not be 

improved below the minimum error rate expected, which is 12.67%. 

4.2 Results for 0.34-1 Hz TPEHG filter on Channel 3 – Oversampled using SMOTE 

In order to improve the results, the preterm observations have been oversampled 

using SMOTE technique. This algorithm balances the dataset by oversampling the 



minority class (38 preterm records) to 262. A new dataset is generated that contains 

an even split between term and preterm records. 

Classifier Performance 

Table 5 illustrates that the sensitivities, for all of the algorithms, have significantly 

improved, while specificities have decreased. In addition, the AUC results also show 

a significant improvement in accuracy for all of the classifiers. In particular, the 

RBNC classifier has dramatically improved with an accuracy of 90%.  

Table 5: SMOTE TPEHG signal (262 Term and 262 Preterm) 

Classifiers Sensitivity Specificity AUC 

BPXNC 79% 58% 72% 

LMNC 82% 69% 82% 

PERLC 46% 67% 63% 

RBNC 85% 80% 90% 

RNNC 86% 72% 83% 

VPC 98% 2% 50% 

DRBMC  59% 55% 56% 

Table 6: SMOTE TPEHG signal (Term and Preterm) cross-validation 

 
           80% Holdout: 30 Repetitions 

Cross Val, 
5 Folds, 1 
Repetition 

Classifiers Mean 
Err 

Standard 
Deviation 

Mean Err 

BPXNC 0.3144 0.0591 0.2977 

LMNC 0.2455 0.0489 0.2195 

PERLC 0.4321 0.0624 0.4656 

RBNC 0.1734 0.0424 0.1622 

RNNC 0.2106 0.0451 0.2023 

VPC 0.4984 0.0088 0.5000 

DRBMC 0.4295 0.0376 0.4198 

Table 6 illustrates the resulting mean error rates of the oversampled dataset. As it 

can be seen, the mean error rates, produced by all of the classifiers, are lower than 

the cross-validation mean errors and the expected error rate, which is 262/524, i.e. 

50%. 



4.3 Results for 0.34-1 Hz TPEHG filter on Channel 3 combined with Clinical Data 

Clinical data for each of the women in the dataset were made available in 

December 2012. These include the age of the women, parity (the number of 

previous births), abortions, weight, hypertension, diabetes, placental position, first 

and second trimester bleeding, funnelling and smoking. Once the clinical data has 

been added to the original dataset, several observations were removed because of 

missing clinical data. This resulted in a new dataset containing 17 preterm records 

and 152 term records. Again, in order to balance the dataset, the preterm records 

have been oversampled using SMOTE to produce 153 preterm and 152 term 

samples. A new dataset is created that combines the real and synthetic observations 

(305 observations altogether). Using this dataset, the experiment is again performed 

using 30 iterations.   

Classifier Performance 

Table 7 illustrates that the results have improved slightly to those presented in Table 

5. Several of the classifiers have now produced higher values for the AUC and both 

the sensitivities and specificities. This is despite having to reduce the size of the 

dataset to account for missing values in the clinical data (in the case of preterm 22 

observations had to be removed; and in the case of term 110 observations had to be 

removed).   

Table 7: SMOTE TPEHG signal (152 Term and 153 Preterm) with Clinical Data 

Classifiers Sensitivity Specificity AUC 

BPXNC 64% 64% 68% 

LMNC 85% 76% 85% 

PERLC 53% 61% 64% 

RBNC 87% 81% 91% 

RNNC 87% 71% 84% 

VPC 100% 0% 50% 

DRBMC  56% 55% 52% 

Table 8 illustrates the resulting mean error rates of the dataset containing the 

clinical data. As it can be seen, the mean error rates produced by several of the 



classifiers, are much lower than the expected error rate, which is 153/304, i.e. 50%, 

and are comparable with the cross-validation mean errors. 

Table 8: SMOTE TPEHG signal (Term and Preterm) with Clinical Data cross-
validation 

 
           80% Holdout: 30 Repetitions 

Cross Val, 
5 Folds, 1 
Repetition 

Classifiers Mean 
Err 

Standard 
Deviation 

Mean Err 

BPXNC 0.3594 0.0839 0.3508 

LMNC 0.1932 0.0710 0.1803 

PERLC 0.4329 0.0674 0.3639 

RBNC 0.1643 0.0365 0.1377 

RNNC 0.2097 0.0460 0.1934 

VPC 0.4984 0.0000 0.4656 

DRBMC 0.4444 0.0561 0.4525 

4.4 Results for 0.34-1 Hz TPEHG filter on Channel 3 with Additional Features and 

Clinical Data 

Building on our previous work (Fergus et al., 2013), this experiment combines 

features from that work that produced good results. These additional features are 

root mean squares, peak frequency and median frequency.   

Classifier Performance 

Table 9 illustrates that the results have improved on those presented in Table 7, 

indicating that the additional features provide better separation between the two 

classes.   

Table 10 illustrates the resulting mean error rates of the dataset containing the 

clinical data. As it can be seen, the mean error rates, produced by several of the 

classifiers, are much lower than the expected error rate, which is 50%, and 

comparable with the cross-validation mean errors. 

 



Table 9: SMOTE TPEHG signal (152 Term and 153 Preterm) with Additional 
Features and Clinical Data 

Classifiers Sensitivity Specificity AUC 

BPXNC 67% 67% 70% 

LMNC 95% 81% 88% 

PERLC 56% 62% 65% 

RBNC 70% 95% 94% 

RNNC 88% 72% 87% 

VPC 100% 0% 50% 

DRBMC  61% 51% 51% 

Table 10: SMOTE TPEHG signal (Term and Preterm) with Additional Features and 
Clinical Data cross-validation 

 
           80% Holdout: 30 Repetitions 

Cross Val, 
5 Folds, 1 
Repetition 

Classifiers Mean 
Err 

Standard 
Deviation 

Mean Err 

BPXNC 0.3317 0.0838 0.3508 

LMNC 0.1220 0.0560 0.1803 

PERLC 0.4118 0.0542 0.3639 

RBNC 0.1749 0.0406 0.1377 

RNNC 0.1992 0.0451 0.1934 

VPC 0.4984 0.0000 0.4656 

DRBMC 0.4421 0.0527 0.4525 

4.5 Classifier Performance Comparison 

The results from the previously run experiments have now been compared in Figures 

1, 2 and 3. As it can be seen in Figure 1, all of the classifiers have performed 

consistently under the four different strategies taken. However, the original 

unbalanced TPEHG dataset does provide the poorest results. This is due to the 

disparity between term and preterm observations. Interestingly, the linear and voted 

perceptron classifiers do not provide sufficient models for prediction in any of the 

strategies used. This is a similar case for the Discriminative Restricted Boltzmann 

Machine classifier. The simulation results indicate that using the SMOTE 

oversampling technique, with clinical data and added features, provides the best 



AUC using the Radial basis Neural Network classifier. This is followed closely by the 

Levenberg-Marquardt trained Feed-Forward Neural Network classifier and the 

Random Neural Network classifier. 

 

Fig 1: Comparison of AUC values using the Four Strategies. Numbers 1 to 7 

represent BPXNC, LMNC, PERLC, RBNC, RNNC, VPC and DRBMC classifiers 

respectively. 

Figure 2 presents the sensitivities and hence the classifiers ability to predict preterm 

observations. The focus of the paper has been to improve sensitivity rates, as it is 

more important to predict preterm delivery, as opposed to miss-classifying a term 

pregnancy. As expected, the sensitivities are low using the original data. This is 

solely due to the majority of observations being term and only a small number of 

observations being preterm. The highest sensitivity readings have resulted from 

strategies 2, 3 and 4, using the Levenberg-Marquardt trained Feed-Forward Neural 

Network classifier and Trainable Radial Basis Neural Network classifier. This is 

consistent with the AUC values that have been depicted in Figure 1. Interestingly, 

the sensitivities are high for the Voted Perceptron classifier, yet the findings are 

inconsistent with the very low AUC values for this classifier in Figure 1.  



 

Fig 2: Comparison of Sensitivity values using the Four Strategies. Numbers 1 to 7 

represent BPXNC, LMNC, PERLC, RBNC, RNNC, VPC and DRBMC classifiers, 

respectively 

Lastly, Figure 3 illustrates the specificity results for each of the strategies that have 

been used. As expected, the specificity values for all classifiers, using strategy one, 

are high. Again, this is due to the unbalanced dataset (i.e. 262 out of the 300 

observations were term). For the Levenberg-Marquardt trained Feed-Forward Neural 

Network and the Radial Basis Neural Network classifiers, the values are consistent 

with the previous figures. Interestingly, using strategy three and four, it is the 

Levenberg-Marquardt trained Feed-Forward Neural Network classifier that 

performed better at predicting preterm, whilst the Radial Basis Neural Network 

classifier is better at predicting term. 



 

Fig 3: Comparison of Specificity values using the Four Strategies. Numbers 1 to 7 

represent BPXNC, LMNC, PERLC, RBNC, RNNC, VPC and DRBMC classifiers, 

respectively 

4.6 Combining Classifiers 

In this paper, another set of experiments has been conducted to determine whether 

the results can be further improved. This involved combining the best classifiers that 

produced consistent AUC, Sensitivity and Specificity values across all of the 

strategies. The classifiers that fulfil this criterion are the Levenberg-Marquardt trained 

Feed-Forward Neural Network, Radial Basis Neural Network classifier and the 

Random Neural Network classifier. 

Classifier Performance 

Table 11, illustrates that the results can be improved further on those presented in 

Table 9, with several of the classifiers producing higher values for the AUC and both 

the sensitivities and specificities. This suggests that by combining the predictive 

capabilities from each classifier, better results can be obtained.    

Table 11: Combined Classifiers 

Classifiers Sensitivity Specificity AUC 

LMNC, 
RBNC, and 

RNNC 
Combined 

91% 84% 94% 



 

Table 12 illustrates that there is a 12% error, which is slightly high, but much lower 

than the expected error rate. The cross validation results demonstrate that the 80% 

holdout technique produces the better results.  

Table 12: SMOTE TPEHG signal (Term and Preterm) with Additional Features and 
Clinical Data cross-validation 

 
           80% Holdout: 30 Repetitions 

Cross 
Val, 5 
Folds, 1 
Repetition 

Classifiers Mean 
Err 

Standard 
Deviation 

Mean Err 

LMNC, RBNC 
and RNNC 
Combined 

0.1254 0.0521 0.1623 

The results illustrate that using machine learning techniques are encouraging. Within 

a wider context, this approach might be able to utilise real-life pregnancy data to 

predict, with high confidence, whether an expectant mother is likely to have a 

premature birth or proceed to full term. 

5. Discussion 

Most of the uterine EHG signal studies concentrate on predicting true labour, which 

is based on the last stage of the pregnancy duration. This paper has studied the 

uterine EHG signals of women in order to classify the preterm and term deliveries 

from the early stages of the pregnancy. It has been suggested that ANN is a better 

solution for nonlinear medical decision support systems than traditional statistical 

techniques (Li et al. 2000). Therefore, this experiment is based on applying seven 

different types of neural networks for the classification of term/preterm data.  

The initial classification with the data set in its original form achieved very low 

sensitivity, below 20%, while the specificity is higher. This means that the classifiers 

were classifying most of the cases into the majority class, which are term subjects. 

The main reason for the ineffective classification was the unequal amount of term 

records to preterm records. Therefore, in these experiments, the oversample 

SMOTE method has significantly improved the sensitivity and specificity rates for 

most of the ANN classifiers. 



The first publication of the TPEHG data set was in 2010. However, additional clinical 

data became freely available in 2012. The additional features from the TPEHG 

database with the clinical data were considered in our experiments when analysing 

the data set. The experiment results demonstrate that the general performance of 

most ANN classifiers is significantly improved further by comprising the information 

from the clinical data set.  

By combining additional features with the clinical data, our simulation results showed 

further improvements in terms of the average sensitivity, specificity and area under 

the curve. In this case, the results show that the Levenberg-Marquardt trained Feed-

Forward Neural Network classifier performs better at predicting preterm records 

while the Radial Basis Neural Network classifier is better at predicting term. This is 

clearly indicating that using single classifier for the prediction of term/preterm real 

data may not generate good results, while combining a number of classifiers can 

generate more reliable classification.  

6. Conclusion  

The development of medical information systems has played an important role in the 

biomedical domain. This has led to the extensive use of Artificial Intelligence (AI) 

techniques for extracting biological patterns in data. Furthermore, data pre-

processing and validating techniques have also been used extensively to analyze 

such datasets for classification problems. In this paper, seven classifiers have been 

used to classify term and preterm records from the TPEHG dataset, filtered between 

0.34 and 1 Hz. The results demonstrate that the best performing classifier was the 

RBNC with 85% sensitivity, 80% specificity, 90% AUC and a 17% mean error rate. 

These results are encouraging and suggest that the approach posited in this paper is 

a line of enquiry worth pursuing.  

Perhaps one negative aspect of the work is the need to utilize oversampling to 

increase the number of preterm samples. A better way would have been to balance 

the dataset using actual recordings obtained from pregnant women who delivered 

prematurely. This will be the focus of future research, alongside a more extensive 

investigation into different machine learning algorithms and techniques.  
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