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Revision summary and response to reviews 

1. The paper has been shortened as suggested by the Associate editor, by rewriting throughout 

and by dropping two figures (original Figures 4 and 5). The body of the paper now has less than 

4000 words. 

2. Equations have been revised to show vectors in bold font as suggested by R1 and R3. 

3. A fuller explanation of all figures has been provided in the text, as suggested by R2 and R3. 

4. Figures have been embedded within the text as well as supplied in separate files, as suggested 

by R2. 

5. Text in Section 3 around (ii) has been specifically clarified (and also shortened) as suggested by 

R2. 

6. The text in Section 3 is now explicit that sign(g) indicates a column vector, so that d= -

diag{……}sign(g) is also a column vector. R3 identified the need for this clarification. 

7. Scare quotes have been added around “network” in Section 4 to emphasise that it is a 
degenerate case considered as an illustration precisely because it is transparently simple. R2 

suggested that this illustration was inappropriately simplistic because this system is incapable of 

solving the XOR problem. Crucially, the input-output mappings considered here do not involve 

XOR or other violations of linear separability. The linear system considered here is a degenerate 

special case, and there actually is an exact solution for the specified “network” and training set. 

An optimisation algorithm which cannot solve this problem will not generally be robust in the 

face of more realistic architectures and mappings. Shortcomings of neuralnet’s GRprop could be 

illustrated with a more complex network, but this would add no additional force to the 

argument and would probably be harder to follow. 

8. A formal proof of termination has been added to Section 5 as suggested by R1. 

9. Additional simulations are reported in Section 6 as suggested by R1. These now cover four 

problem sets instead of the previous single problem. To save space, the simulations now 

dispense with GRprop, whose performance was far inferior and only of secondary interest. 

10. Analysis of the results in Section 6 now takes advantage of the related samples design and 

focuses on the performance of ARCprop relative to Rprop. This change in analysis avoids 

lengthening the paper and multiplying the number of tables, though it has been necessary to 

add one new figure. More importantly, the new analysis addresses the concern of R1 that it was 

previously impossible to tell whether the distributions of results differed across algorithms. 

Significant differences are flagged in the new Figure 5. 

 

Revision Notes
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Abstract 

This paper examines conditions under which the Resilient Propagation-Rprop 

algorithm fails to converge, identifies limitations of the so-called Globally Convergent 

Rprop-GRprop algorithm which was previously thought to guarantee convergence, 

and considers pathological behaviour of the implementation of GRprop in the 

neuralnet software package. A new robust convergent back-propagation-ARCprop 

algorithm is presented. The new algorithm builds on Rprop, but guarantees 

convergence by shortening steps as necessary to achieve a sufficient reduction in 

global error. Simulation results on four benchmark problems from the PROBEN1 

collection show that the new algorithm achieves similar levels of performance to 

Rprop in terms of training speed, training accuracy, and . 

Keywords  

Supervised learning; First-order training algorithms; Global convergence property; 

Rprop; GRprop; neuralnet 

  



1. Introduction 

Back-propagation is a supervised

models. It seeks to minimise the t

training inputs, by iteratively adjus

reduce error at each layer of the n

takes a step of a certain global len

descent. In contrast, “resilient bac

individual weight changes based o

derivative for that weight is the sa

gradient with respect to a particula

the next, the step size for that we

gradient reverses direction, the st

training connectionist models (e.g

that require non-linear optimisatio

A major strength of RProp is that 

error surface, largely obviating the

or step size that will perform well 

error landscape shown by the dar

weight changes indicated by the a

moves in the direction that will red

descent direction for that particula

the left side of the figure). Steps g

is revealed by reversals of the err

near the right side of Figure 1. 

Figure 1. Schematic Rprop strateg

with steps in the direction of desc

each step. Step sizes increase if t

decrease rapidly if the direction re

 

2. Non-convergence 

A “globally convergent” algorithm 

locally optimal, in a finite amount 

d learning technique for multi-layer connection

total error of the network output, across a bat

sting connection weights in a direction that wi

network [1]. The classic back-propagation alg

ngth on each iteration, in the direction of stee

ck-propagation” (Rprop) determines step size

on whether the current direction of the partial

ame as or different to the previous iteration [2]

lar weight has the same sign from one iteratio

eight is increased. Conversely, if the individua

step size is decreased. RProp is widely used fo

g. [3-5]), and can also be used for other applic

on [6,7].  

 its learning rates self-adapt to the topology o

e problem of identifying a single global learnin

 on a particular problem. For example, consid

rk line in Figure 1, and the sequence of Rprop

arrows traversing the horizontal axis. Each st

duce the error. The step size increases if the 

ar weight is the same as the previous step (as 

grow shorter when the proximity of a local min

ror gradient from one step to the next, as illust

 
gy. Arrows show weight changes on each ite

scent as indicated by the slope of Error at the st

the direction is the same as the previous, or 

everses. 

 is guaranteed to find a solution which is at le

 of time, starting from almost anywhere in the 

nist 

tch of 

ill 

gorithm 

epest 

es for 

l error 

2]. If the 

on to 

al 

or 

cations 

of the 

ng rate 

der the 

p 

tep 

 

s from 

nimum 

strated 

eration, 

start of 

east 

e 



problem space [8]. RProp often co

learning algorithms, across a rang

Nevertheless, Rprop’s strategy do

way of illustration, Figure 2 shows

weight space, x (horizontal) and y
and vertical valleys around an arb

high; point B is relatively low in th

step sizes at each point in a poten

A, Rprop races downhill towards B

the maximum step size (these ste

maximal step sizes in each direct

direction because of the reversal 

Velocity in the x direction is maint

back-tracked, leading to point D. M

steps, lengthening as subsequent

this dimension. At E, there is a rev

and again at G. In between, there

at point F, which counter-balance

converge to a local error minimum

Figure 2. Contours on which Rpro

separated by horizontal and vertic

Points A, C, E, F and G are high; 

arrows indicate individual step siz

steps. 

 

A change in the sign of an error g

previous step skipped over an err

shorter step from point B, but that

step lengths for the individual wei

onverges quickly in comparison to a variety o

ge of problem domains [3,6,9-10] (but see [4]

oes not guarantee convergence (e.g. [9,11-13

s hypothetical error contours for a two-dimens

y (vertical), with four hills separated by horizo

bitrary central hillock. Points A, C, E, F and G

his error landscape. The arrows indicate indivi

ntial infinite loop of Rprop steps. Starting from

B, increasing the step sizes on each iteration

eps are not shown). The step from point B com

ion, leading to C. At point C, Rprop changes 

 in the sign of the error gradient with respect t

tained, but the previous step in the y direction

Motion in the y direction then proceeds with s

t steps maintain the same gradient direction a

eversal in the sign of the gradient in the x direc

e is a second reversal of gradient in the y dire

es C. The cycle will now repeat indefinitely, fai

m. 

 
op may fail to converge, showing four hills 

cal valleys (around an arbitrary central hillock

 point B is relatively low in this error landscap

zes at each point in a potential infinite loop of 

gradient (as at C in Figure 2) indicates that the

ror minimum [2]. Intuitively, the solution is to t

t is not what Rprop does. Instead, Rprop adju

ight associated with the gradient reversal. 

of other 

]). 

3]). By 

sional 

ontal 

G are 

idual 

m point 

n, up to 

mbines 

 

to y. 

n is 

shorter 

along 

ction, 

ection 

iling to 

k). 

pe. The 

 Rprop 

e 

take a 

usts 



5 
 

Unfortunately, it does not follow from a gradient reversal for one weight, that the 

reason the minimum was missed was that the step size for that particular weight was 

too large. For example, the jump from point B to C in Figure 2 reverses the gradient 

along the y axis, but this reversal is not a simple reflection of the local error topology 

relative to y. In general, the gradient associated with one dimension depends on the 

value of other dimensions as well, but Rprop ignores such interactions and 

consequently can fail to converge for some problems. 

3. GRprop 

A modified Rprop has been suggested in an effort to guarantee convergence [14]. 

The “globally convergent Rprop” (GRprop) is widely cited (e.g. [6,9,10,12,13,15-20]), 

and is an option in at least one prominent software package for neural network 

modelling [21]. However, it has apparently gone unnoticed that the proof of GRprop’s 

convergence is mistaken.  

Like Rprop, GRprop is an iterative descent procedure. Following a strategy proposed 

by [22], the intention of GRprop is to identify a descent direction for each step, and 

then use a global step length that satisfies the Wolfe conditions [23,24]. If these 

conditions are satisfied, then convergence is guaranteed because a local or global 

minimum will always be reached in a finite number of steps (assuming that the error 

is bounded from below and the error derivative is well-behaved). Conceptually, the 

Wolfe conditions ensure that 

(i) the step be short enough to actually go downhill (i.e. to not leap across 

a valley and up onto an area with higher error than the previous 

iteration), and  

(ii) the step length be long enough to reach the floor of a local minimum in 

a finite number of steps (i.e. the step length should not shrink so fast 

on each iteration that the minimum is never attained).  

However, [14] do not specify a mechanism for adjusting the global step length to 

ensure that the Wolfe conditions are met. The GRprop algoritihm is therefore 

incomplete. Moreover, even if a suitable mechanism were specified, convergence 

would still not be assured. The Wolfe conditions presuppose a descent direction for 

each step. However, GRprop’s direction selection process will sometimes mistakenly 

choose a direction of ascent rather than descent. The GRprop direction selection 

scheme uses the Rprop scheme to determine individual direction components �� � � for each weight dimension except for one. The last direction component �� is 

calculated to satisfy the constraint that � ���� 	 
�� , where �� is the partial 

derivative of error with respect to weight j, and � is a small positive number. Thus �� 
is chosen according to (1), as recommended by [22]. 

�� 	 
� ���� � ��
� ��  
(1) 
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Having identified direction components ��, the direction of weight updates for 

GRprop is � 	 
�������� � � �� � � � ����������, where ������� denotes the column 

vector of signs of the components of g. The resulting column vector d will be a 

descent direction if the slope of the error surface in that direction is negative. The 

slope is ��� ��� , which is negative if ��� ! �. Unfortunately, Equation (1) does not 

guarantee that ��� ! �, especially if all the individual gradients are positive. For 

example, consider a trivial system with two weights, with partial derivatives of error �� 	 �" 	 #. If direction component �� � � is assumed, then GRprop would set �" 	 
�� 
 � ! �. The direction of weight update would be 
�������� �"�������� 	
$��� �"%� 	 $
��� �� � �%�. The slope in this direction is proportional to ��� 	 
�� ��� � � 	 � � �. This is a direction of ascent, not descent, which renders the 

purported proof of GRprop convergence invalid. 

In general, the slope in the direction chosen by GRprop is proportional to  

��� 	 
&���
� ���������� 
 ������������ 
	 
& ��'��'�
� � (& �����
� � �) �������� 
	 
& ��$'��' 
 ����������%�
� � ��������� 

The absolute values either reinforce positive partial derivatives and cancel out 

negative ones, or vice versa, depending on whether �� is positive or negative, as 

expressed in Equation (2). 

(2) 

 ��� 	 *
+� �,�,-,./0123 
 � �� ! �+� ������'/452� � � �� � �6 

Equation (2) has a positive upper bound of ��� 7 �, which corresponds to a 

direction of ascent. The upper bound will be reached whenever all the component 

gradients are positive. In practice, GRprop will often identify a descent direction, but 

only if some of the individual gradients are negative.  

The direction selection process of GRprop is the victim of an error in the original 

scheme from which it derives [22]. Conceptually, the intention of Equation (1) seems 

to be to identify a direction of slight descent. This could be achieved by calculating 

the last direction component �� so that � ��.��. 	 ��  or � ����" 	 �� , replacing 

Equation (1) with Equation (3) or Equation (4), respectively.  

�� 	 
� ��'��' 
 ��
� '��'  
(3) 
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�� 	 
� ����" 
 ��
� ��"  

(4) 

A scheme incorporating Equations (3) or (4) might achieve theoretical global 

convergence, but may make too little progress on each iteration to converge in a 

reasonable number of iterations. An alternative might be to simply dispense with 

Equations (1), (3) and (4) entirely. Since Rprop always chooses a descent direction, 

it remains only to ensure an appropriate step length. We return to this idea shortly. 

4. Neuralnet 

Researchers looking for a neural network training package in the R language are 

likely to come across neuralnet [21]. Neuralnet implements a number of back-

propagation algorithms, including Rprop and GRprop. Neuralnet’s implementation of 

GRprop avoids inappropriate directions of the sort discussed above, but makes 

exceedingly slow progress towards the minimum in some circumstances.  

Borrowing step size limits from Rprop, GRprop inappropriately applies them to the 

last direction component in GRprop. In Rprop, step sizes are always positive, and 

limits are imposed to avoid overflow and underflow of floating point computations [2]. 

Typical limits are #�89 7 �: 7 ;�. Similar limits are appropriate for GRprop, except 

for the last direction component, which is chosen according to Equation (1) and will 

often be negative. However, neuralnet applies the same step size limits to all 

GRprop components, including the last. As a result, whenever Equation (1) produces 

a negative value, neuralnet imposes its lower limit instead (�<=> 	 #�8�2 by default).  

The lower limit imposed by neuralnet ensures that a descent direction is always 

chosen. This can be verified by checking that ��� ! �, where � 	 
�������� � � ����������, with �: � �. We have  

�?� 	 
&�:�:������:�: 	 
&�:'�:' 7 �:  

Unfortunately, if the step size lower limit gets applied to all dimensions of a particular 

problem, the performance of neuralnet’s GRprop is perversely slow. For example, 

consider a trivial “network” consisting of a single input unit and a single linear output 

unit with a bias parameter. The two weights in this network are associated with (1) 

the connection from input to output unit, and (2) the bias of the output unit 

(conceptualised as a connection from a bias unit whose activation is fixed at 1). This 

network computes @ 	 A2 �A�B, where x and y are input and output activations, 

respectively, A� is the weight of the connection from x to y, and A2 is the output unit 

bias. If we train with the target input→output mappings x=-1 → y=-1 and x=1 → y=1, 

neuralnet will seek values of A2 and A� that minimise the sum squared error 

between the network output and the target values. The error surface has circular 

contours, as shown in Figure 3. The horizontal and vertical axes show potential 



values of A2 and A�, respectively.

(A2 	 �, A� 	 #).  
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Let C=�D� be the weight of a particular connection at iteration t, and let �:�E� be the 

partial derivative of error with respect to C=�D�, that is �:�E� 	 FG�E� FC=�E�H . At each 

iteration, Rprop updates dimension weights in the direction of descent for each 

weight, as expressed in Equation (5). 

C=�DI�� JKC=�D� 
KL:�E�MN�OP�:�E�Q (5) 

The step size for each weight, L:�E�� is derived from the previous iteration, increasing 

geometrically when the gradient direction remains the same and decreasing when 

the direction reverses, as expressed in Equation (6). For the sake of simplicity, 

Equation (6) omits terms that restrict L:�E�KRSKthe range (LT��,KLT�U). 

L:�E�J V�IL:�E8�� �WK�:�E��:�E8�� � ��8L:�E8�� �WK�:�E��:�E8�� ! �L:�E8�� SRXYZC��Y [ (6) 

In addition, standard Rprop back-tracks individual weights when the gradient 

direction reverses. However, as illustrated in Figure 2, local back-tracking is 

insufficient; reverting just those weights that experience reversals of direction does 

not necessarily ensure a reduction of error at each iteration. Rather, if the global 

error worsens on some iteration it is necessary to back-track globally, and try a 

shorter step in the same direction. A variant of Rprop with global back-tracking and a 

number of other valuable features has been proposed recently by [7], but the 

resulting algorithm has not been proven to be globally convergent.  

The basic idea of the algorithm proposed here is to take a series of downhill steps 

from the initial set of weights, until a vanishing error gradient indicates arrival at a 

local minimum. The algorithm terminates on iteration t if all \�:�E�\ 7 � ] #. If this 

vanishing gradient condition is not met, then a step of size L:�E� is made in the 

direction of descent along each dimension i. If the step results in a sufficient 

decrease in global error, then the search continues from that new, improved location, 

according to Equation (6). A sufficient decrease is taken to be greater than the target 

gradient threshold, �, multiplied by the shortest component step length, T��: L=�D�. If 
the error does not go down by at least that much, then the mean value theorem 

implies that some intermediate point must have a gradient small enough to satisfy 

the vanishing gradient criterion. In that case, a shorter step is initiated from the 

previous location; this assures convergence, as it prevents the algorithm from 

pursuing either increases in error or vanishingly small improvements in error, which 

could continue indefinitely. The ARCprop algorithm is described by pseudo-code in 

Figure 4.  

if T�U: \�:�E�\ 7 � then return C�E� 
if ^�E� �K^�E8�� 
 �T��: L=�E8�� then { 
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if T�U: L=�E8�� 7 L<=> then return C�E8�� 
for each C=�E� do { C=�E�_ 	 KC=�E8��; �:�E�_ 	 K�:�E8�� L=�E�_ 	 T�U `�8L:�E8��� L<=>a 
} 

} else { 

for each C=�E� do { 

L:�E�J bcd
ceT�� `�IL:�E8��� L<fga if��:�E��:�E8�� � �T�U `�8L:�E8��� L<=>a if��:�E��:�E8�� ! �L:�E8�� otherwise hci

cj
 

} 

} 

for each C=�D� do { C=�EI�� JKC=�E� 
KL=�E����� P�:�E�Q 
} 

Figure 4. ARCprop algorithm. ^�D� is the global error at iteration t; C=�D�is the weight of 

connection i; �:�E� 	 FG�E� FC=�E�H . The algorithm terminates when all gradients �:�E� 7�, or when all step sizes L:�E8��7 L<=>. 

 

Termination Theorem. Let ^�E� k � be the global error on iteration t, �:�E� 	FG�E� FC=�E�H  be the gradient with respect to weight i, L=�E� be a step size for weight i, �I and �8 be step size adjustment factors such that � ! �8 ! # ! �I, and � be a 

gradient threshold value such that � ! � ] #. Then the ARCprop algorithm described 

in Figure 4 is guaranteed to terminate after a finite number of iterations. 

Proof. On each iteration t one of four alternatives transpires: 

I. If all \�:�E�\ 7 � then the algorithm terminates, having found a local 

minimum. 

II. If ^�E� �K^�E8�� 
 �T��: L=�E8�� and all step lengths are at the minimum 

length L<=>, then the algorithm terminates, having bracketed a local 

minimum by the shortest allowed step. 

III. If ^�E� �K^�E8�� 
 �T��: L=�E8�� and at least one step length can be 

shortened further, then the algorithm backtracks, having bracketed a local 

minimum loosely, and initiates another, shorter step. 

IV. Otherwise ^�E� 7K^�E8�� 
 �T��: L=�E8��, so step t-1 made a sufficient 

decrease in global error; then the algorithm adjusts step lengths up or 

down, and initiates another step. 



11 
 

 

Lemma 1. Case IV occurs at most l 7 G�2� �L<=>  times. 

On each occurrence of Case IV the error is reduced by an amount which is no 

less than the threshold gradient � multiplied by the minimum step length L<=>. 

If E(0) is the initial global error, then Case IV can occur at most l 7 G�2� �L<=>  

times before the global error vanishes. Once the error vanishes, further steps 

cannot satisfy the sufficient decrease condition and Case IV can no longer 

occur. 

Lemma 2. Case III occurs at most m 7 nS�K�L<fgoL<=>K� nS��#o�8�  times after 

the last occurrence of Case IV. 

After the last occurrence of Case IV, step lengths can only decrease. On each 

occurrence of Case III, all step sizes are reduced by a factor of �8, where �8 ! #. After m such occurrences, L<=>7 L:�E�7 T�U$L<=>� L<fg��8��%. At most m 7 nS�K�L<fgoL<=>K� nS��#o�8�  reductions are required before all steps are 

as short as possible, at which point the condition for Case II will be satisfied 

instead of Case III. 

Lemmas 1 and 2 establish that Cases III and IV can occur only a finite number of 

times before either Case I or Case II must occur, whereupon the algorithm 

terminates. In particular, if t* is the iteration on which termination occurs, then from 

Lemmas 1 and 2 we have 

pq 7 # � ^�2� �L<=> � nS�K�L<fgoL<=>K� nS��#o�8�  

The Termination Theorem is thus proved. The proof assumes that the error surface 

is differentiable, but it need not be continuous. If the error gradient is Lipschitz 

continuous with Lipschitz constant r 7 +�oL<=>, then Case II can never occur so the 

algorithm must eventually find a local minimum and terminate via Case I. 

6. Simulations 

To explore the practical viability of ARCprop, it was implemented within a revised 

neuralnet framework, and its performance was compared to the neuralnet “rprop+” 

algorithm, which implements the standard Rprop algorithm with local backtracking at 

gradient reversals. These simulations used four neural network classification 

problems from the PROBEN1 web site [25], namely cancer1, diabetes1, thyroid1, 

and genes2. These problems were among those benchmarked by [14].  

Networks had sigmoid hidden and output nodes. Network configurations (numbers of 

input, hidden and output units) are given in Table 1, along with the total number of 

weights to be learned, the numbers of training and test items, and the termination 

thresholds. For each problem, ARCprop and Rprop were run from the same 100 sets 

of starting weights. Error was measured as sum squared deviation. Neuralnet 
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terminates when the maximum absolute error gradient reaches a specified threshold; 

this was arbitrarily set to 0.0075 times the square root of the number of training items 

in each particular problem, as shown in Table 1. Key training parameter values were �I 	 #s+, �8 	 �s;, L:�2�	 �s#, LT��	 #�89, and LT�U	 ;�.  

 

Table 1. Characteristics of neural network problems, including I-H-O network 

structure (I input nodes, H hidden nodes, O output nodes), total number of weights 

(including a bias for each hidden and output node), the number of training and test 

items, and the termination threshold (maximum absolute error gradient). 

Problem I-H-O N weights Train-test Threshold 

Cancer 9-4-2-2  56  350-349 0.14 
Diabetes 8-2-2-2 30 384-384 0.15 
Genes 120-4-2-3 503 1588-1587 0.30 
Thyroid 21-4-3 103 3600-3600 0.45 

 

Performance was assessed in terms of the number of steps required to reach the 

stopping criterion, the fraction of steps on which error increased, the total error at the 

end of training, and per cent correct generalization in classifying untrained test 

patterns. For generalization, classification probabilities for each test pattern were 

calculated from proportional output activations, following Luce’s choice rule [26]. 

Thus, the per cent correct generalization for a given test pattern was 100 times the 

activation of whichever output unit represented the correct response category, 

divided by the sum of the activations of all output units. 

For each performance measure, the relative performance of the two algorithms was 

assessed by calculating the fraction of the 100 runs on which each algorithm 

achieved a higher score than the other. Results are shown in Figure 5. The shaded 

bars on the lower portion of the graph indicate the fraction of runs on which Rprop 

yielded a higher score than ARCprop on a particular performance measure. The 

unshaded bars above show the relative frequency of the alternative outcome. 

Percentages below 35% or above 65% represent significant deviations from chance 

across the 100 sets of starting weights, with family-wise error rate controlled at p < 

.05 by the Bonferroni correction for 16 comparisons. Significant comparisons are 

indicated in Figure 5 by asterisks attached to the corresponding labels along the 

horizontal axis. 
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neuralnet implementation of GRprop always moves in an appropriate direction, but 

sacrifices speed to the point of being impractical in some situations. 

A globally convergent algorithm can be obtained by modifying Rprop to detect 

increases in global error, so that a shorter step can be taken instead. The resulting 

algorithm, designated ARCprop (A Robust Convergent Rprop), achieved similar 

levels of performance to Rprop in four test problems. 
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Table 1. Characteristics of neural network problems, including I-H-O network 

structure (I input nodes, H hidden nodes, O output nodes), total number of weights 

(including a bias for each hidden and output node), the number of training and test 

items, and the termination threshold (maximum absolute error gradient). 

Problem I-H-O N weights Train-test Threshold 

Cancer 9-4-2-2  56  350-349 0.14 
Diabetes 8-2-2-2 30 384-384 0.15 
Genes 120-4-2-3 503 1588-1587 0.30 
Thyroid 21-4-3 103 3600-3600 0.45 

 
Figure captions 

Figure 1. Schematic Rprop strategy. Arrows show weight changes on each iteration, 

with steps in the direction of descent as indicated by the slope of Error at the start of 

each step. Step sizes increase if the direction is the same as the previous step (as 

from the left side of the figure), or decrease rapidly if the direction reverses (as 

shown near the right side). 

Figure 2. Contours on which Rprop may fail to converge, showing four hills 

separated by horizontal and vertical valleys (around an arbitrary central hillock). 

Points A, C, E, F and G are high; point B is relatively low in this error landscape. The 

arrows indicate individual step sizes at each point in a potential infinite loop of Rprop 

steps. 

Figure 3. An error topology for which neuralnet’s GRprop implementation converges 

quickly (from A to the minimum at C in 9 steps), or very slowly (from B towards C, 

requiring 10000 iterations to get as far as D). Circular contour lines indicate 

increasing error as a function of the radial distance from point C. 

Figure 4. ARCprop algorithm. ^�D� is the global error at iteration t; C=�D�is the weight of 

connection i; �:�E� 	 FG�E� FC=�E�H . The algorithm terminates when all gradients �:�E� 7�, or when all step sizes L:�E8��7 L<=>. 

 
Figure 5. Relative performance of Rprop and ARCprop on four problems (cancer, 
diabetes, gene, and thyroid). Performance measures were number of steps required 
to reach the stopping criterion (Steps), the fraction of steps on which error increased 
(Ascents), the total error at the end of training (Error), and per cent correct 
generalization (Generalize). Bars show the fraction of runs on which Rprop (shaded) 
and ARCprop (unshaded) yielded a higher score than the other on a particular 
performance measure. Significant differences are indicated by asterisks. 
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Highlights 

 Rprop can go up as well as down, and can get stuck in loops. 

 GRprop sometimes chooses an ascent direction and hence is not globally 

convergent. 

 neuralnet’s implementation of GRprop can be exceedly slow on some simple 
problems. 

 New variant of Rprop is proposed which adjusts step length to assure 

convergence. 

 

Highlights (for review)


