
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/70 7 5 3/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Bailey, Todd M. 2 0 1 5. Conve r g e nc e of RP rop a n d va ri a n t s. N e u roco m p u ting 1 5 9 , p p .

9 0-9 5. 1 0.10 1 6/j.n e uco m.2 0 1 5.02.01 6

P u blish e r s p a g e: h t t p://dx.doi.o rg/10.10 1 6/j.ne uco m.20 1 5.0 2.01 6

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

 Elsevier Editorial System(tm) for Neurocomputing

 Manuscript Draft

Manuscript Number: NEUCOM-D-14-01891R1

Title: Convergence of RProp and variants

Article Type: Brief Paper/ Short Communication/ Letter

Keywords: Supervised learning; First-order training algorithms; Global convergence property; Rprop;

GRprop; neuralnet

Corresponding Author: Dr. Todd M. Bailey, PhD

Corresponding Author's Institution: Cardiff University

First Author: Todd M. Bailey, PhD

Order of Authors: Todd M. Bailey, PhD

Abstract: This paper examines conditions under which the Resilient Propagation-Rprop algorithm fails

to converge, identifies limitations of the so-called Globally Convergent Rprop-GRprop algorithm which

was previously thought to guarantee convergence, and considers pathological behaviour of the

implementation of GRprop in the neuralnet software package. A new robust convergent back-

propagation-ARCprop algorithm is presented. The new algorithm builds on Rprop, but guarantees

convergence by shortening steps as necessary to achieve a sufficient reduction in global error.

Simulation results on four benchmark problems from the PROBEN1 collection show that the new

algorithm achieves similar levels of performance to Rprop in terms of training speed, training accuracy,

and generalization.

Revision summary and response to reviews

1. The paper has been shortened as suggested by the Associate editor, by rewriting throughout

and by dropping two figures (original Figures 4 and 5). The body of the paper now has less than

4000 words.

2. Equations have been revised to show vectors in bold font as suggested by R1 and R3.

3. A fuller explanation of all figures has been provided in the text, as suggested by R2 and R3.

4. Figures have been embedded within the text as well as supplied in separate files, as suggested

by R2.

5. Text in Section 3 around (ii) has been specifically clarified (and also shortened) as suggested by

R2.

6. The text in Section 3 is now explicit that sign(g) indicates a column vector, so that d= -

diag{……}sign(g) is also a column vector. R3 identified the need for this clarification.

7. Scare quotes have been added around “network” in Section 4 to emphasise that it is a
degenerate case considered as an illustration precisely because it is transparently simple. R2

suggested that this illustration was inappropriately simplistic because this system is incapable of

solving the XOR problem. Crucially, the input-output mappings considered here do not involve

XOR or other violations of linear separability. The linear system considered here is a degenerate

special case, and there actually is an exact solution for the specified “network” and training set.

An optimisation algorithm which cannot solve this problem will not generally be robust in the

face of more realistic architectures and mappings. Shortcomings of neuralnet’s GRprop could be

illustrated with a more complex network, but this would add no additional force to the

argument and would probably be harder to follow.

8. A formal proof of termination has been added to Section 5 as suggested by R1.

9. Additional simulations are reported in Section 6 as suggested by R1. These now cover four

problem sets instead of the previous single problem. To save space, the simulations now

dispense with GRprop, whose performance was far inferior and only of secondary interest.

10. Analysis of the results in Section 6 now takes advantage of the related samples design and

focuses on the performance of ARCprop relative to Rprop. This change in analysis avoids

lengthening the paper and multiplying the number of tables, though it has been necessary to

add one new figure. More importantly, the new analysis addresses the concern of R1 that it was

previously impossible to tell whether the distributions of results differed across algorithms.

Significant differences are flagged in the new Figure 5.

Revision Notes

1

Convergence of RProp and variants

Todd M. Bailey

Cardiff University

School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10

3AT, United Kingdom; email BaileyTM1@cardiff.ac.uk; phone +44 29 2087 5375

*Manuscript
Click here to view linked References

2

Abstract

This paper examines conditions under which the Resilient Propagation-Rprop

algorithm fails to converge, identifies limitations of the so-called Globally Convergent

Rprop-GRprop algorithm which was previously thought to guarantee convergence,

and considers pathological behaviour of the implementation of GRprop in the

neuralnet software package. A new robust convergent back-propagation-ARCprop

algorithm is presented. The new algorithm builds on Rprop, but guarantees

convergence by shortening steps as necessary to achieve a sufficient reduction in

global error. Simulation results on four benchmark problems from the PROBEN1

collection show that the new algorithm achieves similar levels of performance to

Rprop in terms of training speed, training accuracy, and .

Keywords

Supervised learning; First-order training algorithms; Global convergence property;

Rprop; GRprop; neuralnet

1. Introduction

Back-propagation is a supervised

models. It seeks to minimise the t

training inputs, by iteratively adjus

reduce error at each layer of the n

takes a step of a certain global len

descent. In contrast, “resilient bac

individual weight changes based o

derivative for that weight is the sa

gradient with respect to a particula

the next, the step size for that we

gradient reverses direction, the st

training connectionist models (e.g

that require non-linear optimisatio

A major strength of RProp is that

error surface, largely obviating the

or step size that will perform well

error landscape shown by the dar

weight changes indicated by the a

moves in the direction that will red

descent direction for that particula

the left side of the figure). Steps g

is revealed by reversals of the err

near the right side of Figure 1.

Figure 1. Schematic Rprop strateg

with steps in the direction of desc

each step. Step sizes increase if t

decrease rapidly if the direction re

2. Non-convergence

A “globally convergent” algorithm

locally optimal, in a finite amount

d learning technique for multi-layer connection

total error of the network output, across a bat

sting connection weights in a direction that wi

network [1]. The classic back-propagation alg

ngth on each iteration, in the direction of stee

ck-propagation” (Rprop) determines step size

on whether the current direction of the partial

ame as or different to the previous iteration [2]

lar weight has the same sign from one iteratio

eight is increased. Conversely, if the individua

step size is decreased. RProp is widely used fo

g. [3-5]), and can also be used for other applic

on [6,7].

 its learning rates self-adapt to the topology o

e problem of identifying a single global learnin

 on a particular problem. For example, consid

rk line in Figure 1, and the sequence of Rprop

arrows traversing the horizontal axis. Each st

duce the error. The step size increases if the

ar weight is the same as the previous step (as

grow shorter when the proximity of a local min

ror gradient from one step to the next, as illust

gy. Arrows show weight changes on each ite

scent as indicated by the slope of Error at the st

the direction is the same as the previous, or

everses.

 is guaranteed to find a solution which is at le

 of time, starting from almost anywhere in the

nist

tch of

ill

gorithm

epest

es for

l error

2]. If the

on to

al

or

cations

of the

ng rate

der the

p

tep

s from

nimum

strated

eration,

start of

east

e

problem space [8]. RProp often co

learning algorithms, across a rang

Nevertheless, Rprop’s strategy do

way of illustration, Figure 2 shows

weight space, x (horizontal) and y
and vertical valleys around an arb

high; point B is relatively low in th

step sizes at each point in a poten

A, Rprop races downhill towards B

the maximum step size (these ste

maximal step sizes in each direct

direction because of the reversal

Velocity in the x direction is maint

back-tracked, leading to point D. M

steps, lengthening as subsequent

this dimension. At E, there is a rev

and again at G. In between, there

at point F, which counter-balance

converge to a local error minimum

Figure 2. Contours on which Rpro

separated by horizontal and vertic

Points A, C, E, F and G are high;

arrows indicate individual step siz

steps.

A change in the sign of an error g

previous step skipped over an err

shorter step from point B, but that

step lengths for the individual wei

onverges quickly in comparison to a variety o

ge of problem domains [3,6,9-10] (but see [4]

oes not guarantee convergence (e.g. [9,11-13

s hypothetical error contours for a two-dimens

y (vertical), with four hills separated by horizo

bitrary central hillock. Points A, C, E, F and G

his error landscape. The arrows indicate indivi

ntial infinite loop of Rprop steps. Starting from

B, increasing the step sizes on each iteration

eps are not shown). The step from point B com

ion, leading to C. At point C, Rprop changes

 in the sign of the error gradient with respect t

tained, but the previous step in the y direction

Motion in the y direction then proceeds with s

t steps maintain the same gradient direction a

eversal in the sign of the gradient in the x direc

e is a second reversal of gradient in the y dire

es C. The cycle will now repeat indefinitely, fai

m.

op may fail to converge, showing four hills

cal valleys (around an arbitrary central hillock

 point B is relatively low in this error landscap

zes at each point in a potential infinite loop of

gradient (as at C in Figure 2) indicates that the

ror minimum [2]. Intuitively, the solution is to t

t is not what Rprop does. Instead, Rprop adju

ight associated with the gradient reversal.

of other

]).

3]). By

sional

ontal

G are

idual

m point

n, up to

mbines

to y.

n is

shorter

along

ction,

ection

iling to

k).

pe. The

 Rprop

e

take a

usts

5

Unfortunately, it does not follow from a gradient reversal for one weight, that the

reason the minimum was missed was that the step size for that particular weight was

too large. For example, the jump from point B to C in Figure 2 reverses the gradient

along the y axis, but this reversal is not a simple reflection of the local error topology

relative to y. In general, the gradient associated with one dimension depends on the

value of other dimensions as well, but Rprop ignores such interactions and

consequently can fail to converge for some problems.

3. GRprop

A modified Rprop has been suggested in an effort to guarantee convergence [14].

The “globally convergent Rprop” (GRprop) is widely cited (e.g. [6,9,10,12,13,15-20]),

and is an option in at least one prominent software package for neural network

modelling [21]. However, it has apparently gone unnoticed that the proof of GRprop’s

convergence is mistaken.

Like Rprop, GRprop is an iterative descent procedure. Following a strategy proposed

by [22], the intention of GRprop is to identify a descent direction for each step, and

then use a global step length that satisfies the Wolfe conditions [23,24]. If these

conditions are satisfied, then convergence is guaranteed because a local or global

minimum will always be reached in a finite number of steps (assuming that the error

is bounded from below and the error derivative is well-behaved). Conceptually, the

Wolfe conditions ensure that

(i) the step be short enough to actually go downhill (i.e. to not leap across

a valley and up onto an area with higher error than the previous

iteration), and

(ii) the step length be long enough to reach the floor of a local minimum in

a finite number of steps (i.e. the step length should not shrink so fast

on each iteration that the minimum is never attained).

However, [14] do not specify a mechanism for adjusting the global step length to

ensure that the Wolfe conditions are met. The GRprop algoritihm is therefore

incomplete. Moreover, even if a suitable mechanism were specified, convergence

would still not be assured. The Wolfe conditions presuppose a descent direction for

each step. However, GRprop’s direction selection process will sometimes mistakenly

choose a direction of ascent rather than descent. The GRprop direction selection

scheme uses the Rprop scheme to determine individual direction components �� � � for each weight dimension except for one. The last direction component �� is

calculated to satisfy the constraint that � ���� 	
�� , where �� is the partial

derivative of error with respect to weight j, and � is a small positive number. Thus ��
is chosen according to (1), as recommended by [22].

�� 	
� ���� � ��
� ��
(1)

6

Having identified direction components ��, the direction of weight updates for

GRprop is � 	
�������� � � �� � � � ����������, where ������� denotes the column

vector of signs of the components of g. The resulting column vector d will be a

descent direction if the slope of the error surface in that direction is negative. The

slope is ��� ��� , which is negative if ��� ! �. Unfortunately, Equation (1) does not

guarantee that ��� ! �, especially if all the individual gradients are positive. For

example, consider a trivial system with two weights, with partial derivatives of error �� 	 �" 	 #. If direction component �� � � is assumed, then GRprop would set �" 	
��
 � ! �. The direction of weight update would be
�������� �"�������� 	
$��� �"%� 	 $
��� �� � �%�. The slope in this direction is proportional to ��� 	
�� ��� � � 	 � � �. This is a direction of ascent, not descent, which renders the

purported proof of GRprop convergence invalid.

In general, the slope in the direction chosen by GRprop is proportional to

��� 	
&���
� ����������
 ������������
	
& ��'��'�
� � (& �����
� � �) ��������
	
& ��$'��'
 ����������%�
� � ���������

The absolute values either reinforce positive partial derivatives and cancel out

negative ones, or vice versa, depending on whether �� is positive or negative, as

expressed in Equation (2).

(2)

 ��� 	 *
+� �,�,-,./0123
 � �� ! �+� ������'/452� � � �� � �6

Equation (2) has a positive upper bound of ��� 7 �, which corresponds to a

direction of ascent. The upper bound will be reached whenever all the component

gradients are positive. In practice, GRprop will often identify a descent direction, but

only if some of the individual gradients are negative.

The direction selection process of GRprop is the victim of an error in the original

scheme from which it derives [22]. Conceptually, the intention of Equation (1) seems

to be to identify a direction of slight descent. This could be achieved by calculating

the last direction component �� so that � ��.��. 	 �� or � ����" 	 �� , replacing

Equation (1) with Equation (3) or Equation (4), respectively.

�� 	
� ��'��'
 ��
� '��'
(3)

7

�� 	
� ����"
 ��
� ��"

(4)

A scheme incorporating Equations (3) or (4) might achieve theoretical global

convergence, but may make too little progress on each iteration to converge in a

reasonable number of iterations. An alternative might be to simply dispense with

Equations (1), (3) and (4) entirely. Since Rprop always chooses a descent direction,

it remains only to ensure an appropriate step length. We return to this idea shortly.

4. Neuralnet

Researchers looking for a neural network training package in the R language are

likely to come across neuralnet [21]. Neuralnet implements a number of back-

propagation algorithms, including Rprop and GRprop. Neuralnet’s implementation of

GRprop avoids inappropriate directions of the sort discussed above, but makes

exceedingly slow progress towards the minimum in some circumstances.

Borrowing step size limits from Rprop, GRprop inappropriately applies them to the

last direction component in GRprop. In Rprop, step sizes are always positive, and

limits are imposed to avoid overflow and underflow of floating point computations [2].

Typical limits are #�89 7 �: 7 ;�. Similar limits are appropriate for GRprop, except

for the last direction component, which is chosen according to Equation (1) and will

often be negative. However, neuralnet applies the same step size limits to all

GRprop components, including the last. As a result, whenever Equation (1) produces

a negative value, neuralnet imposes its lower limit instead (�<=> 	 #�8�2 by default).

The lower limit imposed by neuralnet ensures that a descent direction is always

chosen. This can be verified by checking that ��� ! �, where � 	
�������� � � ����������, with �: � �. We have

�?� 	
&�:�:������:�: 	
&�:'�:' 7 �:

Unfortunately, if the step size lower limit gets applied to all dimensions of a particular

problem, the performance of neuralnet’s GRprop is perversely slow. For example,

consider a trivial “network” consisting of a single input unit and a single linear output

unit with a bias parameter. The two weights in this network are associated with (1)

the connection from input to output unit, and (2) the bias of the output unit

(conceptualised as a connection from a bias unit whose activation is fixed at 1). This

network computes @ 	 A2 �A�B, where x and y are input and output activations,

respectively, A� is the weight of the connection from x to y, and A2 is the output unit

bias. If we train with the target input→output mappings x=-1 → y=-1 and x=1 → y=1,

neuralnet will seek values of A2 and A� that minimise the sum squared error

between the network output and the target values. The error surface has circular

contours, as shown in Figure 3. The horizontal and vertical axes show potential

values of A2 and A�, respectively.

(A2 	 �, A� 	 #).

Figure 3. An error topology for wh

quickly (from A to the minimum at

requiring 10000 iterations to get a

increasing error as a function of th

In addition to the circular error con

weight space, beginning at two di

circles at A and B. From A at (w0

follows a straight path and require

marked by an ‘x’ at C. In contrast,

makes some progress with its firs

infinitesimal direction components

generated by equation (1). After 1

as far as the ‘x’ labelled D.

Neuralnet’s GRprop algorithm fail

when starting from virtually anywh

Figure 3. Whenever the individua

(1) produces a negative value, an

result, neuralnet’s GRprop conver

when starting from point B.

5. A Robust Convergent backP

As noted above, Rprop cannot co

consequently fail to converge. Th

backtracks along all dimensions if

decrease in error, and offers a pro

. The minimum is marked by the ‘x’ labelled C

hich neuralnet’s GRprop implementation conv

t C in 9 steps), or very slowly (from B towards

as far as D). Circular contour lines indicate

he radial distance from point C.

ntours, Figure 3 also shows trajectories throu

ifferent starting points which are marked by sm

 = 0.8, w1 = 0.2), neuralnet’s GRprop algorith

es just nine steps to converge on the solution

, from B at (w0 = 0.8, w1 = 1.8), the algorithm

st two steps, but then gets bogged down with

s which are substituted for negative values

10,000 iterations the algorithm has progresse

ls to converge in a reasonable number of step

here above and to the right of the target minim

l gradients are all positive (as at point B), Equ

nd neuralnet imposes the lower limit �<=>. As

rges quickly when starting from point A, but n

Prop (ARCprop)

ope with interactions between dimensions, an

his section proposes a variant of Rprop that

f a particular step does not achieve a sufficie

oof of the convergence of the new algorithm.

C at

verges

s C,

ugh

mall

hm

n

m

ed only

ps

mum in

uation

 a

not

nd can

nt

9

Let C=�D� be the weight of a particular connection at iteration t, and let �:�E� be the

partial derivative of error with respect to C=�D�, that is �:�E� 	 FG�E� FC=�E�H . At each

iteration, Rprop updates dimension weights in the direction of descent for each

weight, as expressed in Equation (5).

C=�DI�� JKC=�D�
KL:�E�MN�OP�:�E�Q (5)

The step size for each weight, L:�E�� is derived from the previous iteration, increasing

geometrically when the gradient direction remains the same and decreasing when

the direction reverses, as expressed in Equation (6). For the sake of simplicity,

Equation (6) omits terms that restrict L:�E�KRSKthe range (LT��,KLT�U).

L:�E�J V�IL:�E8�� �WK�:�E��:�E8�� � ��8L:�E8�� �WK�:�E��:�E8�� ! �L:�E8�� SRXYZC��Y [(6)

In addition, standard Rprop back-tracks individual weights when the gradient

direction reverses. However, as illustrated in Figure 2, local back-tracking is

insufficient; reverting just those weights that experience reversals of direction does

not necessarily ensure a reduction of error at each iteration. Rather, if the global

error worsens on some iteration it is necessary to back-track globally, and try a

shorter step in the same direction. A variant of Rprop with global back-tracking and a

number of other valuable features has been proposed recently by [7], but the

resulting algorithm has not been proven to be globally convergent.

The basic idea of the algorithm proposed here is to take a series of downhill steps

from the initial set of weights, until a vanishing error gradient indicates arrival at a

local minimum. The algorithm terminates on iteration t if all \�:�E�\ 7 �] #. If this

vanishing gradient condition is not met, then a step of size L:�E� is made in the

direction of descent along each dimension i. If the step results in a sufficient

decrease in global error, then the search continues from that new, improved location,

according to Equation (6). A sufficient decrease is taken to be greater than the target

gradient threshold, �, multiplied by the shortest component step length, T��: L=�D�. If
the error does not go down by at least that much, then the mean value theorem

implies that some intermediate point must have a gradient small enough to satisfy

the vanishing gradient criterion. In that case, a shorter step is initiated from the

previous location; this assures convergence, as it prevents the algorithm from

pursuing either increases in error or vanishingly small improvements in error, which

could continue indefinitely. The ARCprop algorithm is described by pseudo-code in

Figure 4.

if T�U: \�:�E�\ 7 � then return C�E�
if ^�E� �K^�E8��
 �T��: L=�E8�� then {

10

if T�U: L=�E8�� 7 L<=> then return C�E8��
for each C=�E� do { C=�E�_ 	 KC=�E8��; �:�E�_ 	 K�:�E8�� L=�E�_ 	 T�U `�8L:�E8��� L<=>a
}

} else {

for each C=�E� do {

L:�E�J bcd
ceT�� `�IL:�E8��� L<fga if��:�E��:�E8�� � �T�U `�8L:�E8��� L<=>a if��:�E��:�E8�� ! �L:�E8�� otherwise hci

cj

}

}

for each C=�D� do { C=�EI�� JKC=�E�
KL=�E����� P�:�E�Q
}

Figure 4. ARCprop algorithm. ^�D� is the global error at iteration t; C=�D�is the weight of

connection i; �:�E� 	 FG�E� FC=�E�H . The algorithm terminates when all gradients �:�E� 7�, or when all step sizes L:�E8��7 L<=>.

Termination Theorem. Let ^�E� k � be the global error on iteration t, �:�E� 	FG�E� FC=�E�H be the gradient with respect to weight i, L=�E� be a step size for weight i, �I and �8 be step size adjustment factors such that � ! �8 ! # ! �I, and � be a

gradient threshold value such that � ! �] #. Then the ARCprop algorithm described

in Figure 4 is guaranteed to terminate after a finite number of iterations.

Proof. On each iteration t one of four alternatives transpires:

I. If all \�:�E�\ 7 � then the algorithm terminates, having found a local

minimum.

II. If ^�E� �K^�E8��
 �T��: L=�E8�� and all step lengths are at the minimum

length L<=>, then the algorithm terminates, having bracketed a local

minimum by the shortest allowed step.

III. If ^�E� �K^�E8��
 �T��: L=�E8�� and at least one step length can be

shortened further, then the algorithm backtracks, having bracketed a local

minimum loosely, and initiates another, shorter step.

IV. Otherwise ^�E� 7K^�E8��
 �T��: L=�E8��, so step t-1 made a sufficient

decrease in global error; then the algorithm adjusts step lengths up or

down, and initiates another step.

11

Lemma 1. Case IV occurs at most l 7 G�2� �L<=> times.

On each occurrence of Case IV the error is reduced by an amount which is no

less than the threshold gradient � multiplied by the minimum step length L<=>.

If E(0) is the initial global error, then Case IV can occur at most l 7 G�2� �L<=>

times before the global error vanishes. Once the error vanishes, further steps

cannot satisfy the sufficient decrease condition and Case IV can no longer

occur.

Lemma 2. Case III occurs at most m 7 nS�K�L<fgoL<=>K� nS��#o�8� times after

the last occurrence of Case IV.

After the last occurrence of Case IV, step lengths can only decrease. On each

occurrence of Case III, all step sizes are reduced by a factor of �8, where �8 ! #. After m such occurrences, L<=>7 L:�E�7 T�U$L<=>� L<fg��8��%. At most m 7 nS�K�L<fgoL<=>K� nS��#o�8� reductions are required before all steps are

as short as possible, at which point the condition for Case II will be satisfied

instead of Case III.

Lemmas 1 and 2 establish that Cases III and IV can occur only a finite number of

times before either Case I or Case II must occur, whereupon the algorithm

terminates. In particular, if t* is the iteration on which termination occurs, then from

Lemmas 1 and 2 we have

pq 7 # � ^�2� �L<=> � nS�K�L<fgoL<=>K� nS��#o�8�

The Termination Theorem is thus proved. The proof assumes that the error surface

is differentiable, but it need not be continuous. If the error gradient is Lipschitz

continuous with Lipschitz constant r 7 +�oL<=>, then Case II can never occur so the

algorithm must eventually find a local minimum and terminate via Case I.

6. Simulations

To explore the practical viability of ARCprop, it was implemented within a revised

neuralnet framework, and its performance was compared to the neuralnet “rprop+”

algorithm, which implements the standard Rprop algorithm with local backtracking at

gradient reversals. These simulations used four neural network classification

problems from the PROBEN1 web site [25], namely cancer1, diabetes1, thyroid1,

and genes2. These problems were among those benchmarked by [14].

Networks had sigmoid hidden and output nodes. Network configurations (numbers of

input, hidden and output units) are given in Table 1, along with the total number of

weights to be learned, the numbers of training and test items, and the termination

thresholds. For each problem, ARCprop and Rprop were run from the same 100 sets

of starting weights. Error was measured as sum squared deviation. Neuralnet

12

terminates when the maximum absolute error gradient reaches a specified threshold;

this was arbitrarily set to 0.0075 times the square root of the number of training items

in each particular problem, as shown in Table 1. Key training parameter values were �I 	 #s+, �8 	 �s;, L:�2�	 �s#, LT��	 #�89, and LT�U	 ;�.

Table 1. Characteristics of neural network problems, including I-H-O network

structure (I input nodes, H hidden nodes, O output nodes), total number of weights

(including a bias for each hidden and output node), the number of training and test

items, and the termination threshold (maximum absolute error gradient).

Problem I-H-O N weights Train-test Threshold

Cancer 9-4-2-2 56 350-349 0.14
Diabetes 8-2-2-2 30 384-384 0.15
Genes 120-4-2-3 503 1588-1587 0.30
Thyroid 21-4-3 103 3600-3600 0.45

Performance was assessed in terms of the number of steps required to reach the

stopping criterion, the fraction of steps on which error increased, the total error at the

end of training, and per cent correct generalization in classifying untrained test

patterns. For generalization, classification probabilities for each test pattern were

calculated from proportional output activations, following Luce’s choice rule [26].

Thus, the per cent correct generalization for a given test pattern was 100 times the

activation of whichever output unit represented the correct response category,

divided by the sum of the activations of all output units.

For each performance measure, the relative performance of the two algorithms was

assessed by calculating the fraction of the 100 runs on which each algorithm

achieved a higher score than the other. Results are shown in Figure 5. The shaded

bars on the lower portion of the graph indicate the fraction of runs on which Rprop

yielded a higher score than ARCprop on a particular performance measure. The

unshaded bars above show the relative frequency of the alternative outcome.

Percentages below 35% or above 65% represent significant deviations from chance

across the 100 sets of starting weights, with family-wise error rate controlled at p <

.05 by the Bonferroni correction for 16 comparisons. Significant comparisons are

indicated in Figure 5 by asterisks attached to the corresponding labels along the

horizontal axis.

Figure 5. Relative performance of

diabetes, gene, and thyroid). Perf

to reach the stopping criterion (St

(Ascents), the total error at the en

generalization (Generalize). Bars

and ARCprop (unshaded) yielded

performance measure. Significant

The number of steps required ten

all four problems. This difference

problems, but not for the genes a

error increased was higher for Rp

for all four problems. This differen

error tended to be less for Rprop

significant for any of the four prob

generalization performance, but R

ARCprop from a majority of startin

was significant.

Overall, the performance of ARCp

that ARCprop almost always mad

appears that the guaranteed conv

any substantial loss of performanc

7. Conclusions

The original Rprop algorithm auto

surface, and usually converges on

to find a solution in all cases. Pub

GRprop, the “globally convergent

inappropriate directions, and whe

relies on an unspecified mechanis

f Rprop and ARCprop on four problems (canc

formance measures were number of steps re

teps), the fraction of steps on which error incr

nd of training (Error), and per cent correct

 show the fraction of runs on which Rprop (sh

d a higher score than the other on a particular

nt differences are indicated by asterisks.

nded to be greater for Rprop than for ARCprop

 was significant for the cancer and diabetes

and thyroid problems. The fraction of steps on

prop than ARCprop, for most sets of starting w

nce was significant for all four problems. The t

 than for ARCprop, but the difference was not

blems. There was no consistent pattern of rela

Rprop achieved higher generalization scores t

ng weights for the diabetes problem. This diff

prop was generally comparable to Rprop, exc

de fewer steps that increased the total error. It

vergence of ARCprop is achieved without incu

nce.

omatically adapts to the topology of the error

n a solution quickly. However, it is not guaran

blished variants are similarly limited. In particu

 Rprop”, is not; it sometimes takes steps in

en it moves in an appropriate direction it implic

sm to ensure that steps are not too large. The

cer,

equired

reased

haded)

r

p, on

n which

weights

total

t

ative

than

ference

cept

It thus

urring

nteed

ular,

citly

e

14

neuralnet implementation of GRprop always moves in an appropriate direction, but

sacrifices speed to the point of being impractical in some situations.

A globally convergent algorithm can be obtained by modifying Rprop to detect

increases in global error, so that a shorter step can be taken instead. The resulting

algorithm, designated ARCprop (A Robust Convergent Rprop), achieved similar

levels of performance to Rprop in four test problems.

Acknowledgements

Figure 2 was greatly facilitated by a free trial version of Rhinoceros 5 from

http://www.rhino3d.com.

References

[1] D.E. Rumelhart, J.L. McClellend, Learning internal representations by error

propagation, in: Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, MIT Press, Cambridge, 1986, 318–362.

[2] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation

learning: the RPROP algorithm, in: Proceedings of the International Conference

on Neural Networks, San Francisco, 1993, 586–591.

[3] W. Schiffmann, M. Joost, and R. Werner. Optimization of the backpropagation

algorithm for training multilayer perceptrons. Technical report, University of

Koblenz, Institute of Physics, 1994.

[4] G.D. Magoulas, M.N. Vrahatis, G.S. Androulakis, Improving the convergence of

the backpropagation algorithm using learning rate adaptation methods, Neural

Comput. 11 (1999) 1769–1796.

[5] C. Igel, M. Hüsken, Empirical evaluation of the improved Rprop learning

algorithms, Neurocomputing 50 (2003) 105–123.

[6] L. Kocsis, C. Szepesvari, Universal parameter optimisation in games based on

SPSA, Machine learning 63 (2006) 249-286.

[7] A. Kotsialos, Nonlinear optimisation using directional step lengths based on

RPROP, Optimization Letters 8 (2014) 1401-1415.

[8] J. Nocedal, S.J. Wright, Numerical Optimization, 2nd ed., Springer, New York,

2006.

[9] S. Mandal, P.V. Sivaprasad, S. Venugopal, Capability of a feed-forward artificial

neural network to predict the constitutive flow behavior of as cast 304 stainless

steel under hot deformation, Trans. ASME J. Eng. Mater. Technol. 129 (2007)

242–247.

[10] D. Kanevsky, G. Heigold, S. Wright, H. Ney, Overview of large scale

optimization for discriminative training in speech recognition, IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), (2012)

5233-5236, DOI: 10.1109/ICASSP.2012.6289100.

15

[11] A. Kotsialos, M. Papageorgiou, Nonlinear optimal control applied to

coordinated ramp metering, IEEE Trans. Control Syst. Technol. 10 (2004) 920–

933.

[12] G.D. Magoulas, M.N. Vrahatis, Adaptive algorithms for neural network

supervised learning: a deterministic optimization approach, International Journal

of Bifurcation and Chaos, 16 (2006) 1929-1950.

[13] S. Wiesler, A. Richard, R. Schluter, H. Ney, A critical evaluation of stochastic

algorithms for convex optimization, Acoustics, IEEE International Conference on

Speech and Signal Processing (ICASSP), (2013) 6955-6959.

[14] A.D. Anastasiadis, G.D. Magoulas, M.N. Vrahatis, New globally convergent

training scheme based on the resilient propagation algorithm, Neurocomputing,

64 (2005) 253–270.

[15] S. Winter, B. Brendel, I. Pechlivanis, K. Schmieder & C. Igel, Registration of

CT and intraoperative 3-D ultrasound images of the spine using evolutionary and

gradient-based methods. IEEE Transactions on Evolutionary Computation, 12

(2008) 284-296.

[16] D. Kalamatianos, A.D. Anastasiadis, P. Liatsis, A nonextensive method for

spectroscopic data analysis with artificial neural networks, Brazilian Journal Of

Physics 39 (2009) 488-494.

[17] A. Kostopoulos, T. Grapsa. Self-scaled conjugate gradient training algorithms,

Neurocomputing, 72 (2009) 3000-3019.

[18] H. Schaeben. Comparison of mathematical methods of potential modeling,

Mathematical Geosciences, 44 (2012) 101-129.

[19] C. Bergmeir, J.M. Benítez, Neural networks in R using the Stuttgart neural

network simulator: RSNNS. Journal Of Statistical Software, 46 (2012) 1-26.

[20] I.E. Livieris, P. Pintelas, A new conjugate gradient algorithm for training neural

networks based on a modified secant equation, Applied Mathematics And

Computation, 221 (2013) 491-502.

[21] F. Günther, S. Fritsch, neuralnet: Training of neural networks, The R Journal 2

(2010) 30-38.

[22] M.N. Vrahatis, G.D. Magoulas, V.P. Plagianakos, From linear to nonlinear

iterative methods, Appl. Numer. Math. 45 (2003) 59–77.

[23] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev. 11 (1969)

226–235.

[24] P. Wolfe, Convergence conditions for ascent methods. II: some corrections,

SIAM Rev. 13 (1971) 185–188.

[25] L. Prechelt, PROBEN1-A set of benchmarks and benchmarking rules for

neural network training algorithms, Technical Report 21/94, Fakultät für

Informatik, Universität Karlsruhe, (1994).

[26] R.D. Luce, Individual choice behavior: A theoretical analysis. New York:

Wiley, (1959).

Tables

16

Table 1. Characteristics of neural network problems, including I-H-O network

structure (I input nodes, H hidden nodes, O output nodes), total number of weights

(including a bias for each hidden and output node), the number of training and test

items, and the termination threshold (maximum absolute error gradient).

Problem I-H-O N weights Train-test Threshold

Cancer 9-4-2-2 56 350-349 0.14
Diabetes 8-2-2-2 30 384-384 0.15
Genes 120-4-2-3 503 1588-1587 0.30
Thyroid 21-4-3 103 3600-3600 0.45

Figure captions

Figure 1. Schematic Rprop strategy. Arrows show weight changes on each iteration,

with steps in the direction of descent as indicated by the slope of Error at the start of

each step. Step sizes increase if the direction is the same as the previous step (as

from the left side of the figure), or decrease rapidly if the direction reverses (as

shown near the right side).

Figure 2. Contours on which Rprop may fail to converge, showing four hills

separated by horizontal and vertical valleys (around an arbitrary central hillock).

Points A, C, E, F and G are high; point B is relatively low in this error landscape. The

arrows indicate individual step sizes at each point in a potential infinite loop of Rprop

steps.

Figure 3. An error topology for which neuralnet’s GRprop implementation converges

quickly (from A to the minimum at C in 9 steps), or very slowly (from B towards C,

requiring 10000 iterations to get as far as D). Circular contour lines indicate

increasing error as a function of the radial distance from point C.

Figure 4. ARCprop algorithm. ^�D� is the global error at iteration t; C=�D�is the weight of

connection i; �:�E� 	 FG�E� FC=�E�H . The algorithm terminates when all gradients �:�E� 7�, or when all step sizes L:�E8��7 L<=>.

Figure 5. Relative performance of Rprop and ARCprop on four problems (cancer,
diabetes, gene, and thyroid). Performance measures were number of steps required
to reach the stopping criterion (Steps), the fraction of steps on which error increased
(Ascents), the total error at the end of training (Error), and per cent correct
generalization (Generalize). Bars show the fraction of runs on which Rprop (shaded)
and ARCprop (unshaded) yielded a higher score than the other on a particular
performance measure. Significant differences are indicated by asterisks.

Weight

Error

Figure 1

A

B

C

D

E

F

G

Figure 2

A

B

C

D

Figure 3

if ���� �����	�
 � then return ���	
if
��	 ��
����	 � ����� ������	 then {

if ���� ������	
 ���� then return �����	
for each ����	 do {

����	� � �������	; ����	� � �������	
����	� � ��� ���������	� �����

}

} else {

for each ����	 do {

����	�
 !
"
!#��� ��$��

����	� ��%&� �������	������	 � '
��� ���������	� ����� �������	������	 ('

������	 �����	�
�)!
*
!+

}

}

for each ���,	 do {

����$�	 ������	 ������	-�.� /����	0
}

Figure 4

0%

20%

40%

60%

80%

100%

F
ra

c
t
io

n
 o

f
r
u

n
s

Steps Ascents Error Generalize

Figure 5

Vitae

Todd M. Bailey is a member of the academic staff in the School of Psychology,

Cardiff University. He has previously been a researcher in the Department of

Experimental Psychology and the McDonnell-Pew Centre for Cognitive

Neuroscience, at the University of Oxford. He has also developed computer-assisted

engineering tools as a software engineer for Hewlett-Packard in Colorado Springs.

He received the BSc Computer Science, MA Linguistics, and PhD Linguistics with

Cognitive Science at the University of Minnesota. He is particularly interested in

computational models of language processing and categorisation.

*Biography of the author(s)

Click here to download Biography of the author(s): Vitae.docx

Photo of the author(s)
Click here to download high resolution image

Highlights

 Rprop can go up as well as down, and can get stuck in loops.

 GRprop sometimes chooses an ascent direction and hence is not globally

convergent.

 neuralnet’s implementation of GRprop can be exceedly slow on some simple
problems.

 New variant of Rprop is proposed which adjusts step length to assure

convergence.

Highlights (for review)

