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Abstract

Domain specific (dis-)similarity or proximity measures used e.g. in
alignment algorithms of sequence data, are popular to analyze com-
plex data objects and to cover domain specific data properties. With-
out an underlying vector space these data are given as pairwise (dis-
)similarities only. The few available methods for such data focus widely
on similarities and do not scale to large data sets. Kernel methods are
very effective for metric similarity matrices, also at large scale, but
costly transformations are necessary starting with non-metric (dis-)
similarities. We propose an integrative combination of Nyström ap-
proximation, potential double centering and eigenvalue correction to
obtain valid kernel matrices at linear costs in the number of samples.
By the proposed approach effective kernel approaches, become acces-
sible. Experiments with several larger (dis-)similarity data sets show
that the proposed method achieves much better runtime performance
than the standard strategy while keeping competitive model accuracy.
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The main contribution is an efficient and accurate technique, to convert
(potentially non-metric) large scale dissimilarity matrices into approx-
imated positive semi-definite kernel matrices at linear costs.

Keywords: dissimilarity learning, nystroem approximation, double cen-
tering, pseudo-euclidean, indefinite kernel

1 Introduction

In many application areas such as bioinformatics, text mining, image re-
trieval, spectroscopy domains or social networks the available electronic data
are increasing and get more complex in size and representation. In general
these data are not given in vectorial form and domain specific (dis-)similarity
measures are used, as a replacement or complement to Euclidean measures.
These data are also often associated to dedicated structures which make a
representation in terms of Euclidean vectors difficult: biological sequence
data, text files, XML data, trees, graphs, or time series [7, 31, 42] are of this
type. These data are inherently compositional and a feature representation
leads to information loss. As an alternative, tailored dissimilarity measures
such as pairwise alignment functions, kernels for structures or other domain
specific similarity and dissimilarity functions can be used as the interface
to the data. But also for vectorial data, non-metric proximity measures are
common in some disciplines. An example of this type is the use of divergence
measures [10] which are very popular for spectral data analysis in chemistry,
geo- and medical sciences [41, 43], and are not metric in general. In such
cases, machine learning techniques which can deal with pairwise non-metric
similarities or dissimilarities are attractive [46].

The paper is organized as follows. First we give a brief review of re-
lated work. Subsequently we review common transformation techniques for
dissimilarity data and discuss the influence of non-Euclidean measures, by
eigenvalue corrections. Thereafter we discuss alternative methods for pro-
cessing small dissimilarity data. We extend this discussion to approximation
strategies and give an alternative derivation of the Nyström approximation
together with a convergence proof, also for indefinite kernels. This allows
us to apply the Nyström technique to similarities as well as for dissimilar-
ities. Thus, we can link both strategies effectively to use kernel methods
for the analysis of larger (non-)metric dissimilarity data. Then we show the
effectiveness of the proposed approach by different supervised learning tasks
aligned with various error measures. We also discuss differences and com-
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mons to some known approaches supported by experiments on simulated
data1.

2 Related work

Similarity and dissimilarity learning or for short proximity learning has at-
tracted wide attention over the last years, pioneered by work of [24] and
major contributions in [46] and different other research groups. As will be
detailed more formally in the next section, the learning of proximities is
challenging under different aspects: in general there is no underlying vector
space, the proximities may be non-Euclidean, the data may not be metric.
As mentioned before a symmetric matrix of metric similarities between ob-
jects is essentially a kernel and can be analyzed by a multitude of kernel
methods [55]. But complex preprocessing steps are necessary, as discussed
in the following, to apply them on non-metric (dis-)similarities. Some recent
work discussed non-metric similarities in the context of kernel approaches
by means of indefinite kernels see e.g. [39, 47], resulting in non-convex for-
mulations. Other approaches try to make the kernel representation positive
semi definite (psd) or learn an alternative psd proxy matrix close to the orig-
inal one [7, 8], but with high computational costs. For dissimilarity matrices
only few approaches have been published [40, 6] both with quadratic to cubic
computational costs in the number of samples. In fact, as discussed in the
work of [46], non-Euclidean proximities can encode important information
in the Euclidean as well as in non-Euclidean parts of space, represented by
the positive and negative eigenvalues of the corresponding similarity ma-
trix, respectively. Thus, transformations of similarities to make them psd,
by e.g. truncating the negative eigenvalues, may be inappropriate [49]. This
however is very data dependent and for a large number of datasets negative
eigenvalues may be actually noise effects while for other data sets the neg-
ative eigenvalues carry relevant information [33, 34]. Often non-psd kernels
are still used with kernel algorithms but actually on a heuristical basis, since
corresponding error bounds are provided only for psd kernels in general. As
we will see in the experiments for strongly non-psd data it may happen that
standard kernel methods fail to converge due to the violation of underlying
assumptions.

Another strategy is to use a more general theory of learning with simi-
larity functions proposed in [2]. Which can be used to identify descriptive or
discriminative models based on a available similarity function under some

1This article contains extended and improved results and is based on [54]
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conditions [30]. A practical approach of the last type for classification prob-
lems was provided in [29]. The model is defined on a fixed randomly chosen
set of landmarks per class and a transfer function. Thereby the landmarks
are a small set of columns (or rows) of a kernel matrix which are used to
formulate the decision function. The weights of the decision function are
then optimized by standard approaches. The results are however in general
substantially worse than those provided in [7] where the datasets are taken
from.

In the following we will focus on non-metric proximities and especially
dissimilarities. Native methods for the analysis of matrix dissimilarity data
have been proposed in [25, 46, 51, 21], but are in general based on non-
convex optimization schemes and with quadratic to linear memory and run-
time complexity, the later employing some of the approximation techniques
discussed subsequently and additional heuristics. The strategy to correct
non-metric dissimilarities is addressed in the literature only for smaller data
sets. And there exist basically three approaches to make them metric. The
first one is to modify the (symmetric) dissimilarity matrix such that all
triangle equations in the data are fulfilled [6], which is called the metric-
nearness problem. The second strategy is to learn again a metric proxy
matrix [40]. Both strategies are quite costly and not used at large scale.
The third approach is based on converting the dissimilarities to similarities,
by double centering followed by an eigenvalue correction of the similarities
and back conversion to dissimilarities. These steps scale quadratic and cu-
bic, respectively. We focus on the last approach and provide a runtime and
memory efficient solution for problems at large scale2.

The approximation concepts used in the following are based on the
Nyström approximation which was introduced to machine learning by the
work of [67]. In [17] the Nyström approximation was used to simplify the
normalized Cut problem, which can be considered as a clustering problem.
This work was however valid for psd similarity matrices, only. An extension
to non-psd similarities was addressed in [3], but the derivation can still lead
to an invalid matrix approximation 3. Our proposal derives valid eigenvector
and eigenvalue estimates also for non-psd proximity matrices.

Large (dis-)similarity data are common in biology like the famousUniProt-

2With large we refer to a sample size N ∈ [1e3 − 1e6]. We do not focus on very big
data - which are (not yet) considered in the area of proximity learning.

3The derivation of Z on p 535 for negative eigenvalues in Λ leads to complex values
and hence invalid results. However the strategy proposed in the corresponding paper
may have removed the negative eigenvalues in Λ, due to a rank reduction, explaining the
experimental results. But the cut-off of negative eigenvalues can again be criticized [49]
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/SwissProt-database with ≈ 500, 000 entries or GenBank with ≈ 135, 000
entries, but there are many more (dis-)similarity data as discussed in the
work based on [46, 48]. These growing data sets request effective and generic
modeling approaches.

Here we will show how potentially non-metric (dis-)similarities can be
effectively processed by standard kernel methods by correcting the prox-
imity data with linear costs. The proposed strategies permit the effective
application of many kernel methods for these type of data under very mild
conditions.

Especially for metric dissimilarities the approach keeps the known guar-
antees, like generalization bounds (see e.g. [13]). For non-psd data we give
a convergence proof, but the corresponding bounds are still open, yet our
experiments are promising.

3 Transformation techniques for (dis-)similarities

Let vj ∈ V be a set of objects defined in some data space, with |V| = N .
We assume, there exists a dissimilarity measure such that D ∈ R

N×N is a
dissimilarity matrix measuring the pairwise dissimilarities Dij = d(vj ,vi)

2

between all pairs (vi,vj) ∈ V
4. Any reasonable (possibly non-metric)

distance measure is sufficient. We assume zero diagonal d(vi,vi) = 0 for all
i and symmetry d(vi,vj) = d(vj ,vi) for all i, j.

3.1 Transformation of dissimilarities and similarities into each
other

Every dissimilarity matrix D can be seen as a distance matrix computed
in some, not necessarily Euclidean, vector space. The matrix of the inner
products computed in this space is the corresponding similarity matrix S. It
can be computed fromD directly by a process referred to as double centering
[46]:

S = −JDJ/2

J = (I − 11⊤/N)

with identity matrix I and vector of ones 1. Similarly, it is possible to
construct the dissimilarity matrix element-wise from the matrix of inner
products S

Dij = Sii + Sjj − 2Sij.

4We assume Dij to be squared to simplify the notation.
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As we can see, both matrices D and S are closely related to each other
and represent the same data, up to translation, which is lost by the double-
centering step. If the mean estimate, used in the double centering step, is
inaccurate the conversion of D to S is inaccurate as well, which can have a
negative impact on e.g. a classifier based on S.

The data stems from an Euclidean space, and therefore the distances dij
are Euclidean, if and only if S is positive semi-definite (psd) [4]. This is the
case, when we observe only non-negative eigenvalues in the eigenspectrum
of the matrix S associated to D. Such psd matrices S are also referred to
as kernels and there are many classification techniques, which have been
proposed to deal with such data, like the support vector machine (SVM)
[61]. In the case of non-psd similarities, the mercer kernel based techniques
are no longer guaranteed to work properly and additional transformations
of the data are required or the methods have to be modified substantially,
effecting the overall runtime efficiency or desired properties like convexity
[45, 26]. To define these transformations we need first to understand the
pseudo-Euclidean space.

3.2 Pseudo-Euclidean embedding

Given a symmetric dissimilarity with zero diagonal, an embedding of the
data in a pseudo-Euclidean vector space is always possible [24].

Definition 1 (Pseudo-Euclidean space [46]). A pseudo-Euclidean space ξ =
R
(p,q) is a real vector space equipped with a non-degenerate, indefinite inner

product 〈., .〉ξ. ξ admits a direct orthogonal decomposition ξ = ξ+ ⊕ ξ−
where ξ+ = R

p and ξ− = R
q and the inner product is positive definite on ξ+

and negative definite on ξ−. The space ξ is therefore characterized by the
signature (p, q).

A symmetric bi-linear form in this space is given by

〈x,y〉p,q =
p
∑

i=1

xiyi −
p+q
∑

i=p+1

xiyi = x⊤Ip,qy

where Ip,q is a diagonal matrix with p entries 1 and q entries −1. Given the
eigendecomposition of a similarity matrix S = UΛU⊤ we can compute the
corresponding vectorial representation V in the pseudo-Euclidean space by

V = Up+q |Λp+q|1/2 (1)
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where Λp+q consists of p positive and q negative non-zero eigenvalues and
Up+q consists of the corresponding eigenvectors. It is straightforward to see
that Dij = 〈vi−vj,vi−vj〉p,q holds for every pair of data points. Similarly
to the signature (p, q) of a space ξ, we describe our finite data sets, given by
a matrix D or S, by the extended signature (p, q,N−p−q) which represents
the number of positive eigenvalues p, the number of negative eigenvalues q
and the number of the remaining zero eigenvalues in the similarity matrix.

3.3 Dealing with pseudo-Euclidean data

In [7] different strategies were analyzed to obtain valid kernel matrices for
a given similarity matrix S, most popular are: flipping, clipping, vector-
representation, shift correction. The underlying idea is to remove negative
eigenvalues in the eigenspectrum of the matrix S. One may also try to learn
an alternative psd kernel representation with maximum alignment to the
original non-psd kernel matrix [7, 8, 36] or split the proximities based on
positive and negative eigenvalues as discussed in [46, 47].

The flip-operation takes the absolute eigenvalues of the matrix S. This
corresponds to ignoring the separation of the space ξ into ξ+ and ξ− and
instead computing in the space Rp+q. This approach preserves the variation
in the data and could be revoked for some techniques after the training by
simply reintroducing the matrix Ip,q into the inner product.

The shift-operation increases all eigenvalues by the absolute value of the
minimal eigenvalue. This approach performs a non-linear transformation in
the pseudo-Euclidean space, emphasizing ξ+ and nearly eliminating ξ−.

The clip-operation sets all negative eigenvalues to zero. This approach
corresponds to ignoring the space ξ− completely. As discussed in [49], de-
pending on the data set, this space could carry important information and
removing it would make some tasks, as e.g. classification, impossible.

After the transformation of the eigenvalues, the corrected matrix S∗ is
obtained as S∗ = UΛ∗U⊤, with Λ∗ as the modified eigenvalue matrix using
one of the above operations. The obtained matrix S∗ can now be considered
as a valid kernel matrix K and kernel based approaches can be used to
operate on the data.

The analysis in [49] indicates that for non-Euclidean dissimilarities some
corrections like above may change the data representation such that infor-
mation loss occurs. This however is not yet systematically explored and
very data dependent, best supported by domain knowledge about the data
or the used proximity measure.

Alternatively, techniques have been introduced which directly deal with
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possibly non-metric dissimilarities. Using the Equation (1) the data can
be embedded into the pseudo-Euclidean space. Classical vectorial machine
learning algorithms can then be adapted to operate directly in the pseudo-
Euclidean space. This can be achieved by e.g. defining a positive definite
inner product in the space ξ. Variations of this approach are also possible
whereby an explicit embedding is not necessary and the training can be done
implicitly, based on the dissimilarity matrix only [46]. A further strategy is
to employ so called relational or proximity learning methods as discussed e.g.
in [21]. The underlying models consist of prototypes, which are implicitly
defined as a weighted linear combination of training points:

wj =
∑

i

αjivi with
∑

i

αji = 1 . W = {w1, . . . ,wc}

But this explicit representation is not necessary because the algorithms are
based only on a specific form of distance calculations using the matrix D

and the potentially unknown vector space V is not needed. The basic idea
is an implicit computation of distances d(·, ·) during the model calculation
based on the dissimilarity matrix D using weights α:

d(vi,wj)
2 = [D · αj ]i −

1

2
· α⊤

j Dαj . (2)

details in [21]. As shown e.g. in [27] the mentioned methods do not rely on
a metric dissimilarity matrix D, but it is sufficient to have a symmetric D

in a pseudo-Euclidean space, with constant self-dissimilarities.
The dissimilarity space approach is another technique which does not

embed the data into the pseudo-Euclidean space [46]. Instead, one selects
a representative set of points wi ∈ W and considers for every point the dis-
similarities to the set W as features, resulting in a vectorial representation
xi = [d(vi,w1), d(vi,w2), d(vi,w3), ...]

⊤. This corresponds to an embedding
into an Euclidean space with the dimensionality equal to the size of the se-
lected set of points. These vectors can then be processed using any vectorial
approaches. A negative point of this representation is the change of the
original data representation which may disturb the structure of the data. It
is also highly reliable on a good representative set, since highly correlated
sampled points generate similar features and the correlation information is
lost in the embedded space.

3.4 Complexity

The methods discussed before are suitable for data analysis based on simi-
larity or dissimilarity data where the number of samples N is rather small,
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Figure 1: Schema of the relation between similarities and dissimilarities.

e.g. scales by some thousand samples. For large N , most of the techniques
discussed above become infeasible. All techniques which use the full (dis-
)similarity matrix, have O(N2) memory complexity and thus at least O(N2)
computational complexity.

Double centering, if done naively, is cubic, although after simplifications
it can be computed in O(N2). Transformation from S to D can be done
element-wise, but if the full matrix is required it is still quadratic.

All the techniques relying on the full eigenvalue decomposition, e.g. for
eigenvalue correction or for explicit pseudo-Euclidean embedding, have an
O(N3) computational complexity.

The only exception is the dissimilarity space approach. If it possible
to select a good representative set of a small size, one can achieve linear
computational and memory complexity. The technique becomes quadratic
as well, if all data points are selected as the representative set.

Other then this, only formetric, similarity data (psd kernels) efficient ap-
proaches have been proposed before, e.g. the Core-Vector Machine (CVM)
[59] or low-rank linearized SVM [69] for classification problems or an ap-
proximated kernel k-means algorithm for clustering [9].

A schematic view of the relations between S and D and its transforma-
tions is shown in Figure 1, including the complexity of the transformations.
Some of the steps can be done more efficiently by known methods, but with
additional constraints or in atypical settings as discussed in the following.
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In the following, we discuss techniques to deal with larger sample sets for
potentially non-metric similarity and especially dissimilarity data. We show
how standard kernel methods can be used, assuming that for non-metric
data, the necessary transformations have no severe negative influence on
the data accuracy. Basically also core-set techniques [1] become accessible
for large potentially non-metric (dis-)similarity data in this way, but at the
cost of multiple additional intermediate steps. In particular, we investigate
the Nyström approximation technique, as low rank linear time approxima-
tion technique; we will show its suitability and linear time complexity for
similarities as well as dissimilarities, applied on the raw data as well as for
the eigenvalue correction.

4 Nyström approximation

As shown in [67], given a symmetric positive semi-definite kernel matrix
K, it is possible to create a low rank approximation of this matrix using
the Nyström technique [44]. The idea is to sample m points, the so called
landmarks, and to analyze the small m×m kernel matrix Km,m constructed
from the landmarks. The eigenvalues and eigenvectors from the matrix
Km,m can be used to approximate the eigenvalues and eigenvectors of the
original matrix K. This allows to represent the complete matrix in terms
of a linear part of the full matrix only. The final approximation takes the
simple form

K̂ = KN,mK−1
m,mKm,N , (3)

where KN,m is the kernel matrix between N data points and m landmarks
and K−1

m,m is the Moore-Penrose pseudoinverse of the small matrix.

This technique has been proposed in the context of Mercer kernel meth-
ods in [67] with related proofs and bounds given in [13] and very recent
results in [22]. It can be applied in conjunction with algorithms using the
kernel matrix in multiplications with other matrices or vectors only. Due
to the explicit low rank form as in Equation (3) it is possible to select the
order of multiplication, thus reducing the complexity from quadratic in the
number of data points to a linear one.

4.1 Eigenvalue decomposition of a Nyström approximated
matrix

In some applications it might be useful to compute the exact eigenvalue
decomposition of the approximated matrix K̂, e.g. to compute the pseudo-
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inverse of this matrix. We will show now, how this decomposition can be
computed in linear time 5. The psd matrix approximated by Equation (3)
can be written as

K̂ = KN,mK−1
m,mKm,N

= KN,mUΛ−1U⊤K⊤
N,m

= BB⊤,

where we defined B = KN,mUΛ−1/2 with U and Λ being the eigenvectors
and eigenvalues of Km,m, respectively. Further it follows

K̂2 = BB⊤BB⊤

= BVAV⊤B⊤,

where V are the orthonormal eigenvectors of the matrix B⊤B and A the
matrix of its eigenvalues. The corresponding eigenequation can be written
as B⊤Bv = av. Multiplying it with B from left we get the eigenequation
for K̂

BB⊤(Bv) = a (Bv) .

It is clear, that A must be the matrix of eigenvalues of K̂. The matrix Bv

is the matrix of the corresponding eigenvectors, which are orthogonal but
not necessary orthonormal. The normalization can be computed from the
decomposition

K̂ = BVV⊤B⊤

= BVA−1/2AA−1/2V⊤B⊤

= CAC⊤,

where we defined C = BVA−1/2 as the matrix of orthonormal eigenvectors
of K̂. Thus, K̂ = CAC⊤ is the orthonormal eigendecomposition of K̂.

4.2 Convergence proof

The Nyström approximation was proposed for the psd matrices and thus, it
was not accessible for distance matrices and similarities coming from non-
psd kernel functions. First developments to apply the Nyström technique
to indefinite matrices were presented in [20, 21]. Although supported with

5A similar strategy was used to construct large eigenmaps from psd similarity matrices
as recently shown [58] but our approach applies also to non-psd matrices.
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experiments, a formal proof was lacking. Here we present a proof, that
shows, that the Nyström approximated, possible indefinite, kernel converges
in the operator norm to the true underlying kernel as long as the number
of landmarks is large enough. Generalization bounds will be a subject of
future work.

Let K be an integral operator and its kernel k ∈ L2(Ω2) be a continuous
symmetric function (not necessarily psd, i.e. it does not have to reproduce
a Hilbert space):

Kf(x) :=

∫

Ω
k(x, y)f(y)dµ(y).

Without loss of generality let Ω be an interval [a, b] ⊂ R with measure 1.
Then K is a compact operator in a Hilbert space H

‖K‖L2→L2 := sup
‖f‖≤1

‖Kf‖L2 ≤ ‖k‖L2
,

with the operator norm ‖.‖L2→L2 and the L2-norm ‖.‖L2
.

We define a measurement operator Tm which divides the space Ω into m
spaces Ωj, each with the measure 1/m. It converts functions f ∈ H to func-
tions fm ∈ Hm which are piece-wise constant on each Ωj. The corresponding
integral kernel of Tm is defined as:

tm(x, y) :=

{

m x, y ∈ Ωj for any j

0 else.

It follows for an x ∈ Ωj that

Tmf(x) =

∫

Ω
tm(x, y)f(y)dµ(y) = m

∫

Ωj

f(y)dµ(y),

where we can see, that the right hand side is the mean value of f(y) on
Ωj and thus constant for all x ∈ Ωj. This way, the operator Tm allows
us to approximate a function f(x) by measuring it at m places f(xj) and
assuming that it is constant in between. Measuring the operator K we get
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Km := Tm ◦K with the integral kernel

∫

Ω
tm(x, z)k(z, y)dµ(z) =

m
∑

j=1

∫

Ωj

tm(x, z)k(z, y)dµ(z)

=
m
∑

j=1

1Ωj
(x)m

∫

Ωj

k(z, y)dµ(z)

=

m
∑

j=1

1Ωj
(x)kj(y)

=: km(x, y),

where 1Ωj
(x) is the indicator function which is 1 if x ∈ Ωj and 0 elsewhere

and we defined kj = m
∫

Ωj
k(z, y)dµ(z).

We can now analyze the convergence behavior of Km to K. ∀x ∈ Ωj and
∀y ∈ Ω we get

|km(x, y) − k(x, y)| =

=

∣

∣

∣

∣

∣

m

∫

Ωj

k(z, y)dµ(z) −m

∫

Ωj

k(x, y)dµ(z)

∣

∣

∣

∣

∣

≤ m

∫

Ωj

|k(z, y)− k(x, y)| dµ(z).

Since k is continuous on the interval [a, b], it is uniformly continuous and we
can bound

|k(z, y)− k(x, y)| ≤ D(Ωj) := sup
x1, x2∈Ωj

y∈Ω

|k(x1, y)− k(x2, y)|

≤ δm := max
j

D(Ωj)

and therefore
sup
x∈Ω
y∈Ω

|km(x, y)− k(x, y)| ≤ δm.

For m → ∞ the Ωj become smaller and δm → 0, thus kernel km converges
to k. For the operators K and Km it follows

‖Km −K‖L2→L2 → 0

which shows that Km converges to K in the operator norm, if the number
of measurements goes to infinity.
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Applying Km on f results in

Kmf(x) =

∫

Ω
km(x, y)f(y)dµ(y)

=

m
∑

j=1

1Ωj
(x)

∫

Ω
kj(y)f(y)dµ(y)

=
m
∑

j=1

aj1Ωj
(x)

where aj :=
∫

Ω kj(y)f(y)dµ(y) is a constant with respect to x. It is clear
that Kmf is always in the linear hull of 1Ω1

(x), ..., 1Ωm
(x) and the image of

the operator ℑKm = span{1Ω1
(x), ..., 1Ωm

(x)} is m dimensional. Since the
coefficients aj are finite, Km is a compact operator and because the sequence
of Km converges to K, we see that K is in fact a compact operator.

According to the ”Perturbation of bounded operators” theorem [62], if
a sequence Km converges to K in the operator norm, then for an isolated
eigenvalue λ of K there exist isolated eigenvalues λm of Km such that λm →
λ and the corresponding spectral projections converge in operator norm.
This theorem allows us to estimate the eigenvalues and eigenfunctions of the
unknown operator K by computing the eigendecomposition of the measured
operator Km.

The eigenfunctions and eigenvalues of the operator Km are given as the
solutions of the eigenequation

Kmf = λf. (4)

We know that the left hand side of the equation is in the image of Km and
therefore an eigenfunction f must have the form

f(x) =

m
∑

i=1

fi1Ωi
(x) (5)
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where fi are constants. For the left side of the Equation (4) it follows

Kmf(x) =

∫

Ω

m
∑

j=1

1Ωj
(x)kj(y)f(y)dµ(y)

=
m
∑

j=1

1Ωj
(x)

∫

Ω
kj(y)

m
∑

i=1

fi1Ωi
(y)dµ(y)

=

m
∑

j=1

m
∑

i=1

1Ωj
(x)fi

∫

Ωi

kj(y)dµ(y)

=

m
∑

j=1

m
∑

i=1

1Ωj
(x)

1

m
fikji

and we defined kji = m
∫

Ωi
kj(y)dµ(y) = m2

∫

Ωi

∫

Ωj
k(y, z)dµ(y)dµ(z) which

represents our measurement of the kernel k around the i-th and j-th points.
If we combine the above equation with the Equation (4) for an x ∈ Ωj we
get

m
∑

i=1

1

m
kjifi = λfj .

This equation is a weighted eigenequation and we can turn it into a regular
eigenequation by defining λ̃ = mλ and f̃i = fi/

√
m. Thus, we get

m
∑

i=1

kjif̃i = λ̃f̃j.

Hence λ̃ and f̃ are the eigenvalues and eigenvectors of matrix (kji). Note,
that fi are scaled to guarantee the normalization of f̃

1 =

∫

Ω
f(x)f(x)dµ(x)

=

∫

Ω

m
∑

i=1

f2
i 1Ωi

(x)dµ(x)

=

m
∑

i=1

f2
i

∫

Ωi

dµ(x)

=
m
∑

i=1

(

fi√
m

)2

.
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The eigendecomposition takes the form

(kji) =

m
∑

l=1

λ̃lf̃ l(f̃ l)′

and for a single measured element we get

kij =

m
∑

l=1

λ̃lf̃ l
i f̃

l
j.

According to the spectral theorem [66] the eigendecomposition of k is

k(x, y) =

∞
∑

l=1

γlφl(x)φl(y)

where γl and φl are the eigenvalues and eigenfunctions, respectively. Since
K is a compact operator, γl is a null sequence. Thus, the sequence of
operators K̃m with the kernel k̃m(x, y) =

∑m
l=1 γ

lφl(x)φl(y) converges to K
in the operator norm for m → ∞ [66] and we can approximate

k(x, y) ≈
m
∑

l=1

γlφl(x)φl(y)

=

m
∑

l=1

∫

Ω
k(x, z)φl(z)dµ(z)

1

γl

∫

Ω
k(y, z′)φl(z′)dµ(z′),

where we assume that none of the γl are zero. Further, due to the ”Per-
turbation of bounded operators” theorem, the eigenvalues λl converge to γl

and the corresponding eigenspaces converge in the operator norm and we
can approximate

k(x, y) ≈
m
∑

l=1

∫

Ω
k(x, z)f l(z)dµ(z)

1

λl

∫

Ω
k(y, z′)f l(z′)dµ(z′).

16



Taking into account the Equation (5) the above formula turns into

k(x, y) ≈
m
∑

l=1

∫

Ω
k(x, z)

m
∑

i=1

f l
i1Ωi

(z)dµ(z)

· 1

λl

∫

Ω
k(y, z′)

m
∑

j=1

f l
j1Ωj

(z′)dµ(z′)

=

m
∑

l=1

m
∑

i=1

f l
i

∫

Ωi

k(x, z)dµ(z)
1

λl

m
∑

j=1

f l
j

∫

Ωj

k(y, z′)dµ(z′)

=
m
∑

i=1

m
∑

j=1

ki(x)

(

m
∑

l=1

f l
i√
m

1

mλl

f l
j√
m

)

kj(y)

=

m
∑

i=1

m
∑

j=1

ki(x)
(

k−1
)

ij
kj(y),

where k−1 is the pseudo-inverse of the matrix consisting of elements kij . It
is now clear, that after measuring ki(x) at N places and writing the above
formula in matrix form, we retain the original Nyström approximation as in
Equation (3).

Note, that the approximation of k(x, y) consists of two approximations.
The first one is the approximation of the rank of the matrix and the second
one is the approximation of the eigenfunctions and eigenvalues. Although
we don’t know the exact eigenvalues and eigenfunctions of kernel k(x, y),
the approximation is exact if the kernel has a rank ≤ m 6. This fact is
known for the Nyström approximation and can be validated by simple matrix
transformations. The reason is, that if the rank of a kernel ism then it can be
represented as an inner product in a pseudo-Euclidean space and m linearly
independent landmarks build a basis which spans this space. The position
of any new point x is then fully determined by k(x, xi), with xi being the
landmarks, so that all inner products between any points are determined
and the matrix K can be computed precisely.

The Nyström approximation involves the computation of KN,m and in-
version of Km,m with the corresponding complexities of O(mN) and O(m3),
respectively. The multiplication of both matrices as well as multiplication of
the approximated matrix with other matrices, required for further processing

6If the true rank is larger than m the eigenvalues do not match the true once and
errors occur - like with any other approach. However the presented approach can also
keep negative eigenvalues, given they are within the top m eigenvalues.
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Figure 2: Updated schema from Figure 1 using the discussed approximation.
The costs are now substantially smaller, provided m ≪ N .

and training, has the complexity of O(m2N). Thus, the overall complexity
of the Nyström technique is given by O(m2N).

5 Transformations of (dis-)similarities with linear
costs

The Nyström approximation was proposed originally to deal with large
psd similarity matrices with kernel approaches in mind by [67]. To apply
these techniques on indefinite similarity and dissimilarity matrices additional
transformations, as discussed in section 3, are required. Unfortunately, these
transformations have quadratic or even cubic time complexity, making the
advantage gained by the Nyström approximation pointless. Since we can
now apply the Nyström technique on arbitrary symmetric matrices, it is not
only possible to approximate the dissimilarities directly, but also to perform
the transformations in linear time. Thus, we can apply relational and kernel
techniques on similarities and dissimilarities including eigenvalue corrections
if necessary.

In this section we will elaborate how the transformations discussed in
section 3 can be done in linear time if applied for the Nyström-approximated
matrices. The updated costs are shown on the Figure 2.
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5.1 Transformation of dissimilarities and similarities into each
other

Given a dissimilarity matrix D, there are two ways to construct the approx-
imated matrix Ŝ. First, we can transform D to S using double centering
and then apply Nyström approximation to S. Obviously, this approach has
quadratic time complexity due to the double centering step. Second, we
can approximate D to D̂ first and then apply double centering. As we will
show in the following, this transformation requires only linear computational
time.

As mentioned before, from the dissimilarity matrix D we can compute
the corresponding similiarity matrix using double centering. This process is
noted as S(D) in the following:

S(D) = −JDJ/2

where J = (I − 11⊤/N) with identity matrix I and vector of ones 1. Ex-
panding the right side of the equation we get

S(D) = −1

2
JDJ

= −1

2

((

I− 1

N
11⊤

)

D

(

I− 1

N
11⊤

))

= −1

2

(

D− 1

N
D11⊤ − 1

N
11⊤D+

1

N2
11⊤D11⊤

)

.

Approximating S(D) requires computation of a linear part of each summand,
but still involves summation over the full matrix D.

Alternatively, by approximating D first, we get

S
Ny≈ S(D̂) = −1

2

[

DN,m ·D−1
m,m ·Dm,N − 1

N
DN,m (6)

·(D−1
m,m · (Dm,N1))1⊤ − 1

N
1((1⊤DN,m) ·D−1

m,m)

·Dm,N +
1

N2
1((1⊤DN,m) ·D−1

m,m · (Dm,N1))1⊤
]

.
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This equation can be rewritten for each entry of the matrix S(D̂)

Ŝij(D̂) = −1

2

[

Di,m ·D−1
m,m ·Dm,j

− 1

N

∑

k

Dk,m ·D−1
m,m ·Dm,j

− 1

N

∑

k

Di,m ·D−1
m,m ·Dm,k

+
1

N2

∑

kl

Dk,m ·D−1
m,m ·Dm,l

]

,

as well as for the sub-matrices Sm,m(D̂) and SN,m(D̂), in which we are
interested for the Nyström approximation

Sm,m(D̂) = −1

2

[

Dm,m − 1

N
1 ·
∑

k

Dk,m

− 1

N

∑

k

Dm,k · 1⊤

+
1

N2
1 ·
∑

kl

Dk,m ·D−1
m,m ·Dm,l · 1⊤

]

SN,m(D̂) = −1

2

[

DN,m − 1

N
1 ·
∑

k

Dk,m

− 1

N

∑

k

DN,m ·D−1
m,m ·Dm,k · 1⊤

+
1

N2
1 ·
∑

kl

Dk,m ·D−1
m,m ·Dm,l · 1⊤

]

.

Now the matrix S(D̂) can be approximated via the matrix Ŝ(D̂) using the
matrices Sm,m(D̂) and SN,m(D̂). This requires only a linear part of D and
involves linear computation time.

Comparing this approach to the quadratic computation of SN,m, we see,
that the first three summands are identical and only the forth summand is
different. This term involves summation over the full dissimilarity matrix

20



and, depending on the approximation quality of D̂, might vary. The devia-
tion is added to each pairwise similarity resulting in a non-linear transforma-
tion of the data. If m corresponds to the rank of D then double centering is
exact and no information loss occurs during the approximation. Otherwise,
the information loss increases with smaller m for both approaches and the
error is made by approximating S in the first case and by approximating
D in the second case. If the Nyström approximation is feasible for a given
data set, then the second approach allows to perform the transformation in
linear instead of quadratic time.

It should be mentioned that a similar transformation is possible with the
landmark multidimensional scaling (L-MDS) [12] which is widely known in
the visualization community and typically used to embed data into a low 2−3
dimensional space. Embeddings to higher dimensions are possible but not
considered, in general. The idea of L-MDS is to sample a small amount m
of points, the so called landmarks, compute the corresponding dissimilarity
matrix followed by a double centering on this matrix. Finally the data are
projected to a low dimensional space using an eigenvalue decomposition.
The remaining points can then be projected into the same space, taking
into account the distances to the landmarks, and applying a triangulation.
From this vectorial representation of the data one can easily retrieve the
similarity matrix as a scalar product between the points.

It was shown, that L-MDS is also a Nyström technique by [52], but com-
pared to our proposed approach in Equation (6) L-MDS makes not only an
error in the forth summand, but also in the second and the third. Addition-
ally, and more importantly, by projecting into Euclidean space it makes an
implicit clipping of the eigenvalues. As discussed above and will be shown
later, this might disturb data significantly, leading to qualitatively worse re-
sults. Thus, our proposed method can be seen as a generalization of L-MDS
and should be used instead.

Similarly to the transformation from D to Ŝ, there are two ways to
transform S to D̂. First, transform the full matrix S to D using Dij =
Sii + Sjj − 2Sij and then apply the Nyström approximation

D̂ = DN,mD−1
m,mD⊤

N,m. (7)

Second, approximate S with Ŝ and then transform it to D̂. The first ap-
proach requires quadratic time, since it transforms the full matrix. In the
second approach only DN,m is computed, thus making it linear in time and
memory. Obviously, both approaches produce the same results, but the sec-
ond one is significantly faster. The reason is, that for the computation of
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D̂ only the matrix DN,m is required and it is not necessary to compute the
rest of D.

5.2 Eigenvalue correction

For non-Euclidean data, the corresponding similarity matrix is indefinite.
We would like to make the data Euclidean in order to avoid convergence
issues, or to be able to use kernel methods. A strategy to obtain a valid ker-
nel matrix from similarities is to apply an eigenvalue correction as discussed
in section 3.3. This however can be prohibitive for large matrices, since to
correct the whole eigenvalue spectrum, the whole eigenvalue decomposition
is needed, which has O(N3) complexity. The Nyström approximation can
again decrease computational costs dramatically. Since we can now apply
the approximation on an arbitrary symmetric matrix, we can make the cor-
rection afterwards, reducing the complexity to a linear one, as we will show
now.

Given non-metric dissimilarities D, we can first approximate them and
then convert to approximated similarities Ŝ(D̂) using the Equation (6). For
similarities Ŝ given directly or obtained from Ŝ(D̂), we need to compute the
eigenvalue decomposition in linear time. As we have shown in the section 4.1,
it is possible to compute the exact eigenvalue decomposition of a Nyström-
approximated psd matrix in linear time, given the corresponding similarity
matrix has indeed rank m. Since Ŝ is indefinite, we can not apply the above
technique directly. Instead, since in a squared matrix the eigenvectors stay
the same, we first compute

Ŝ2 = SN,mS−1
m,m (Sm,N · SN,m)S−1

m,mSm,N

= SN,mS̃m,mS⊤
N,m

= CÃC⊤.

The resulting matrix can be computed in linear time and is psd. This means,
we can determine its eigenvalue decomposition as described in section 4.1:

Ŝ2 = CÃC⊤,

where Ã are the eigenvalues of Ŝ2 and C are the eigenvectors of both Ŝ2

and Ŝ.
Using the eigenvectors C, the eigenvalues A of Ŝ = CAC⊤ can be

retrieved via
A = C⊤ŜC. Then we can correct the eigenvalues A by some technique

as discussed in section 3.3 to A∗. The corrected approximated matrix Ŝ∗ is
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then simply

Ŝ∗ = CA∗C⊤. (8)

Thus, using a low rank representation of a similarity matrix we can compute
its eigenvalue decomposition and perform eigenvalue correction in linear
time. If it is desirable to work with the corrected dissimilarities, then using
the Equation (7), it is possible to transform the corrected similarity matrix
Ŝ∗ back to dissimilarities resulting in the corrected and approximated matrix
D̂∗.

5.3 Out-of-sample extension

Usually models are learned by a training set and we expect them to gener-
alize well on the new unseen data, or the test set. In such cases we need
to provide an out-of-sample extension, i.e. a way to apply the model on the
new data. This might be a problem for the techniques dealing with (dis-
)similarities. For example, in proxy approaches the out of sample extension
is in general handled by solving another costly optimization problem [8, 40].
If the matrices are corrected, we need to correct the new (dis-)similarities
as well to get consistent results. Fortunately this can be easily done in the
Nyström framework.

If we compare the Equations (3) and (8) we see that the correction is
performed on a different decomposition of Ŝ, i.e.:

SN,mSm,mS⊤
N,m = Ŝ = CAC⊤. (9)

If we correct A it is not clear what happens on the left side of the above
equation. Therefore, to compute the out-of-sample extension we need to
find a simple transformation from one decomposition to the other. Taking
a linear part ŜN,m from the equation 9 we get

SN,m = CN,mAC⊤
m,m,

which leads after simple transformation to

CN,m = SN,m

(

AC⊤
m,m

)−1
.
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Plugging the above formula into Equation (8) we get

Ŝ∗ = SN,m

(

AC⊤
m,m

)−1
A∗

(

(

AC⊤
m,m

)−1
)⊤

S⊤
N,m

= SN,m(C⊤
m,m)−1A−1A∗A−1C−1

m,mS⊤
N,m

= SN,m(C⊤
m,m)−1(A∗)−1C−1

m,mS⊤
N,m

= SN,m

(

Cm,mA∗C⊤
m,m

)−1
S⊤
N,m

and we see that we simply need to extend the matrix SN,m by uncorrected
similarities between the new points and the landmarks to obtain the full
approximated and corrected similarity matrix, which then can be used by
the algorithms to compute the out-of-sample extension. The same approach
can be applied to the dissimilarity matrices. Here we first need to transform
the new dissimilarities to similarities using Equation (6), correct them and
then transform back to dissimilarities.

In [7] a similar approach is taken. First, the whole similarity matrix is
corrected by means of a projection matrix. Then this projection matrix is
applied to the new data, so that the corrected similarity between old and new
data can be computed. This technique is in fact the Nyström approximation,
where the whole similarity matrix S is treated as the approximation matrix
Sm,m and the old data, together with the new data build the matrix SN,m.
Rewriting this in the Nyström framework makes it clear and more obvious,
without the need to compute the projection matrix and with an additional
possibility to compute the similarities between the new points.

5.4 Proof of concept

We close this section by a small experiment on the ball dataset as proposed
in [15]. It is an artificial dataset based on the surface distances of randomly
positioned balls of two classes having a slightly different radius. The dataset
is non-Euclidean with substantial information encoded in the negative part
of the eigenspectrum. We generated the data with 300 samples per class
leading to an N ×N dissimilarity matrix D, with N = 600. Now the data
have been processed in four different ways to obtain a valid kernel matrix
S. First encoding, denoted as SIM1, was constructed by converting D to
S with double centering and computing the full eigenvalue decomposition.
The negative eigenvalues were then corrected by flipping. This approach,
which we will refer to as the standard approach in the following, has a
complexity of O(N3).
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Table 1: Test set results of a 10-fold SVM run on the ball dataset using the
different encodings.

SIM1 SIM2 SIM3 SIM4

Test-Accuracy 100 ± 0 88.83 ± 3.15 51.50 ± 6.64 50.67 ± 3.94

Further, we generated an approximated similarity matrix Ŝ∗ by using the
proposed approach, flipping in the eigenvalue correction and 10 landmarks
for the Nyström approximation. This dataset is denoted as SIM2 and
was obtained with a complexity of O(m2N). The third dataset SIM3 was
obtained in the same way but the eigenvalues were clipped. The dataset
SIM4 was obtained using landmark MDS with the same landmarks as for
SIM2 and SIM3. The data are processed by a Support Vector Machine
in a 10-fold crossvalidation. The results on the test sets are shown in the
Table 1.

As mentioned, the data contain substantial information in the nega-
tive fraction of the eigenspectrum, accordingly one may expect that these
eigenvalues should not be removed. This is also reflected in the results. L-
MDS removed the negative eigenvalues and the classification model based
on these data shows random prediction accuracy. The SIM3 encoding is a
bit better. Also in this case the negative eigenvalues are removed but the
limited amount of class separation information, encoded in the positive frac-
tion was better preserved, probably due to the different calculation of the
matrix Ŝmm. The SIM2 data used the flipping strategy and shows already
quite good prediction accuracy, taking into account that the kernel matrix
is only approximated by 10 landmarks and the relevant (original negative)
eigenvalues are of small magnitude.

As a last point it should be mentioned that corrections like clipping,
flipping and their effect on the data representation are still under discussion
and considered to be not always optimal [46]. Additionally the selection of
landmark points is discussed in [68, 32] Further, for very large data sets (e.g.
some 100 million points) the Nyström approximation may still be too costly
and some other strategies have to be found as suggested in [35].

6 Experiments

We now apply the priorly derived approach to six non-metric dissimilar-
ity and similarity data and show the effectiveness for a classification task.
The considered data are (1) the imbalanced SwissProt similarity data as de-
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scribed in [31] consisting of protein sequence alignment scores, (2) the bal-
anced chromosome dissimilarity data taken from [42] with scores of aligned
gray value images, (3) the imbalanced proteom dissimilarity data set from
[14], (4) the balanced Zongker digit dissimilarity data from [14, 28] which is
based on deformable template matchings of 2000 handwritten NIST digits.
Further the balanced Delft gestures data base (DS5) taken from [14] and the
WoodyPlants50 (Woody) (DS6) from the same source is used. DS5 repre-
sents a sign-language interpretation problem with dissimilarities computed
using a dynamic time warping procedure on the sequence of positions [37].
The DS6 dataset contains of shape dissimilarities between leaves collected in
a study on woody plants [38]. Further details about the data can be found
in Table 2.

Table 2: Overview of the considered datasets and their properties.
Data set Name # samples # classes Signature

DS1 SwissProt 10988 30 [8488,2500,0]
DS2 Chromosom 4200 21 [2258,1899,43]
DS3 Proteom 2604 53 [1502,682,420]
DS4 Zongker 2000 10 [961,1038,1]
DS5 Delft 1500 20 [963,536,1]
DS6 Woody 791 14 [602,188,1]

All datasets are non-metric, multiclass and contain a large number of
objects, such that a regular eigenvalue correction with a prior double cen-
tering for dissimilarity data, as discussed before, is already very costly but
can still be calculated to get comparative results.

6.1 Classification performance

The data are analyzed in various ways, employing either the clipping eigen-
value correction, the flipping eigenvalue correction, or by not-correcting the
eigenvalues 7. To be effective for the large number of objects we also ap-
ply the Nyström approximation as discussed before using 10, 50, 100 and all
points as landmarks. If the data have high rank > 100, they are potentially
not well suited for approximations and approximation errors are unavoid-
able. Landmarks have been selected randomly from the data. Other sam-
pling strategies have been discussed in [16, 68, 56], however with additional

7Shift correction was found to have a negative impact on the model as already discussed
in [7].
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Table 3: Signature and average test set accuracy for SwissProt (DS1),
Chromosome (DS2), Proteom (DS3), Zongker (DS4), Delft gestures (DS5),
Woody (DS6) using a Nyström approximation with 10, 50, 100, full land-
marks and no, clip or flip eigenvalue correction.

10 / Clip 10 / Flip 10 / No 10 L-MDS

DS1 [9, 0, 10979] [10, 0, 10978] [9, 1, 10978]
30.67 ± 5.07* 31.65± 5.41* 5.93 ± 5.23 26.47 ± 6.27

DS2 [9, 0 ,4191] [10, 0, 4190] [9,1, 4190]
67.61 ± 6.49 74.83± 3.23* 18.79 ± 14.08 67.086 ± 6.09

DS3 [9, 0 ,2595] [10, 0, 2594] [9, 1, 2594]
59.33 ± 6.87* 62.43± 7.30* 2.52 ± 2.33 56.74 ± 6.26

DS4 [8, 0 ,1992] [10, 0, 1996] [8, 2, 1990]
42.51 ± 10.51* 44.92± 11.07* 10.63 ± 3.15 32.83 ± 9.49

DS5 [9, 0 ,1491] [10, 0, 1490] [9, 1, 1490]
73.75 ± 5.12 78.76± 4.60* 15.12 ± 13.05 73.86 ± 5.72

DS6 [9, 0 ,782] [10, 0, 781] [9, 1, 781]
75.96 ± 4.89 79.51± 5.33* 38.86 ± 14.14 76.03 ± 4.77

meta parameters, which we would like to avoid for clarity of the proposed
approach. Also the impact of the Nyström approximation with respect to
kernel methods has been discussed recently in [11], but this is out of the
focus of the presented approach. For comparison we also show the results as
obtained by using Landmark-MDS, which naturally applies a clipping and,
as mentioned before, makes various simplifications in the conversion step,
which can lead to inaccuracies in the data representation. The prediction
accuracies of a 10-fold crossvalidation for m = {10, 50, 100} are shown in Ta-
ble 3-5. The influence of N with respect to a fixed number of landmarks is
studied in the experiment shown in Figure 3. A runtime analysis, comparing
to the standard approach, is shown in Figure 6. The results of the standard
approach where no approximations are used but only eigenvalue corrections
on the full matrix are provided in Table 6. We also provide results for the
dissimilarity-space representation using a linear and an elm kernel [18] in
Table 7. As mentioned before this representation does not need any approx-
imations or eigenvalue corrections but the out of sample extension is costly
if many landmarks are chosen, or the selection of the landmarks has to be
optimized using e.g. a wrapper approach [50]. Here we use all points as
landmarks to simplify the evaluation.

To get comparable experiments, the same randomly drawn landmarks
are used in each of the corresponding sub-experiments (along a column in
the table). New landmarks are only drawn for different Nyström approx-
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Figure 3: Top: box-plots of the classification performance for different sam-
ple sizes of DS1 using the proposed approach with 500 landmarks. Bottom:
The same experiment but with the standard approach. Obviously our ap-
proach does not sacrifice performance for computational speed.
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Table 4: Signature and average test set accuracy for SwissProt (DS1),
Chromosome (DS2), Proteom (DS3), Zongker (DS4), Delft gestures (DS5),
Woody (DS6) using a Nyström approximation with 10, 50, 100, full land-
marks and no, clip or flip eigenvalue correction.

50 / Clip 50 / Flip 50 / No 50 L-MDS

DS1 [49, 0 ,10939] [50, 0, 10930] [49, 1, 10931]
76.21 ± 5.13 76.49 ± 3.73 69.05 ± 5.01 76.59± 4.65

DS2 [49, 0 ,4151] [50, 0, 4150] [49,1, 4150]
94.05 ± 1.17 93.94 ± 1.28 83.66 ± 25.43 94.11± 1.21

DS3 [48, 0 ,2556] [50, 0, 2554] [49, 1, 2550]
93.08 ± 2.25 93.82± 1.59* 3.53 ± 3.25 92.35 ± 2.08

DS4 [34, 0 ,1979] [50, 0, 1950] [34, 16, 1950]
80.79 ± 3.94* 85.35± 3.42* 9.82 ± 2.08 73.57 ± 6.71

DS5 [48,0,1452] [50, 0, 1450] [48, 2, 1450]
95.31± 1.82 94.72 ± 2.25 24.99 ± 27.56 95.31 ± 1.89

DS6 [49, 0 ,742] [50, 0, 741] [49, 1, 741]
88.55 ± 4.11 89.30± 3.72 81.40 ± 23.63 88.46 ± 4.35

Table 5: Signature and average test set accuracy for SwissProt (DS1),
Chromosome (DS2), Proteom (DS3), Zongker (DS4), Delft gestures (DS5),
Woody (DS6) using a Nyström approximation with 10, 50, 100, full land-
marks and no, clip or flip eigenvalue correction.

100 / Clip 100 / Flip 100 / No 100 L-MDS

DS1 [99, 0 ,10889] [100, 0, 10888] [99, 1, 10888]
87.62 ± 2.11 87.63 ± 1.85 88.17 ± 2.19 87.50 ± 2.24

DS2 [91, 0 ,4109] [100, 0, 4100] [91,9,4100]
95.00 ± 1.11 94.71 ± 1.68 11.29 ± 7.68 95.18± 1.07

DS3 [96, 0 ,2506] [99, 0, 2505] [97, 2, 2505]
96.48 ± 1.34 96.96± 1.17 13.75 ± 9.90 96.29 ± 1.27

DS4 [63, 0 ,1937] [100, 0, 1900] [62, 38, 1900]
83.47 ± 4.31* 87.42 ± 3.15* 10.55 ± 2.43 80.34 ± 7.73

DS5 [91, 0 ,1401] [100, 0, 1400] [92, 8, 1400]
96.07± 1.56 94.74 ± 4.23 23.33 ± 18.62 96.01 ± 1.69

DS6 [96, 0 ,695] [100, 0, 691] [96, 4, 691]
90.69 ± 3.38 90.71± 3.20 38.11 ± 23.74 90.51 ± 3.65
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Figure 4: Spearman rank correlation (left) and the crossvalidation accuracy
(right) for the three largest data sets using the proposed approach with an
interleaved double centering and Nyström approximation on the dissimilar-
ity data.
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Table 6: Average test set accuracy for SwissProt (DS1), Chromosome (DS2),
Proteom (DS3), Zongker (DS4), Delft gestures (DS5), Woody (DS6) us-
ing the standard approach (no-approximations) and the flip, clip or no-
eigenvalue correction on the full matrix. This has O(N3) complexity.

Data set clip flip no

DS1 95.45 ± 0.88 95.39 ± 1.01 95.40 ± 0.59
DS2 97.12 ± 0.89 97.17 ± 0.99 96.93 ± 0.66
DS3 99.42 ± 0.66 99.42 ± 0.45 99.38 ± 0.61
DS4 95.65 ± 1.13 96.25 ± 0.75 25.25 ± 4.78
DS5 98.33 ± 1.67 98.00 ± 0.94 96.13 ± 1.43
DS6 92.54 ± 2.27 93.17 ± 2.48 89.63 ± 3.58

Table 7: Average test set accuracy for SwissProt (DS1), Chromosome (DS2),
Proteom (DS3), Zongker (DS4), Delft gestures (DS5), Woody (DS6) using
the dissimilarity space representation and a linear kernel or an elm kernel.
Data set linear elm

DS1 26.01 ± 5.49 72.09 ± 0.96
DS2 76.76 ± 1.11 89.88 ± 0.96
DS3 68.36 ± 2.48 85.37 ± 2.86
DS4 93.70 ± 2.04 95.05 ± 1.71
DS5 87.73 ± 3.83 91.67 ± 2.58
DS6 28.83 ± 6.97 89.38 ± 4.48

imations and for sample sizes shown in Figure 3. Classification rates are
calculated in a 10-fold crossvalidation with 10 repeats using the Core-Vector-
Machine (CVM) [59]. The crossvalidation does not include a new draw of the
landmarks, to cancel out the selection bias of the Nyström approximation,
accordingly CVM use the same kernel matrices. However, our objective is
not maximum classification performance (which is only one possible applica-
tion) but to demonstrate the effectiveness of our approach for dissimilarity
data of larger scale.

First, one observes that the eigenvalue correction has a strong, positive
effect on the classification performance consistent with earlier findings [7].
Best results over a row are highlighted in bold at the various result tables. If
the difference is significantly better than L-MDS a ⋆ has been added. Rais-
ing the number of landmarks improves the classification performance for
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Figure 5: Logarithmic representation of the eigenspectrum of the unapprox-
imated and double centered matrix for the larger datasets DS1 - DS3.
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the experiments with eigenvalue correction. Using kernels without eigen-
value correction has in general a negative impact. While an increase in the
number of landmarks leads to a better approximation of the dataset and may
therefore improve the classification accuracy it can also raise the influence of
negative eigenvalues, damping the performance8. We found that flipping is
in general superior to clipping. For m = 10 flipping was consistently better
than clipping or L-MDS. With an increase of m the approximation error of
L-MDS vanishes and the results become more and more similar to the clip-
ping results. But for DS4 L-MDS is also inferior if m = 100, which shows
that for some data L-MDS gives bad results, due to its approximation errors
even for rather large m. Especially for DS3,DS4 and DS6 we observe that
the proposed method gives much better results.

In Table 7 we also show the crossvalidation results by use of the priorly
mentioned dissimilarity space representation. For simplicity we use an N
dimensional feature space and analyse the obtained vector representation by
means of a linear kernel and a defacto parameter free elm kernel as proposed
by [18]. For the majority of the experiments the obtained results are signifi-
cantly worse with the exception of DS4. Also for DS5 a comparison with the
Nyström approximation at m = 100 gives still acceptable results. It should
be noted that the results of the elm-kernel experiments are consistently bet-
ter compared to the linear kernel, indicating the high non-linearity of the
data. Obviously the dissimilarity space representation is in general no rea-
sonable alternative. Additionally it becomes very costly for out-of-sample
extensions if the number of considered features is large.

8Comparing signatures at different Nyström approximations also shows that many
eigenvalues are close to zero and are sometimes counted as positive,negative or zero.
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Figure 6: Runtime analysis of the proposed vs the standard approach for
the larger considered dissimilarity data sets. All eigenvalues of the data sets
have been processed by flipping.
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In another experiment, see Figure 4 we analyzed the proximity preser-
vation of the approximated and corrected matrix with respect to the un-
approximated and corrected matrix. One would expect that for very low
Nyström rates (high approximation), only the dominating eigenvalues are
kept and the approximation suffers mainly when the eigenspectra are very
smooth. At increasing Nyström rates (lower approximation), first more and
more small eigenvalues (also negative ones) are kept leading to a more com-
plex data set and accordingly also a more complex proximity preservation
task. Finally if the Nyström rates are high (almost no approximation) one
would expect a perfect preservation. This effect is indeed observed in Fig-
ure 4. We used the Spearman’s rank correlation to measure how far the
ranks of the proximities (e.g. distances) are preserved between the two ap-
proaches, namely our proposal and a full double centering, followed by a full
eigenvalue correction. Low correlation indicates that the data relations are
not well preserved whereas small correlation errors indicate that most likely
only local neighborhood relations are confused. Comparing the correlation
results (left plots in Figure 4) with the prediction accuracy on the test data
(right plots in Figure 4) we see that only strong variations in the correlation
lead to strong misclassifications. This agrees with our expectation that the
data are potentially clustered and local errors in the data relation have only
a weak or no effect on the classification model. Similar results were found
if we compare our approach to data which have been first double-centered
without approximations and where only the eigenvalue correction is done
using the Nyström approach.

From the analysis we can conclude that the proposed approach is quite
effective to keep the global relations in the data space also for quite high
approximations, which is relevant for classification and clustering the data.
The local neighborhood relations are kept only for approximation rates of
above 60%. As one can see from smooth eigenspectra in Figure 5, the rank
of the data sets is rather high, accordingly only for large m the approxi-
mation can keep detail information, effecting the local relationships of the
data points. Thus, if the different classes are close to each other and have
complex nonlinear boundaries, decreasing the number of landmarks leads to
an increased classification error. In practice, as can be seen on the Figure
4, the number of the landmarks needs to be very small to take effect. It is
thus possible to approximate the matrices by selecting m sufficiently small,
without sacrificing the classification accuracy.
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6.2 Runtime performance

As shown exemplary in Figure 3 the classification performance on eigenvalue-
corrected data is approximately the same for our proposed strategy and the
standard approach. But the runtime performance is drastically better for
an increase in the number of samples. To show this we selected subsets from
the considered data with different sizes from 1000 to the maximal number,
while the number of landmarks is fixed by L = 500 and calculated the
runtime and classification performance using the CVM classifier in a 10-fold
crossvalidation. The eigenvalues have been flipped in this experiment. The
results of the proposed approach compared to the standard approach are
shown in the plots of Figure 6. For larger N the runtime of the standard
method (red/dashed line) is two magnitudes larger on log-scale compared
to the proposed approach.

7 Large scale experiments

As a final experiment we analyze the proposed approach for large scale non-
metric proximity data. With respect to the work presented in the former
sections a valid application of kernel methods for such data is not yet possi-
ble. Neither the classical eigenvalue correction approach [7] nor the learning
of a proximity kernel [8] scales to larger data sets with N ≫ 1e3 samples,
the problem becomes even more challenging if the data are given as dis-
similarities such that a double centering is needed to keep a corresponding
representation. Due to the large number of samples a full matrix reconstruc-
tion is not any longer possible to calculate error measures like the Spearman
rank correlation accordingly we only provide test set errors obtained within
a 10 fold crossvalidation using a CVM. In our experiments we consider:

• The SwissProt protein database [5] but now at larger scale in the
version of 11/2010, restricted to ProSite labeled sequences with at
least 1, 000 entries per label. We obtain 46 ProSite labels and 82, 525
sequences which are compared by the Smith-Waterman alignment al-
gorithm as provided in [57]. We refer to this data as DS-L-1. The
obtained similarity scores are symmetric but non-metric, accordingly
standard kernel methods can not be used directly in a valid form. We
take 1, 000 landmarks, randomly taken from the selected classes. The
dataset has 2 larger negative eigenvalues in the approximated matrix.

• The Pavia remote sensing data consist of 42.776 spectra (DS-L-2). The
dataset is taken from [19]. We use the symmetrized Kullback-Leibler
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Data size type flip clip No L-MDS (clip)

DS-L-1 80k S 96.24 ± 0.29% 96.22 ± 0.28% failed 96.14 ± 0.27%
DS-L-2 40k D 82.56 ± 0.60% 79.80 ± 0.94% failed 81.18 ± 1.17%
DS-L-3 50k D 88.11± 0.68%* 85.06 ± 0.73% failed 81.37 ± 0.62%
Ball-Large 30k D 93.59± 0.63%* 50.28 ± 0.80% 28.50 ± 0.76% 50.13 ± 0.97%

Table 8: Crossvalidation results of the large scale data sets (D - dissimilari-
ties, S - similarities) using flip, clip or no eigenvalue correction.

Divergence, which is also known as the spectral information divergence
(SID) in remote sensing and frequently used as an effective non-metric
measure to compare spectral data [60] and use 10% randomly chosen
points as landmarks.

• The Salina data of 54129 points (DS-L-3) also taken from [19] with
the same measure and settings as for DS-L-2

• The ball dataset with 30, 000 samples (Ball-Large). Landmarks are
selected randomly as 10% from the dataset.

For all of these data sets a standard kernel approach is costly in calculating
the whole similarity matrix and it would be basically impossible to get an
eigenvalue correction in a reasonable time. Modern kernel classifiers like
the Core-Vector Machine (CVM)[59] do not need to evaluate all the ker-
nel similarities but our similarities are non-metric and an accurate online
eigenvalue correction is not available. However we can use our presented ap-
proach approximating the score matrix as well as performing an eigenvalue
correction. The calculation of the final approximated kernel function and
eigenvalue correction by the presented approach takes only some minutes.

The obtained approximated and now positive semi definite similarity
matrices can be used by a Core-Vector Machine in a 10 fold crossvalidation
to generate a classification model with a good mean prediction accuracy see
Table 8. An additional benefit of the CVM approach is that it naturally
leads to very sparse models. Accordingly the out of sample extension to
new sequences requires only few score calculations to the sequences of the
training set.

8 Conclusions

In this article we addressed the analysis of potentially non-metric proximity
data and especially the relation between dissimilarity and similarity data.
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We proposed effective and accurate transformations across the different rep-
resentations. The results show that our approach can be understood as a
generalization of Landmark MDS. L-MDS did not show any significant su-
perior results compared to our method, but instead was often found to be
significantly worse. This finding also persisted if the number of landmarks
was raised to a rather large value.

Dedicated learning algorithms for dissimilarities and kernels are now ac-
cessible for both types of data. The specific coupling of double centering and
Nyström approximation permits to compute an exact eigenvalue decompo-
sition in linear time which is a valuable result for many different methods
depending on the exact calculation of eigenvalues and eigenvectors of a prox-
imity matrix. While our strategy is very effective e.g. to improve supervised
learning of non-metric dissimilarities by kernel methods, it is however also
limited again by the Nyström approximation, which itself may fail to pro-
vide sufficient approximation and accordingly further research in this line is
of interest. Nevertheless, dedicated methods for arbitrary proximity data as
addressed in [49] will also be subject of future work. For non-psd data the er-
ror introduced by the Nyström approximation and the eigenvalue correction
is not yet fully understood and bounds similar as proposed in [13] are still
an open issue. It is also of interest to extend our approach to other types
of matrix approximation schemes as e.g. the CUR algorithm and others
[64, 65, 63]. In future work we will also analyze in more detail the handling
of extremely large (dis-)similarity sets [53, 23] and analyze our approach in
the context of unsupervised problems [70].
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9 Appendix

Definition: The norm of an operator K : L2(Ω) → L2(Ω) is defined as

‖K‖L2→L2 = sup
‖f‖≤1

‖Kf‖L2

and the norm of a function f ∈ L2(Ω) is defined as

‖f‖L2 =

(
∫

Ω
|f(x)|2dµ(x)

)1/2

.

Theorem: The sequence of operators Km converges uniformly to K in
the operator norm if

sup
x∈Ω
y∈Ω

|km(x, y)− k(x, y)| ≤ δm

and δm → 0 for m → ∞.

Proof: The uniform convergence is given if ‖Km − K‖L2→L2 → 0 for
m → ∞. Thus, we need to compute this quantity. Following the computa-
tions in [66], we can write for the norm of Kf

‖Kf‖2L2 =

∫

Ω
|Kf(x)|2dµ(x)

=

∫

Ω

∣

∣

∣

∣

∫

Ω
k(x, y)f(y)dµ(y)

∣

∣

∣

∣

2

dµ(x)

≤
∫

Ω

(
∫

Ω
|k(x, y)||f(y)|dµ(y)

)2

dµ(x)

≤
∫

Ω

(
∫

Ω
|k(x, y)|2dµ(y)

)(
∫

Ω
|f(y)|2dµ(y)

)

dµ(x)

=

∫

Ω

∫

Ω
|k(x, y)|2dµ(x)dµ(y)‖f‖2L2
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where we used Hölder’s inequality and Fubini’s theorem. It follows

‖Km −K‖2L2→L2 = sup
‖f‖≤1

‖(Km −K)f‖2L2

= sup
‖f‖≤1

∫

Ω
|(Km −K)f(x)|2dµ(x)

≤ sup
‖f‖≤1

∫

Ω

∫

Ω
|km(x, y)− k(x, y)|2dµ(x)dµ(y)‖f‖2L2

≤
∫

Ω

∫

Ω
δ2mdµ(x)dµ(y)

=δ2m

and since δm → 0 for m → ∞, we have ‖Km −K‖L2→L2 → 0 for m → ∞.
�
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