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Abstract

Multibiometric systems based on score fusion can effectively combine the dis-
criminative power of multiple biometric traits and overcome the limitations
of individual trait, leading to a better performance of biometric authen-
tication. To tackle multiple adverse issues with the established classifier-
based or probability-based algorithms, in this paper we propose a novel
order-preserving probabilistic score fusion algorithm, Order-Preserving Tree
(OPT), by casting the score fusion problem into an optimisation problem
with the natural order-preserving constraint. OPT is an algorithm fully
non-parametric and widely applicable, not assuming any parametric forms
of probabilities or independence among sources, directly estimating the pos-
terior probabilities from maximum likelihood estimation, and exploiting the
power of tree-structured ensembles. We demonstrate the effectiveness of our
OPT algorithm by comparing it with many widely-used score fusion algo-
rithms on two prevalent multibiometric databases.

Keywords: Score fusion, Multibiometric system, Order-preserving
algorithm, Tree-structured ensemble

1. Introduction

Biometric systems have found an increasingly wide range of applications
in both science and industry. However in many of these applications, unibio-
metric systems, which exercise only a single biometric trait, often cannot fulfil
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the biometric authentication tasks. This is mainly due to their limited abili-
ties to represent subjects and prevent spoofs. To overcome such limitations,
multibiometric systems have been developed. From fusing several different
types of complementary biometric traits together, multibiometric systems
can benefit substantially in representing and discriminating subjects, as well
as in preventing spoofs since it is much more difficult to cheat simultaneously
in all the information sources than to deceive a unibiometric system.

In a multibiometric system, there are four stages in which information fu-
sion can be implemented, namely the sensor stage, feature stage, score stage
and decision stage, listed from the earliest to the latest. To fuse information
in a later stage means the ease of implementation, at a cost of more informa-
tion loss. To date, fusion in the score stage is generally considered to provide
an appropriate trade-off and preferred by many researchers [1, 2, 3].

Existing score fusion algorithms can be divided into two main categories:
classifier-based algorithms and probability-based algorithms.

Classifier-based algorithms tackle the fusion problem as a pattern classifi-
cation task. In this framework, source scores of a sample are used as the input
features of a classifier to obtain the predicted class. The classifier is trained
on the training samples to minimise the training error by using traditional
pattern recognition algorithms. Traditional classifier-based approaches in-
clude linear classifiers with minimised least squares error [4] or Li-norm soft
margin error [5, 6], reduced multivariate polynomial classifier [7], support
vector machine [8] and single hidden layer feedforward neural network [9].
Other advanced techniques in the pattern recognition society, such as semi-
supervised learning [10, 11], ensemble learning [12] and kernel tricks [6], can
also be transferred without difficulty to solve the fusion problem. Two recent
examples of classifier-based algorithms are FWOT [13] and minCq [14, 15].
FWOT optimises an objective function that is a combination of the squared
hinge loss and a 2-norm regulariser. The classifier structure of FWOT is a
close resemblance of a single-layer neural network. The algorithm minCq, on
the other hand, tailors the score fusion problem into a PAC-learning frame-
work and obtains an optimal linear fusion algorithm by minimising an upper
bound of the true error risk. Both algorithms hold good ability of generali-
sation.

Classifier-based algorithms can directly exploit the great progress made
in the pattern recognition realm. However, an issue with these algorithms is
that they are suboptimal in score fusion, because, different from the usual
features found in a pattern recognition task, a source score is by nature that



a higher score implies a higher probability of the sample belonging to the
genuine class. This intrinsic characteristic, as informative prior knowledge,
has been largely neglected by the classifier-based algorithms. Particularly,
when the training samples are insufficient, the neglect of this prior knowledge
may worsen overfitting and thus the performance of biometric authentication.
Another issue with these algorithms is that in the design of a classifier-based
fusion algorithm there are often tuning parameters, the optimisation of which
may not be a trivial problem and issues such as local optimum or overfitting
may exist.

Probability-based algorithms tackle the fusion problem in a probabilistic
manner. These algorithms usually consist of two steps. In the first step, they
normalise all source scores to make their values between [0, 1], and treat the
normalised score as the posterior probability of the genuine class given the
corresponding source as evidence. In the second step, they merge multiple
posterior probabilities into a single posterior probability given all sources
as evidence. To make the merge work, these algorithms usually need extra
assumptions, made a priori or with the help of training samples or as a com-
bination of the former two. For example, Kittler et al. [16] show that, with
the assumption that all source scores are mutually conditionally indepen-
dent, the commonly used Product rule can be derived. On the other hand,
given the assumption that posterior probabilities of each classifier do not
deviate dramatically from the priors, the Sum rule can be induced. Other
off-the-shelf fusion rules, such as the Max, Min, Median and Majority Vote
rules, can all be derived as the midway rules of the Sum and Product rules.
Terrades et al. [17] also assume that source scores are mutually independent.
Prabhakar and Jain [18] and Nandakumar et al. [1] estimate the probabil-
ity density function of the training samples and use this function to assist
the determination of the merged posterior probability. Ma et al. [19, 20]
assume parametric forms of the merged posterior probability, which take the
dependency between scores into consideration, and use the training samples
to estimate the parameters. As a recent example, Cheema et al. [21] assume
that the merged posterior probability is a linear combination of source prob-
abilities. Their method solves a constrained quadratic optimisation problem
to decide the optimal weights and can deal with the cases with more than
two classes.

There are also several issues of concern to these probability-based al-
gorithms. Firstly, except the density estimation algorithms [18, 1], these
probability-based algorithms all make some assumptions about the merged



posterior probability, which may not be fulfilled in practice and thus may
limit the generalisability of them. Secondly, as for [18, 1], the density es-
timation procedures will induce hyper-parameters, such as the number of
Gaussian mixtures in [1] and the Parzen window width in [18], and the esti-
mation results may be unreliable when the sample dimension is high. Thirdly,
in the score normalisation step, most of these algorithms apply heuristic tech-
niques such as the min-max, z-score and tanh algorithms [22], and it is in
question how well the normalised result reflects the true posterior probability
given the score.

To tackle these adverse issues, in this paper we propose a novel probability-
based score fusion algorithm, termed Order-Preserving Tree (OPT). The ad-
vantages of OPT are threefold. Firstly, OPT treats both the score normal-
isation and the posterior probability merging procedure as an constrained
optimisation problem. The only constraint in optimisation, which is also the
only assumption that OPT makes, is the intrinsic characteristic of order pre-
serving: For any two samples A and B, if every source score suggests that
the A is no less likely than B to belong to the genuine class, then the fusion
result should also give the same suggestion. Secondly, OPT does not assume
any parametric form of probabilities, making itself enjoy widely applicabil-
ity. Moreover, being fully non-parametric, OPT has no hyper-parameters
that need to be tuned, which makes the training procedure efficient. Thirdly,
OPT bypasses the procedure of probability density estimation of samples; it
instead directly estimates the posterior probabilities themselves. This not
only can avoid the issues with density estimation, but also according to Oc-
cam’s Razor can be more suitable for a task like score fusion. To avoid the
problem of the curse of dimensionality, we adopt a tree-structured ensemble
to hierarchically merge multiple source scores.

To demonstrate the effectiveness of our OPT algorithm, we conduct
extensive experiments on the NIST-BSSR1 and XM2VTS databases, two
public-domain databases specially designed to evaluate score fusion algo-
rithm in biometric authentication. Our algorithm demonstrates superior per-
formance compared with many off-the-shelf, classifier-based and probability-
based score fusion techniques.

The remainder of this paper is organised as follows. In Section 2 and
Section 3 we give the basic framework and implementation details of our
OPT algorithm, respectively. The experimental results are summarised in
Section 4. The work is concluded in Section 5.



2. Algorithmic framework

In this paper, we will focus on the two-class problem for simplicity. This
is the typical case for the multibiometric verification system, where the target
is to predict whether a pair of samples belong to the same subject, given a
set of biometric similarity scores. We start by establishing notation.

2.1. Notation

The genuine class and the imposter class are denoted by w, and w_, re-
spectively. Suppose that there are NV training samples, denoted by z1, ..., xxy,
with corresponding class labels yy,...,yy, where y; = 1 if ; € w, and
y; = 0 otherwise. Suppose for each sample x there are K source scores and
use S;(x) to denote the ith source score. We assume that a higher score
indicates a higher posterior probability (suggested by the score) of belong-
ing to wy. We use P;, ; (z) to denote the posterior probability Pr(z €
wi|Si, (x), ..., S (x)) for short.

i

2.2. Owerall structure
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Figure 1: A realisation of our OPT algorithm with five source scores. .S; indicates the ith
score, and P; denotes the posterior probability Pr(wy|S;,, ..., S, )
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The overall structure of our OPT algorithm is illustrated in Fig. 1. It is
divided in two stages: a normalisation stage and a merge stage. In the nor-
malisation stage, we transform each source score into a posterior probability
suggested by the score, i.e. we calculate P; for every i given S;. In the merge
stage, we merge the information given by all P;s together and obtain the fi-
nal posterior probability P, g, i.e. we calculate the conditional probability
Pr(z € wi|P(z),..., Px(x)).

The support of the conditional probability Pr(zx € wy|Pi(x),..., Pk(zx))
is K-dimensional. Since we do not give the functional any parametric form,
it will encounter the curse of dimensionality to directly estimate the proba-
bility. We apply a tree-like hierarchical structure to circumvent this problem,
as illustrated in Fig. 1. Using this hierarchical structure, we only need to
calculate a two-dimensional conditional probability function in each node.

We propose the methodology of a score normalisation algorithm and a
two-dimensional merge algorithm in Sections 2.3 and 2.4, respectively. We
present the implementation details of our algorithms in Section 3.

2.8. Score normalisation

Different from previous heuristic score normalisation approaches such as
the min-max, z-score or tanh algorithms, our approach tackles the score nor-
malisation problem by using a well-founded probabilistic framework. Specif-
ically, we obtain the maximum likelihood estimates of the posterior prob-
abilities of all training samples, and expand these values to a function by
interpolation. For the kth source score, we simultaneously estimate Py(z;),
fort=1,..., N. We assume that all training scores are independently sam-
pled. According to the definition of Py(-), for every z; € w,, the probability
of the presence of its label is Py (z;), while for every x; € w_, the probability
of the presence of its label is 1 — Py(z;). Therefore, the probability of the
presence of all training labels is

[T Pt TT (- Puta)) -

T, €W T, EW—

Therefore we can estimate all Py(z;)s by maximising the logarithm of the
above equation, which is

Li(P(-)) = (yiln Pi(a;) + (1 — y;) In(1 = Pi(x,))) (1)

=1



The only constraint that all Py(x;)s should obey is the intrinsic order-
preserving constraint, which can be represented as

(Pr(w:) — Pre(z4))(Sk(zi) — Si(;)) >0, VI<i<j< N . (2)

We maximise (1) with constraint (2) to obtain all Py(z;)s. Afterwards,
and interpolate these values to obtain the normalisation function for the kth
source score, i.e., we build a new function fi(-) whose domain is R, and for
every training sample x;, we have fy(Sk(z;)) = Pr(x;). Then for every test
samples z, we simply let Py(x) = fr(Sk(z)). The details of the optimisation
and interpolation procedure will be presented in Section 3.1.

2.4. Two-dimensional merge

At every node of our tree-structured probability merger, the task is to
obtain a posterior probabilistic function P, based on the outputs of its two
branches P and Pr, where K and £ can be single integers (indicating leaves
of the tree) or sets of integers (indicating branch nodes). Like in Section 2.3,
we solve the problem through maximum likelihood estimation, maximising

N
Lre(Pee(-) =Y (yiln Peg(a) + (1= yi) In(1 = Pee(a)) - (3)
=1

The order-preserving constraint is, nevertheless, different in form from
the case of the unary operation in Section 2.3:

(Prc(®i) = Pree(5)) 1 Pe(ai)> Pe(a;) Pe(2:)> Pe(z;)y = 0, Vi, 7, (4)

where 1y} is the indicator function of the proposition X. Here the constraint
is that, when both source probabilities agree, the merged probability also
must agree with them.

In short, when estimating Py, () for every training sample, we try to let
its value on positive sample as large as possible and its value on negative
samples as small as possible, the only constraint is that it will preserve the
order of two samples if such order is agreed by both the source scores.

Similarly to Section 2.3, we maximise (3) with constraint (4) to obtain
all Pcp(x;),i = 1,...,N. The details of the optimisation procedure can be
found in Section 3.2.



3. Implementation details

In this section, we present the implementation details of our OPT algo-
rithm, which include the optimisation procedures to solve (1) and (3).

3.1. Maximisation of (1) with constraint (2)

We firstly sort all samples by their scores in the ascending order. To
simplify the notation, we assume that S(z1) < Sk(x2) < ... < Sk(ay).
Therefore, according to the order-preserving constraint (2), we have Py(x1) <

Then we partition all Py(x;)s based on whether the inequality relations
are strict. Specifically, we define a partition as follows.

Definition 1. A partition related to the posterior function, denoted by Par(Py),
is a partition of the interval {1,..., N} into c+ 1 intervals {1,...,j1},{j1 +
... 50h o {je+1,..., N}, such that

Pk(xjﬂrl) = Pk('rlerQ) =...= Pk(xjm)? l = O, ., C (5)
P]f(fﬁjl) < Pk(l'j2> < ... < Pk(QZ'N) ,

where jo =0, j.41 = N.

It follows that, if Py is the solution of (1), Par(P) will have the following
two properties:

1.
Ji+1 y
u=7;+1 Ju
Pu(mj4,) = ==L =0, ¢ (6)
Ji+1 — i

2. For [ =0,...,c, there does not exist an integer t € (ji, ji+1), such that

t Ji+1

t—mn Jie1 — t

(7)

For short, we denote the right hand of (6) by [7; + 1, jit1].

The proof of these two properties is straightforward. If there exists an [
which violates (6), then we can slightly modify all posterior probabilities in
the corresponding interval towards [j; + 1, j;+1], which will make (1) larger
without violating the order-preserving constraint. In addition, if there exist
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an [ and a t which violate (7), then we can separate {j;+1, ..., j;+1} into two
smaller intervals {j; + 1,...,t} and {t + 1,..., 111}, and slightly decrease
the posterior probabilities of the former interval and increase the posterior
probabilities of the latter interval, which will also make (1) larger without
violating the order-preserving constraint.

Moreover, we have the following proposition:

Proposition 1. The partition which satisfies both (6) and (7) is unique.

Proof: If we have two different partitions P, and P] both satisfy (6)
and (7), we firstly find the first different intervals of these two partitions. To
simplify the notation, we assume their first intervals are different, i.e. j; # ji,
we assume j; > ji, and we note [ as the largest number such that j; < j;.

Then we must have [jj +1,j1] < [1,7]], as otherwise P, will violate (7).

However, as [1, jj] < [j; + 1, jj,,], it follows that j; can separate [j; + 1, ji,,]

into two smaller intervals such that [j; + 1, j1] < [j1 + 1, j;,4], which indicates
P! violates (7).

According to Definition 1 and Proposition 1, we can confirm that: If we
find a partition which satisfies both (6) and (7), then the posterior prob-
ability function that it indicates is the maximum likelihood solution of (1)
with constraint (2). The algorithm to find such an partition is displayed in
Algorithm 1.

In the test phase, we should interpolate Py (x;)s into a probability function
with support R. In order to maintain the interval number ¢, we apply the
nearest-neighbour interpolation method, i.e. for each test sample x, Py(z) =
Py(x;) if Sk(x;) is the nearest to Sk(z) among all the training scores.

3.1.1. Complexity analysis

The number of intervals outputted by Algorithm 1, ¢, plays a critical role
in the complexity of our OPT algorithm. The complexity of Algorithm 1 is
at most O(N x ¢) and, as will be seen in Section 3.2, the complexity of the
2-D merging algorithm will highly depend on the value of c.

We conduct an experiment to illustrate the relationship of ¢, N and the
running time of Algorithm 1. We randomly generate multiple positive and
negative sample sets with various sizes from 10* to 108. In every sample
set, the positive and negative sample scores are generated from two normal
distributions with the same variance and different means. The difference
between the positive score mean and the negative score mean is controlled



Algorithm 1 Optimal partition search: one-dimensional
Input:
Scores Sk(z1) < ... < Sk(zy), corresponding labels yy, ..., yn.
Output:
A set of integers ji,...,J., such that the partition {1,... 71}, {j1 +
..., 52h o {je + 1,..., N} satisfies (7);
P]f(l’l),l = 1,...,N.
1: Initialise ¢ <= 0, r <= 0, u. < 0, v, < 0;
2: for [ =1to N do
3: if l=1or Sk(ZL'l) > Sk(l‘l — 1) then
4 w1, vy
5. else
6: u—u+1,v—v+y;
7. end if
8
9

if [ # N and Sk(x;) = Sk(z; + 1) then
: go to the next loop;
10:  end if

11:  while ¢ > 0 and v/u < v./u. do
12: U 4= U+ Ue, V4=V + Vg
13: c+c—1;

14:  end while

15: c—c+1;

16:  jJo I

17: Ue < U;

18: Ve <V,

19: end for

20: Calculate Py(z;), i =1,..., N, using (6).

10



to let the equal error rate of the score be 10%. The ratio between positive
and negative samples is 1:999. Algorithm 1 is performed on each score set to
evaluate the number of intervals ¢ and the running time. For every specific
N, 10 sample sets are independently generated to estimated the variance of
the concerned indicators. The experiment is conducted on a MacBook Air.

Table 1: The outputted number of intervals ¢ and the running time 7" of Algorithm 1 for
different sample sizes N.

N 104 10° 106 107 108

c 84+1.1 24824 59.1 £3.8 135+ 8.9 309.8 £6.1
T(s) | 0.0324+0.001 0.319+0.012 3.461 +£0.164 38.61 +£1.53 468.8 +40.1

The experimental results are summarised in Table 1, from which we can
observe that c is far smaller than N, and the running time of Algorithm 1 is
nearly linear with V.

3.2. Mazimisation of (3) with constraint (4)

Let ¢ and ¢; denote the interval numbers of the partitions corresponding
to P and Pg, respectively. Since the same values of (Pi(z), Pe(x)) will
result in the same Py, (z), we will only consider ¢, X ¢; cases instead of
N x N different score pairs, which leads to a much reduced computational
complexity.

We firstly build two ¢ X ¢; matrices M, and M_, where element M, (u, v)
is the fraction of genuine training samples, that have been partitioned into
the uth interval according to Py and into the vth interval according to Pp,
and M_ is the matrix similarly constructed for the imposter training samples.
What we will do is to build another ¢, x ¢, matrix R, where element R(u,v)
is the corresponding merged probability.

Following the methodology in Section 3.1, we also partition R into a
set of two-dimensional intervals, where each interval has the same merged
probability. To achieve this, we first make the following three definitions of
two-dimensional intervals.

Definition 2. A two-dimensional interval T of a matriz is a set of elements

of this matriz, such that ¥(uy,v1) € T, V(ug,ve) € Z, if uy < uy and vy < v,
then Yu € [uy, us], Yv € [v1, 1], we have (u,v) € T.

11



Definition 3. A lowerleft neighbour of a two-dimensional interval T is an-
other two-dimensional interval J, which has no intersection with Z and has
at least one element (ug,vo) such that (ug + 1,v9) € Z or (ug,vo + 1) € T.
Besides, ¥(u,v) € J, 3(s,t) € Z, such that s > u and t > v.

Definition 4. A lowerleft sub-interval of a two-dimensional interval I is
another two-dimensional interval J , where J G I, and¥(u,v) € J, V(s,t) €
Z, s <wu andt < v, we have (s,t) € J.

Figure 2: Illustration of two-dimensional interval, lowerleft neighbor and lowerleft sub-
interval.

We illustrate the corresponding concepts in Figure 2. In the figure, A and
B (with b as a part of it) are both two-dimension intervals, while C is not a
two-dimension interval because it includes z; and x9 but does not include z.
A is a lowerleft neighbour of B, and b is a lowerleft sub-interval of B (A is
not a lowerleft neighbour of b).

Similarly to the one-dimensional case, this partition should has the fol-
lowing two properties:

12



1. For each interval Z, denote the merged probability of every element in

Z by Rz, then

Z(u,v)EI M+ (U, U)

R7 = :
Z(u,v)ez M+(U, U) + Z(u,v)ez M—(U’? U)

(8)

For short, we denote the right hand of (8) by Z, termed the average
ratio of Z.

2. For each interval Z, and for any of its lowerleft sub-interval J, J > Z.

To find a partition that satisfies these two properties, we design an iter-

ative algorithm, as shown in Algorithm 2.

Algorithm 2 Optimal partition search: two-dimensional

Input:

Matrices My, M_.

Output:

Merged probability matrix R.

1: Initialize ¢ <— 1, Z; < {R}, flagesi < 0;
2: while flag.,; =0 do

3:
4.

10:
11:
12:
13:
14:

for [ =1to cdo
Find every lowerleft neighbours of Z; whose average ratio is no less
than 7;;
Merge these neighbours into Z;;

end for

Reorder all intervals, update c.

for [ =1to cdo
If there exists an lowerleft sub-interval Z;; of Z; and its complemen-
tary interval Z;o such that Z; < Z;e, divide Z; into two intervals Z;;
and Zy;

end for

Reorder all intervals, update c;

if No change of partition has been made in this while loop then
f lagezit <~ 1;

end if

15: end while
16: Calculate R using (8).

13



In the test phase, since every source score of each test sample is guaran-
teed to fall into a one-dimensional interval by the nearest-neighbour interpo-
lation in the normalisation stage (see Section 3.1), no further interpolation
is needed in the merge stage.

3.2.1. Convergence analysis and complexity analysis

Every iteration in Algorithm 2 is composed of two stages. The first stage,
which merges valid lowerleft neighbours for every current interval, has the
complexity O(c?). For the second stage, which divides intervals into sub-
intervals, we can use a dynamic programming algorithm to accomplish the
task, and the complexity is O(cx X ¢;). Therefore, the complexity of Algo-
rithm 2 is O(Nye,r X (¢® + ¢ X ¢1)), where Ny, is the number of iterations.
In all practical experiments we conducted in Section 4, ¢, ¢; and ¢; are all
less than 300, Ny, is less than 30, and the running time of the whole two-
dimensional merging algorithm on a Macbook Air is less than one second.

Algorithm 2 will output a set of intervals which have the two properties
just described. If we can prove that the partition with these properties is
unique, we can conclude that Algorithm 2 will converge to the optimal solu-
tion of (3). However, since the two-dimensional space does not have a total
order structure like the one-dimensional space has, this uniqueness proposi-
tion cannot be proved in the same way as the proof of its one-dimensional
counterpart in Section 3.1. We note that as yet we have not accomplished
in proving this proposition. Nevertheless, we also have not found a counter-
example having two partitions both satisfying the two properties. In practice,
we have tried using different initialisations of Algorithm 2 and/or reversing
the positive/negative definitions of instances. It turns out that all settings
lead to exactly the same partition. Therefore we believe that Algorithm 2
holds a global convergence property.

4. Experiments

To demonstrate the effectiveness of our OPT algorithm, we apply it
to two public multibiometric databases, NIST-BSSR1 [23] and XM2VTS-
benchmark [24]. Three sub-databases are extracted from NIST-BSSR1. These
databases are summarised in Table 2.

Firstly in Section 4.1, we illustrate our OPT algorithm through visualising
the results obtained from applying it to the NIST-face database. Then in

14



Table 2: Summary of multibiometric databases. N, : the number of genuine samples; N_:
the number of imposter samples; FaM: face matchers; FiM: fingerprint matchers; SpM:
speech matchers.

Database Traits K Ny N_
NIST-multimodal 2 FaM; 2 Fim 4 517 266,772
NIST-face 2 FaM 2 6,000 17.994 million
NIST-fingerprint 2 FiM 2 6,000 35.994 million
XM2VTS 5FaM; 3 SpM 8 1,000 151,800

Section 4.2, we present empirical studies of comparing OPT with many off-
the-shelf, classifier-based and probability-based score fusion techniques.

4.1. Visualisation of OPT on the NIST-face database
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Figure 3: Scatter plot for the NIST-face database.

The NIST-face database contains the results of two face-verification algo-
rithms as two source scores, namely matcher C and matcher G. The scatter
plot of the samples is depicted in Fig. 3. The results of the OPT normal-
isation for the two matchers, i.e. the posterior probability functions Py(x)
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Figure 4: Posterior probabilities corresponding to the two source scores for the NIST-face
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Figure 5: Merged posterior probabilities for the NIST-face database.

16



versus Si(z), are plotted in Fig. 4, and the result of the OPT merge, i.e. the
matrix R, is shown in Fig. 5.

From Fig. 4, we can observe that the OP'T normalisation results are simi-
lar to the tanh function, different from those obtained by linear normalisation
techniques, such as the min-max and z-score algorithms. By inspecting Fig. 5,
we can also find that the merged posterior probability function obtained by
OPT is quite different from those obtained by some widely-used heuristic
rules, such as the sum and product rules.

4.2. Comparative experimental results

For the experiments on the NIST-BSSR1 databases, we randomly choose
half of the genuine and impostor samples to form the training set, and leave
the other half samples for testing. This dataset split procedure is repeated for
100 times, and the average performances are recorded. For the experiments
on the XM2VTS-benchmark database, the training-test split has already
been predetermined by the database protocol, where the number of train-
ing (test) samples is 600 (400) for the genuine class and 40,000 (111,800)
for the impostor class. To decide the values of the parameters of the other
algorithms (such as the scale factor in tanh normalisation algorithm and the
kernel’s scale in the RBF-SVM algorithm), we simply scan the parameter
space and choose the parameter values which lead to the best test perfor-
mance. Compared with the standard procedure such as cross-validation, this
procedure is much faster but the performance is an overoptimistic estimation.

Here we adopt the genuine accept rate (GAR) and the false accept rate
(FAR) to evaluate the performance of score fusion algorithms. In particular,
we compare the ROC curves (GAR versus FAR) of the algorithms, as well
as their GAR when their FAR is at 0.01%. The results for the NIST-face
database are shown in Fig. 6 and Table 3, for the NIST-fingerprint database in
Fig. 7 and Table 4, for the NIST-multimodal database in Fig. 8 and Table 5,
and for the XM2VTS database in Fig. 9 and Table 6, respectively.

From Fig. 6 we can find that, for the NIST-face database, the ROC curve
of our OPT algorithm is well above the curves of two individual matchers,
about 10% (4%) over that of matcher C and 20% (7%) over that of matcher
G when FAR equals 0.001% (1%).

Moreover, we compare OPT with some off-the-shelf rules of normalisation,
which includes the min-max, z-score, tanh and reduction of high-scores effect

(RHE) normalisations with the sum rule [2], as well as with three probabilistic
fusion algorithm (LR-based [1], IN and DN [17]) and a classification-based
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Figure 6: Performance gain obtained by OPT on the NIST-face database.

Table 3: Performance on the NIST-face database.
Method GAR

min-max + sum [2] 77.2%
z-score + sum [2]  76.8%

tanh + sum [2] 74.6%
RHE [2] 77.5%
LR-based [1] 77.2%
IN [17] 75.1%
DN [17] 72.5%
minCq [15] 69.2%
OPT 77.8%
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fusion algorithm (minCq [15]). The GAR of our OPT algorithm is superior
to all of others, as listed in Table 3 with FAR equal to 0.01%.

100
951~ b

90 b

851~ jrdiad -

8oF ~ R 8

i
751 e e -

GAR(%)

70‘,,_‘_' . : . . F . -
65+ : : : : . . -

60 b

551~ --Left finger

Right finger

5 R R . |—orT

10° 2 107 10°
FAR(%)

Figure 7: Performance gain obtained by OPT on the NIST-fingerprint database.

A similar pattern can be observed for the NIST-fingerprint database in
Fig. 7 and Table 4, where the two individual matchers are the left-finger
matcher and the right-finger matcher.

Different from the NIST-face and NIST-fingerprint databases, the NIST-
multimodal database has four source scores (two for face and the other two for
fingers). Hence there are 15 different ways of constructing the tree-structured
ensemble merger. In our experiment, we trial all of them, and plot in Fig. 8
the ROC curve of an OPT merger with the median performance along with
the curves of the four individual matchers (8(a)) and other established meth-
ods (8(b)), which include the heuristic rules of normalisation (min-max, z-
score, tanh and RHE), three probability-based method (LR-based, IN and
DN) and two classifier-based methods (RBF-SVM [8] and minCq). We also
list in Table 5 the performances (in GAR) of the best and the worst OPT
trees, as well as the average OPT performance, compared with the other
methods.

From Fig. 8 we can observe that the ROC curve of OPT is nearly perfect,
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Table 4: Performance on the NIST-fingerprint database.
Method GAR

min-max + sum [2] 91.0%
z-score + sum [2]  91.1%

tanh + sum [2] 90.3%
RHE [2] 91.2%
LR-based [1] 91.4%
IN [17] 91.3%
DN [17] 91.2%
minCq [15] 91.2%
OPT 91.8%

Table 5: Performance on the NIST-multimodal database.
Method GAR

min-max + sum [2] 97.9%
z-score + sum [2]  98.2%

tanh + sum [2] 97.7%
RHE [2] 99.4%
LR-based [1] 99.1%
RBF-SVM [§] 98.8%
IN [17] 96.5%
DN [17] 95.7%
minCq [15] 99.2%

OPT(best tree) 99.9%
OPT(worst tree) 99.7%
OPT(average) 99.8%
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Figure 8: (a) Performance gain obtained by OPT on the NIST-multimodal database. (b)
Performance comparison with other methods on the NIST-multimodal database
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significantly above the curves of individual matchers and also outperforms
the other methods. We can also find from Table 5 that our OPT algorithm
performs the best on average (99.84% to two decimal place accuracy), and
we note that in fact 12 of the 15 trees achieve a performance higher than
99.80%.

Table 6: Performance on the XM2VTS database.

Method GAR
min-max -+ sum 96.50%
z-score + sum 97.25%
tanh + sum 96.50%
LR-based [1] 98.75%
RBF-SVM [§] 99.00%
IN [17] 96.50%
DN [17] 94.50%
minCq [15] 97.00%

OPT(best tree)  100.00%
OPT(worst tree)  97.75%
OPT (average) 99.35%

The XM2VTS database has eight source scores, hence there are 135,135
different ways to build the tree-structured merger. We trial all of these merger
trees.

In Fig. 9, we can see that, similarly to Fig. 8, the ROC curve of the
median OPT merger is greatly superior to the curves of the best four indi-
vidual matchers and outperforms the other off-the-shelf and state-of-the-art
methods.

In Fig. 10, we illustrate the histogram of GAR (%) constructed over all the
OPT merger trees for the XM2VTS database when FAR is at 0.01%. From
Fig. 10 and Table 6, we can observe that, as with Table 5, our OPT performs
the best on average, and we note that 125,248 of 135,135 trees achieves
the performance higher than or equal to 99.00%. In other words, when we
randomly pick a tree structure, OPT will achieve the highest performance
of other methods in comparison, at a probability of 92.7% for the XM2VTS
database (and 80% for the NIST-multimodal database).
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Figure 9: (a) Performance gain obtained by OPT fusion on the XM2VTS database. (b)
Performance comparison with other methods on the XM2VTS database
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Figure 10: Histogram of GAR (%) of the OPT merger trees for the XM2VTS database
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4.3. Discussion on the merging order of sources

We note that, as shown in Table 5, Table 6 and Fig. 10, for a database
with more than two sources such as the NIST-multimodal database and the
XM2VTS database, the merging order of sources will marginally impact the
performance of OPT. Although it is possible to trial all potential merging
orders for the NIST-multimodal and XM2VTS databases to find the best
order, it becomes infeasible when the number of sources is sufficiently large.
Therefore, for computational convenience, it is beneficial to pre-determine
some favourable merging orders or ideally the optimal merging order.

To achieve this goal, we try to infer some properties of the merging order
which might lead to good classification performance, by investigating the
statistical difference between a group of some favourable merging orders and a
group of some undesirable merging orders. Specifically, among all the 135,135
trees that merge the eight sources of the XM2VTS database, we compare
the 20,860 trees whose performances are better than or equal to 99.75% and
the 25,618 trees whose performance are worse than or equal to 99.00%, by
counting the source pairs that they directly merged. We summarise the
statistical results in Table 7.

Table 7: Source pairs used by good merging trees and bad merging trees. Np: the number
of the trees that directly merge the corresponding source pairs. Rk: the rank based on
Nr.

Good merging trees Bad merging trees
Rk. Source pair Nr || Rk. Source pair Nr
1 FH-MLP & LFCC-GMM | 3037 || 1 | DCTs-GMM & LFCC-GMM | 4354
2 | DCTb-GMM & DCTs-MLP | 2852 || 2 PAC-GMM & SSC-GMM | 4228
3 | DCTs-MLP & DCTb-MLP | 2216 || 3 | DCTs-MLP & LFCC-GMM | 3463
26 | DCTb-GMM & SSC-GMM | 213 || 26 | DCTbh-GMM & DCTs-MLP | 1218
27 PAC-GMM & SSC-GMM 151 27 | DCTs-GMM & DCTs-MLP | 1125
28 | DCTs-GMM & SSC-GMM 30 28 FH-MLP & LFCC-GMM 69

From Table 7 we can observe that some patterns of how to choose source
pairs to merge first indeed exist. For example, merging FH-MLP and LFCC-
GMM will be beneficial, while merging PAC-GMM and SSC-GMM will be

detrimental.
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However, as yet we have not managed to induce convincing



statistical principles from the difference between these two groups of source
pairs.

Hence, it remains an open problem to produce a (theoretically or sta-
tistically) convincing, reliable and non-exhaustive scheme to pre-determine
an optimal merging order for multiple-source databases. Nevertheless, from
Fig. 10 we can see that the variance of the performance of mergers of different
merging orders is relatively small, and we can reach a classifier better than
the state-of-the-art (98.75%) for the XM2VTS database with high proba-
bility. In practice, people may use a validation dataset and randomly try
sufficiently many different merging orders and select the one with the best
validating performance. Furthermore, people may design some heuristic but
proper schemes, which can be based on the diversity of different biometric
traits for example or their other prior knowledge about the relative impor-
tance and interaction of the traits, to attain a classifier with performance
beyond the average over all merging orders.

5. Conclusion

We have proposed a novel probability-based score fusion algorithm, OPT,
which is fully non-parametric. It treats both the score normalisation and
the posterior probability merge as an constrained optimisation problem with
only the natural order-preserving constraint. We have designed an effective
algorithm to solve the optimisation problem and induced a tree-structured
ensemble to bypass the curse of dimensionality. The effectiveness of our OPT
algorithm has been demonstrated by experiments on both the NIST-BSSR1
and XM2VTS-benchmark databases.
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