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We propose a symmetric low-rank representation (SLRR) method for subspace clustering, which assumes
that a data set is approximately drawn from the union of multiple subspaces. The proposed technique
can reveal the membership of multiple subspaces through the self-expressiveness property of the data.
In particular, the SLRR method considers a collaborative representation combined with low-rank matrix

preserves the subspace structures of high-dimensional data. In contrast to performing iterative singular
value decomposition in some existing low-rank representation based algorithms, the symmetric low-
rank representation in the SLRR method can be calculated as a closed form solution by solving the
symmetric low-rank optimization problem. By making use of the angular information of the principal
directions of the symmetric low-rank representation, an affinity graph matrix is constructed for spectral
clustering. Extensive experimental results show that it outperforms state-of-the-art subspace clustering
algorithms.
1. Introduction

Subspace clustering is one of the fundamental topics in
machine learning, computer vision, and pattern recognition, e.g.,
image representation [1,2], face clustering [3,4,2], and motion
segmentation [5–9]. The importance of subspace clustering is
evident in the vast amount of literature thereon, because it is a
crucial step in inferring structure information of data from sub-
spaces through data analysis [10–12]. Subspace clustering refers to
the problem of clustering samples drawn from the union of low-
dimensional subspaces, into their subspaces.

When considering subspace clustering in various applications,
several types of available visual data are high-dimensional, such as
digital images, video surveillance, and traffic monitoring. These
high-dimensional data often have a small intrinsic dimension,
which is often much smaller than the dimension of the ambient
space. For instance, face images of a subject, handwritten images
of a digit with different rotations, and feature trajectories of a
moving object in a video often lie in a low-dimensional subspace
of the ambient space [13,14]. To describe a given collection of data
well, a more general model is to consider data drawn from the
union of low-dimensional subspaces instead of a single lower-
dimensional subspace [2,15].
: þ86 28 85466062.
ail.com (Z. Yi).
Subspace clustering has been studied extensively over several
decades. A number of techniques for exploiting low-dimensional
structures of high-dimensional data have been proposed to tackle
subspace clustering. Based on their underlying techniques, sub-
space clustering methods can be roughly divided into four cate-
gories according to the mechanism used: algebraic [16], statistical
[17], iterative [18], and spectral clustering based methods [2,4,19–
21]. For a more detailed explanation of these algorithms, we refer
the reader to [10], which contains a recent review.

If there are no errors in the data, i.e., the data are strictly drawn
from multiple subspaces, several existing methods can be used to
solve subspace clustering exactly [2,4,22,23]. However, the
assumption of low-dimensional intrinsic structures of data is often
violated when the real observations are contaminated by noise
and gross corruption. Consequently, this results in inferior per-
formance. A number of research efforts have focused on these
problems. Spectral clustering based methods, such as sparse
representation [4], low-rank representation [2], and their exten-
sions [19,20,24–26] have yielded excellent performance in
exploiting low-dimensional structures of high-dimensional data.
Most existing methods perform subspace clustering involving two
steps: first, learning an affinity matrix that encodes the subspace
memberships of samples, and then obtaining the final clustering
results with the learned affinity matrix using spectral clustering
algorithms such as normalized cuts (NCuts) [27,28]. The funda-
mental problem is how to build a good affinity matrix in
these steps.
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Inspired by recent advances in l0-norm and l1-norm techniques
[29–31], the introduction of sparse representation based techni-
ques has resulted in enhanced separation ability in subspace
clustering. Elhamifar and Vidal [4] proposed a sparse subspace
clustering (SSC) algorithm to cluster data points lying in the union
of low-dimensional subspaces. SSC considers that each data point
can be represented as a sparse linear combination of other points
by solving an l1-norm minimization problem. The l1-norm mini-
mization program can be solved efficiently using convex pro-
gramming tools. If the subspaces are either independent or dis-
joint under the appropriate conditions, SSC succeeds in recovering
the desired sparse representations. After obtaining the desired
sparse representation to define an affinity matrix, spectral clus-
tering techniques are used to obtain the final clustering results.
SSC shows very promising results in practice. Nasihatkon and
Hartley [32] further analyzed connectivity within each subspace
based on the connection between the sparse representations
through l1-norm minimization. Wang and Xu [33] extended SSC by
adding either adversarial or random noise to study the behavior of
sparse subspace clustering. However, some critical problems
remain unsolved. In particular, the above techniques find the
sparsest representation of each sample individually, which leads to
high computational cost. Besides, a global structural constraint on
the sparse representation is lacking, i.e., there is no theoretical
guarantee that the nonzero coefficients correspond to points in the
same subspace in the presence of corrupted data.

Low-rank representation based techniques have been proposed
to address these drawbacks [2,9,34]. Liu et al. [2] proposed the
low-rank representation (LRR) method to learn a low-rank
representation of data by capturing the global structure of the
data. The LRR method essentially requires singular value decom-
position (SVD) at each iteration and needs hundreds of iterations
before convergence. The computational complexity of LRR
becomes computationally impracticable if the dimensionality of
the samples is extremely large. Although an inexact variation of
the augmented Lagrange multiplier (ALM) method [35,36], which
is used to solve the optimization problem in LRR, performs well,
and generally converges adequately in many practical applications,
its convergence property still lacks a theoretical guarantee. Vidala
and Favarob [9] considered low-rank subspace clustering (LRSC) as
a non-convex matrix decomposition problem, which can be solved
in closed form using SVD of the noisy data matrix. Although LRSC
can be carried out on data contaminated by noise with reduced
computational cost, the clustering performance could be seriously
Fig. 1. Illustration of the clusterin
degraded owing to the presence of such corrupted data. Chen and
Yi [37] presented a low-rank representation with symmetric
constraints (LRRSC) method. LRRSC further exploits the angular
information of the principal directions of the symmetric low-rank
representation for improved performance. However, LRRSC cannot
avoid iterative SVD computations either, which is still time con-
suming. Consequently, LRRSC suffers from heavy computational
cost when computing a symmetric low-rank representation. To
obtain a good affinity matrix for spectral clustering using low-rank
representation techniques, which can lead to higher performance
and lower computational cost, low-rank representation of high-
dimensional data still deserves investigation.

In this paper, we address the problem of subspace clustering by
introducing the symmetric low-rank representation (SLRR)
method. SLRR can be regarded as an improvement of our previous
work, i.e., LRRSC [37]. Fig. 1 shows an intuitive clustering example
using five subjects to illustrate our approach. Owing to the self-
expressiveness property of the data, our motivation starts from an
observation of collaborative representation, which plays an
important role in classification and clustering tasks [38,39]. In
particular, our motivation is to integrate the collaborative repre-
sentation combined with low-rank matrix recovery techniques
into a low-rank representation to learn a symmetric low-rank
representation. The representation matrix involves the symmetric
and low-rankness property of high-dimensional data representa-
tion, thereby preserving the low-dimensional subspace structures
of high-dimensional data. An alternative low-rank matrix can be
obtained by making use of the low-rank matrix recovery techni-
ques closely related to the specific clustering problems. In contrast
with l1-norm minimization or iterative shrinkage, SLRR obtains a
symmetric low-rank representation in a closed form solution by
solving the symmetric low-rank optimization problem. Thereafter,
an affinity graph matrix can be constructed by computing the
angular information of the principal directions of the symmetric
low-rank representation for spectral clustering. Further details are
discussed in Section 3.

The proposed SLRR method has several advantages:

(a) It incorporates collaborative representation combined with
low-rank matrix recovery techniques into a low-rank repre-
sentation, and can successfully learn a symmetric low-rank
representation, which preserves the multiple subspace struc-
ture, for subspace clustering.
g problem with five subjects.
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(b) A symmetric low-rank representation can be obtained in a
closed form solution by the symmetric low-rank optimization
problem, which is similar to solve a regularized least squares
regression. Consequently, it avoids iterative SVD operations, and
can be employed by large-scale subspace clustering problems
with the advantages of computational stability and efficiency.

(c) Compared with state-of-the-art methods, our experimental
results using benchmark databases demonstrate that the
proposed method not only achieves competitive performance,
but also dramatically reduces computational cost.

The remainder of the paper is organized as follows. A brief
overview of some existing work on rank minimization is given in
Section 2. Section 3 provides a detailed description of the pro-
posed SLRR for subspace clustering. Section 4 presents the
experiments to evaluate the proposed SLRR on benchmark data-
bases. Finally, Section 5 concludes the paper.
2. Review of previous work

Let X ¼ ½x1; x2…; xn�ARd�n be a set of d-dimensional data vec-
tors drawn from the union of k subspaces fSigki ¼ 1 of unknown
dimensions. Without loss of generality, we can assume
X ¼ ½X1;X2;…;Xk�, where Xi consists of the vectors of Si. The task of
subspace clustering involves clustering data vectors into the
underlying subspaces. This section provides a review of low-rank
representation techniques for subspace clustering.

Liu et al. [2] proposed the LRR method for subspace clustering.
In the absence of noise, LRR solves the following rank minimiza-
tion problem:

min
Z;E

rankðZÞ s:t: X ¼ AZ; ð1Þ

where A¼ ½a1; a2;…; an�ARd�n is an overcomplete dictionary. Since
problem (1) is non-convex and NP-hard, LRR uses the nuclear
norm as a common surrogate for the rank function:

min
Z

JZ Jn s:t: X ¼ AZ; ð2Þ

where J � Jn denotes the nuclear norm (that is, the sum of the
singular values in the matrix).

In the case of data grossly corrupted by noise or outliers, LRR
solves the following convex optimization problem:

min
Z;E

JZ JnþλJEJ l s:t: X ¼ AZþE; ð3Þ

where λ40 is a parameter to balance the effects of the low-rank
representation and errors, and J � J l indicates a certain regular-
ization strategy for characterizing various corruptions. For
instance, the l2;1-norm characterizes the error term that encoura-
ges the columns of error matrix E to be zero. LRR uses the actual
data X as the dictionary. The above optimization problem can be
efficiently solved by the inexact augmented Lagrange multipliers
(ALM) method [35]. A post-processing step involves using Z to
construct the affinity matrix as Zj jþ Zj jT , which is symmetric and
entrywise nonnegative. The final data clustering result is obtained
by applying spectral clustering to the affinity matrix.
3. Symmetric low-rank representation

In this section, we discuss the core of the proposed method,
which is to learn a SLRR for subspace clustering. The SLRR was
inspired by collaborative representation and low-rank repre-
sentation techniques, which are used in classification and sub-
space clustering [2,38,39]. This proposed technique identifies
clusters using the angular information of the principal directions
of the symmetric low-rank representation, which preserves the
low-rank subspace structures. In particular, we first analyze the
symmetric low-rank property of high-dimensional data repre-
sentation based on the symmetric low-rank optimization problem,
which is closely related with the regularized least squares
regression. Then, we attempt to find an alternative low-rank
matrix instead of the original data combined with low-rank
matrix recovery techniques to obtain a symmetric low-rank
representation. We further give the equivalence analysis of opti-
mal solutions between problem (5) and (8). Finally, we construct
the affinity graph matrix for spectral clustering, which completes
the procedure for the SLRR method.

3.1. The symmetric low-rank representation model

In the absence of noise, i.e., the samples are strictly drawn from
multiple subspaces, several criteria are imposed on the optimiza-
tion models to learn the representation of samples as an affinity
matrix for spectral clustering to solve the subspace clustering pro-
blem exactly [2,4,39,40]. For example, SSC employs the sparsest
representation using an l1-norm regularization, while LRR seeks to
learn the lowest-rank representation using a nuclear-norm reg-
ularization. Both of these techniques can realize an affinity matrix of
the samples involving the block diagonal between-clusters prop-
erty, which reveals the membership of subspaces with theoretical
guarantees. By considering noise and corruption in real observa-
tions, the lowest-rank criterion shows promising robustness among
these criteria by capturing the global structure of the samples.

As mentioned above, the lowest-rank criterion, such as LRR,
typically requires calculating singular value decomposition itera-
tively. This means that it becomes inapplicable both in terms of
computational complexity and memory storage when the
dimensionality of the samples is extremely large. To alleviate these
problems, we design a new criterion as the convex surrogate of the
nuclear norm. It is worth noting that we are intersected in a
symmetric low-rank representation of a given data set. But we are
not interested in seeking the best low-rank matrix recovery and
completion using the obtained symmetric low-rank representa-
tion. The proposed method differs from the LRR method in terms
of its matrix recovery. In the case of noisy and corrupted data, we
seek to find a symmetric low-rank representation using colla-
borative representation combined low-rank representation tech-
niques. The optimization problem is as follows:

min
Z

rankðZÞþα‖X�XZ‖2F þ
λ
2
trðZTZÞ

s:t: X ¼ XZþE; Z ¼ ZT : ð4Þ
The discrete nature of the rank function makes it difficult to solve
Problem (4). Many researchers have instead used the nuclear norm
to relax the optimization problem [2,19,19,37]. Unfortunately,
these methods cannot completely avoid the need for iterative
singular value decomposition (SVD) operations, which incur a
significant computational cost. Unlike these LRR-based methods
that solve the nuclear norm problem, the following convex opti-
mization provides a good surrogate for problem (4):

min
Z

‖X�XZ‖2F þ
λ
2
trðZTZÞ

s:t: X ¼ XZþE; Z ¼ ZT ; rankðZÞrr; ð5Þ
where J � JF denotes the Frobenius norm of the matrix, λ40 is a
parameter used to balance the effects of the two parts, and rAN is
a parameter used to guarantee the low-rank representation Z. To
maintain the weight consistency of each pair of data points, we
impose a symmetric constraint on representation Z. Then, by
imposing a low-rank constraint on representation Z, we obtain a
desired symmetric low-rank representation.
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To further analyze problem (5), we first simplify this optimi-
zation problem. Removing the constraint rankðZÞrr from the
problem leads to another optimization problem:

min
Z

‖X�XZ‖2F þ
λ
2
trðZTZÞ s:t: X ¼ XZþE; Z ¼ ZT : ð6Þ

The solution of SLRR in problem (6) can be analytically obtained

Zn ¼ ðXTXþλ � IÞ�1XTX ð7Þ
where I is the identity matrix, and λ40 is a parameter.

Next, we show that Zn is symmetric.

Theorem 1. The matrix

Z ¼ ðXTXþλ � IÞ�1XTX

is symmetric.

Proof. Clearly,

Z ¼ ðXTXþλ � IÞ�1XTX ¼ ðXTXþλ � IÞ�1 � ðXTXþλ � I�λ � IÞ
¼ I�λ � ðXTXþλ � IÞ�1:

On the other hand,

ZT ¼ XTXðXTXþλ � IÞ�1 ¼ ðXTXþλ � I�λ � IÞ � ðXTXþλ � IÞ�1

¼ I�λ � ðXTXþλ � IÞ�1:

Since Z ¼ ZT , Z is symmetric. □

It should be pointed out that Zn may not be a low-rank matrix.
Denote the ranks of Zn and X by rankðZnÞ and rank(X), respectively.
It is easy to see that rankðZnÞrrankðXÞ. As the noises we confront
are ubiquitous in practice, X is not a low-rank matrix. This implies
that the real data may not strictly follow subspace structures
because of noise or corruption.

In general, Zn is a low-rank matrix if X is low-rank. If we require
that rankðXÞrr, where r is some small positive integer, then Zn is a
symmetric low-rank matrix. If we can use an alternative low-rank
matrix A to replace X, a desired low-rank solution could be
obtained. We propose the following convex optimization provides
a good surrogate for the problem (5):

min
Z

‖A�AZ‖2F þ
λ
2
trðZTZÞ

s:t: A¼ AZþE; Z ¼ ZT ; rankðZÞrr: ð8Þ
If rankðAÞrr, then

Zn ¼ ðATAþλ � IÞ�1ATA ð9Þ
is the analytical optimal solution to problem (8).

From linear algebra, Zn is a symmetric low-rank matrix if A is
low-rank. The only remaining issue is how to get an alternative
low-rank matrix A instead of X from a given set of data.

3.2. Pursuing an alternative low-rank matrix through low-rank
matrix recovery techniques

Given the assumption mentioned above, data points are
approximately drawn from a union of subspaces. Each data point
can be represented by a linear combination of the other data
points. Therefore, it is reasonable that a low-rank matrix recovered
from corrupt observations is employed instead of the original data
in problem (6). Here we consider in detail, three implementations
of an alternative low-rank matrix from corrupt observations.

First, we explain the idea behind the first implementation. We
incorporate low-rank matrix recovery techniques, the choice of
which is closely related to the specific problem, into recovering
corrupt samples. For example, it is well known that principal
component analysis (PCA) is one of the most popular dimension
reduction techniques for face images [41]. PCA assumes that the
data is drawn from a single low-dimensional subspace. In fact, our
experiments demonstrate its effectiveness when applied to face
clustering and motion segmentation. In particular, PCA learns a low-
rank project matrix PARm�r by minimizing the following problem:

min
P

‖X�PPTX‖2F s:t: PTP ¼ Ir : ð10Þ

Let A¼ PPTX. Note that A is low-rank matrix recovery of X. If
rankðPÞrr, a globally optimal solution Zn ¼ ðATAþλ � IÞ�1ATA of
problem (8) can be obtained in closed form. Obviously, it is a
symmetric low-rank matrix. The low-rank matrix recovery reveals
its vital importance in learning a low-rank representation.

It is well known that PCA is an effective method when the data
are corrupted by Gaussian noise. However, its performance is
limited in real applications by a lack of robustness to gross errors.
The second implication for consideration is to recover a low-rank
matrix from highly corrupted observations. For example, RPCA
decomposes the data matrix X into the sum of a low-rank
approximation A and an additive error E [42,43], which leads to
the following convex problem:

min
A

JAJnþλJEJ1 s:t: X ¼ AþE: ð11Þ

Assume that the optimal solution to this problem is An, where An,
where An is a low-rank matrix. If rankðAnÞrr, a globally optimal
solution Zn ¼ ðAnTAnþλ � IÞ�1AnTAn can be obtained for problem (8).

Besides, we further consider incorporating feature extraction into
the low-rank representation. We use low-rank features extracted
from the corrupted samples instead of the original data by dimension
reduction techniques. We also use the face clustering example to
illustrate the importance and feasibility of feature extraction. Ran-
dom features can be viewed as a less-structured face feature. Ran-
domfaces are independent of the face images [44,45]. A low-rank
transformmatrix PARm�r , whose entries are independently sampled
from a zero-mean normal distribution, is extremely efficient to
generate, whose entries are independently sampled from zero-mean
normal distribution. The random project (RP) matrix P can be used to
for dimension reduction for of face images. Let A¼ PTX, where A is an
extracted feature matrix. A globally optimal solution Zn ¼
ðATAþλ � IÞ�1ATA to problem (8) can also be obtained.

To examine the connection among the low-rank matrix
recovery techniques reliant on dimension reduction, we consider
the special case in which the low-rank projection matrix P has
orthogonal columns, i.e., PTP ¼ I. Assuming that PTP ¼ I, both of the
implications, i.e., A¼ PPTX and A¼ PTX, are equivalent to each
other in problem (8). This is summarized by the following Lemma.

Lemma 1. Let D, U, and V be matrices of compatible dimensions.
Suppose U and V have orthogonal columns, i.e., UTU ¼ I and VTV ¼ I,
then we have

JDJF ¼ JUDVT J F :
Proof. By definition of the Frobenius norm, we have

JUDVT JF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trððUDVT ÞT ðUDVT ÞÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðVDTUTUDVT Þ

q
:

As UTU ¼ I and VTV ¼ I, we have

JUDVT JF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðVDTDVT Þ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðVTVDTDÞ

q
¼ JDJF :

□

According to Lemma 1, we can conclude that JX J F ¼ JPX JF ,
where the low-rank project matrix P has orthogonal columns. Con-
sequently, A¼ PPTX or A¼ PTX are alternatives to obtain the same
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globally optimal solution of problem (8). The computational cost of the
first implementation can be effectively reduced by using a simplified
version if the low-rank project matrix has orthogonal columns.

The use of low-rank matrix recovery techniques to improve the
performance of many applications is not in itself surprising.
However, in this paper, the main purpose of using such techniques
is to derive an alternative low-rank matrix that can be used to
obtain the symmetric low-rank representation discussed above.

3.3. Equivalence analysis of optimal solutions

In Section 3.1, we first introduced problem (5) to describe a
symmetric low-rank representation model, and then considered
this problem as the surrogate of an alternative low-rank matrix.
We then analyzed the equivalence between problems (5) and (8)
in terms of the optimal solution.

Let us first consider a specific case of low-rank matrix recovery
techniques, such as PCA. In PCA, the low-rank projection matrix P
is an orthogonal matrix, i.e., PTP ¼ I. Then, problem (5) can be
converted into an equivalent problem (8) according to Lemma 1.
Consequently, the globally optimal solution of problem (8),
Zn ¼ ðATAþλ � IÞ�1ATA, is the same as that of problem (5). It is clear
that Zn is a symmetric low-rank representation that preserves the
multiple subspace structure.

Furthermore, we note the remaining cases of low-rank matrix
recovery techniques, such as RP and RPCA . For example, the columns
of the low-rank projection matrix may not be orthogonal to one
another, or an alternative low-rank matrix recovered from the ori-
ginal data may not be directly obtained using the low-rank projection
matrix. Thus, we cannot calculate the globally optimal solution of
problem (5) directly since its solution is intractable. To address this
problem, we integrate an alternative low-rank matrix into problem
(8) to learn a symmetric low-rank representation. As mentioned
above, problem (8) can be solved as a closed form solution. It should
be emphasized that this surrogate is reasonable for the following two
reasons: (1) high-dimensional data often lie close to low-dimensional
structures; and (2) the alternative matrix recovered from the original
data has low rank. Such a symmetric low-rank representation can
also preserve the multiple subspace structure.

3.4. Construction of an affinity graph matrix for subspace clustering

Using the symmetric low-rank matrix Zn from problem (8),
we need to construct an affinity graph matrix W. We consider Zn

with the skinny SVD Un
PnðVnÞT , and define M¼ UnðPnÞ1=2;

N¼ ðPnÞ1=2ðVnÞT . As suggested in [37], we apply the mechanism of
driving the construction of the affinity graph from matrix Zn. This
considers the angular information from all row vectors of matrix
M or all column vectors of matrix N to define an affinity graph
matrix as follows:

½W �ij ¼
mT

i mj

Jmi J2 Jmj J2

� �2α

or ½W �ij ¼
nT
i nj

Jni J2 Jnj J2

� �2α

; ð12Þ

where mi and mj represent the i-th and j-th rows of matrix M, and
ni and nj represent the i-th and j-th columns of matrix N,
respectively, and αAN is a parameter to adjust the sharpness of
the affinity between different clusters. Algorithm 1 summarizes
the complete subspace clustering algorithm for SLRR.

Algorithm 1. The SLRR algorithm.
Inp
d

1:
ut:
ata matrix X ¼ ½x1; x2;…; xn�ARm�n, number of subspaces k,
regularized parameters λ40;αAN; rAN
Recover an alternative low-rank matrix A from X using low-
rank matrix recovery techniques such as RPCA.
Alternatively, learn the low-rank projection P from X using
low-rank matrix recovery techniques, and then obtain an
alternative low-rank matrix A¼ PTPX, or an alternative
feature matrix A¼PX.
Solve the following problem:
2:

min
Z

‖A�AZ‖2F þ
λ
2
trðZTZÞ

s:t: A¼ AZþE; Z ¼ ZT ; rankðZÞrr:
and obtain the optimal solution Zn ¼ ðATAþλ � IÞ�1ATA.
Compute the skinny SVD Zn ¼ Un

PnðVnÞT .
Calculate M¼ UnðPnÞ1=2 or N¼ ðPnÞ1=2ðVnÞT .
Construct the affinity graph matrix W, i.e.,
5:

½W �ij ¼
mT

i mj

Jmi J2 Jmj J2

� �2α

or ½W �ij ¼
nT
i nj

Jni J2 Jnj J2

� �2α

:

Apply W to perform NCuts.
tput
he clustering results.
T

Assume that the size of X is m� n, where X has n samples and
each sample has m dimensions. For convenience, we apply PCA as
an example low-rank matrix recovery technique to illustrate the
computational complexity of Algorithm 1. Thus, the computational
complexity of the first two steps in Algorithm 1 is Oðm2nþm3Þ,
while the computational complexity of the last four steps in
Algorithm 1 is Oðmn2þn3Þ. The complexity of Algorithm 1 is
Oðm2nþmn2þm3þn3Þ. If m⪡n, the overall complexity of
Algorithm 1 is Oðn3Þ.
4. Experiments

4.1. Experimental settings

4.1.1. Databases
To evaluate the SLRR, we performed different experiments on

two popular benchmark databases, e.g., the extended Yale B and
Hopkins 155 databases. The statistics of the two databases are
summarized below.

� Extended Yale B database [46,47]: This database contains 2414
frontal images of 38 individuals, with images of each individual
lying in a low-dimensional subspace. There are around 59–64
images available for each individual. To reduce the computa-
tional time and memory requirements of algorithms, we used a
normalized face image with size 48�42 pixels in the experi-
ments. Fig. 2a shows some example face images from the
Extended Yale B Database.

� Hopkins 155 database [48]: This database consists of 156 video
sequences of two or three motions. Each video sequence motion
corresponds to a low-dimensional subspace. There are 39–550
data vectors drawn from two or three motions for each video
sequence. Fig. 7 shows some example frames from four video
sequences with traced feature points.

4.1.2. Baselines and evaluation
To investigate the efficiency and robustness of the proposed

method, we compared the performance of SLRR with several state-
of-the-art subspace clustering algorithms, such as LRR [2], LRRSC
[37], SSC [4], local subspace affinity (LSA) [49], and low rank
subspace clustering (LRSC) [9]. For the state-of-the-art algorithms,
we used the source code provided by the respective authors. The



Fig. 2. Example images of multiple individuals from the Extended Yale B database. (a)The original sample images. (b) The corrupted sample images with the 20% random
pixel corruptions. (c) The corrected sample images by applying RPCA.

Table 1
Parameter settings for different algorithms on face clustering. For SLRR, n is the
number of subspaces, i.e., the number of subjects. Let SLRRPCA , SLRRRPCA and SLRR
SLRRRP denote the application of PCA, RPCA, and RP for low-rank matrix recovery or
dimension reduction in SLRR.

Method Face clustering

Scenario 1 Scenario 2

SLRRPCA α¼ 3; λ¼ 30; r¼ 50n α¼ 2; λ¼ 40; r¼ 10n
SLRRRP α¼ 3; λ¼ 1:2; r ¼ 10n α¼ 3; λ¼ 1; r¼ 10n
SLRRRPCA α¼ 2; λ¼ 3; λRPCAA ½0:02;0:03� –

LRRSC λ¼ 0:2; α¼ 4 λ¼ 0:1;α¼ 3
LRR λ¼ 0:18
SSC λe ¼ 8=μe λe ¼ 20=μe
LSA K ¼ 3;d¼ 5
LRSC τ¼ 0:4; α¼ 0:045 τ¼ 0:045; α¼ 0:045

Table 2
Parameter settings for different algorithms on motion segmentation. For SLRR, n
represents the number of motions in each video sequence.

Method Motion segmentation

Scenario 1 Scenario 2

SLRR α¼ 2; λ¼ 5e�3 α¼ 2; λ¼ 5e�3 ; r ¼ 4n
LRRSC λ¼ 3:3; α¼ 2 λ¼ 3; α¼ 3
LRR λ¼ 4
SSC λz ¼ 800=μz
LSA K ¼ 8; d¼ 5 K ¼ 8; d¼ 4
LRSC τ¼ 420; α¼ 3000 or α¼ 5000
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Matlab source code for our method is available online at http://
www.machineilab.org/users/chenjie.

The subspace clustering error is the percentage of misclassified
samples over all samples, which is measured as

error¼Nerror

Ntotal
; ð13Þ

where Nerror denotes the number of misclassified samples, and
Ntotal is the total number of samples. For LRR, we reported the
results after post-processing of the affinity graph. Moreover, we
chose the noisy data version of ðP3Þ of LRSC to show its results. All
experiments were implemented on Matlab R2011b and performed
on a personal computer with an Intel Core i5-2300 CPU and 16 GB
memory.

4.1.3. Parameter settings
To obtain the best results of the state-of-the-art algorithms in

the experiments, we either applied the optimal parameters for
each method as given by the respective authors, or manually
tuned the parameters of each method. We emphasize that SLRR is
follow-up research based on our previous work, i.e., LRRSC [37].
Hence, we reported the parameter settings and results of several
algorithms from [37], e.g., LRR, LRRSC, SSC, LSA and LRSC, for
comparison with the results of SLRR in our experiments. The
parameters for these methods are set as shown in Tables 1 and 2.

According to problem (8), SLRR has three parameters: λ, α and
r. Empirically speaking, parameter λ should be relatively large if
the data are slightly contaminated by noise, and vice versa. In
other words, parameter λ is usually dependent on the prior of the
error level of data. In fact, parameter λ has a wide range in our
experiments. Parameter α ranges from 2 to 4. To pursue an
alternative low-rank matrix, parameter r may be closely related
with the intrinsic dimension of high-dimensional data. For
example, images of an individual with a fixed pose and varying
illumination lie close to a 9-dimensional linear subspace under the
Lambertian assumption [14]. Besides, the tracked feature points
trajectories from a single motion lie in a linear subspace of at most
four dimensions [13]. Therefore, we used r¼ 10n in some face
clustering experiments shown in Table 1, and r¼ 4n for the
motion segmentation experiments shown in Table 2, where n
denotes the number of subspaces. Note that we used r¼ 50n in
SLRRPCA for the first scenario of face clustering. However, using
r¼ 10n for SLRRPCA also achieves satisfactory performance in the
face clustering experiments. Further results and discussions of the
parameters are given in the respective sections for the
experiments.

4.2. Experiments on face clustering

We first evaluated the clustering performance of SLRR as well
as the other methods on the Extended Yale B database. Face
clustering refers to the problem of clustering face images from
multiple individuals according to each individual. The face images
of the individual, captured under various laboratory-controlled
lighting conditions, can be well approximated by a low-
dimensional subspace [14]. Therefore, the problem of clustering
face images reduces to clustering a collection of images according
to multiple subspaces. We considered two different clustering
scenarios of face images to evaluate the performance of the
proposed SLRR.

4.2.1. First scenario for face clustering
Following the experimental settings in [3], we chose a subset of

the Extended Yale B database consisting of the 640 frontal face
images from the first 10 subjects. We used two different low-rank

http://www.machineilab.org/users/chenjie
http://www.machineilab.org/users/chenjie
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Fig. 3. Changes in clustering error when varying λ and α under different r, by applying PCA on face images of the first 10 classes in the Extended Yale Database B: (a) r¼ 50,
(b) r¼ 100, (c) r¼ 200 and (d) r ¼ 500.
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Fig. 4. Changes in clustering error when varying λ and α under different r, by applying RP on face images of the first 10 classes in the Extended Yale Database B (a)r¼50 (b)
r¼90 (c) r¼100 (d) r¼150.

Table 3
Clustering error (%) and computation time (seconds) by applying different algo-
rithms on the first 10 classes of the Extended Yale Database B.

Algorithm SLRRPCA SLRRRP LRRSC LRR SSC LSA LRSC

Error 3.13 4.44 3.91 20.94 35 59.52 35.78
Time 35.26 34.81 115.63 103.66 54.06 91.51 35.29
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matrix recovery techniques (PCA, RPCA) and one dimension
reduction technique (RP) to implement SLRR for face clustering.

We first examined the performance of these algorithms on the
original data. Figs. 3 and 4 show the influence of parameters λ and
α for different r values on the clustering errors of SLRR. Note that r
is the value of the reduced dimension after applying PCA or RP.
Because the random projection matrix used in SLRRRP is generated
randomly, ten different random projection matrices are employed
in the performance evaluation. The final clustering performance of
SLRRRP is computed by averaging the clustering error rates from
these ten experiments. According to the Lambertian assumption
mentioned above, the optimal value of r is around 90 because of
the 10 different subjects in the experiment. As shown in Figs. 3a
and 4a, a value of r equal to 50 results in inferior clustering per-
formance. This implies that the reduced dimension information of
face images, whose dimension is much less than the intrinsic
dimension of face images, is not sufficient for low-rank repre-
sentation to separate data from different subspaces. In contrast to
the reduced dimension of the face images, a value of r equal to or
greater than 90 leads to a significant performance improvement as
shown in Figs. 3b–d and 4b–d. Therefore, parameter r is closely
related to the intrinsic dimension of high-dimensional data. In
addition, SLRRPCA and SLRRRP seem to achieve better performance
as α increases. For example, the clustering error of SLRRPCA varies
from 3.91% to 4.38% when λ ranges from 20 to 100 with α¼ 3 in
Fig. 3b. On the contrary, the clustering error of SLRRPCA varies from
20.47% to 41.41% when λ ranges from 20 to 100 with α¼ 1 in
Fig. 3b. These comparisons can also be observed in Figs. 3c and d
and 4b and d. However, SLRRPCA and SLRRRP cannot further
improve the performance if α is too large (e.g., with α¼ 4 in
Figs. 3b–d and 4(b)–(d)).

Table 3 shows the face clustering results and computational
cost of the different algorithms in the first experimental scenario.
SLRRPCA has better clustering performance and lower computa-
tional cost than the other algorithms. For example, the clustering
errors of SLRRPCA and SLRRRP are 3.13% and 4.44%, respectively.
SLRRPCA improved the clustering accuracy by nearly 18% compared
with LRR. The improvement of SLRRPCA and SLRRRP indicates the
importance of symmetric low-rank representation of high-
dimensional data in the construction of the affinity graph matrix.
From Table 3, it is clear that SLRRPCA, SLRRRP and LRSC execute
much faster than the other approaches. This is because they obtain
a closed form solution of the low-rank representation on their
corresponding optimization problems. SSC solves the l1-norm
minimization problem, while the optimization of LRR by inexact
ALM requires hundreds of SVD computations before convergence.
Hence, both of these incur a high computational cost. In SLRRPCA

and SLRRRP , collaborative representation with low-rank matrix
recovery techniques into low-rank representation exhibits its
efficiency by making use of the self-expressiveness property of
the data.

Finally, we explored the performance and robustness of these
algorithms on a more challenging set of face images. Four artificial
pixel corruption levels (10%, 20%, 30%, and 40%) were selected for
the face images, and the locations of corrupted pixels were chosen
randomly. To corrupt any chosen location, its observed value was
replaced by a random number in the range [0, 1]. Some examples
with 20% pixel occlusions and their corrections are shown in
Fig. 2(b) and 2(c), respectively. For a fair comparison, we applied
RPCA to the corrupted face images for the other competing algo-
rithms, where the RPCA parameter λ ranged from 0.025 to 0.05. All
experiments were repeated 10 times. Table 4 shows the average
clustering error. The results demonstrate that SLRR achieves a
consistently high clustering accuracy when artificial pixel cor-
ruptions are relatively sparse, i.e., corruption percentages of 10%
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Fig. 5. Average computation time (seconds) for different numbers of subjects on
the Extended Yale B database.
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and 20%. As expected, the performance of SLRR deteriorates as the
percentage of corruption increases. At corruption percentages of
30% and 40%, LRRSC obtains the highest clustering accuracy. The
performance of SLRR degrades because the errors are no longer
sparse during the low-rank matrix recovery algorithm, i.e., RPCA.
LRR-based methods, such as SLRR, LRRSC, LRR, and LRSC perform
better than the competing methods in all scenarios. This further
highlights the benefit of estimating the underlying subspaces
using the low-rank criterion. Compared with the other competing
methods, SLRR and LRRSC are slightly more stable when the given
data is corrupted by gross errors.

4.2.2. Second scenario for face clustering
We used the experimental settings from [4]. The 38 subjects

were divided into four groups as follows: subjects 1–10, 11–20, 21–
30, and 31–38 corresponding to the four different groups. All
choices of nAf2;3;5;8;10g were considered for each of the first
three groups, and all choices of nAf2;3;5;8g were considered for
the last group. Finally, we applied each algorithm to each choice
(i.e., each set of n subjects) in the experiments, and the mean and
median subspace clustering errors for different numbers of sub-
jects were computed.

Table 5 shows the clustering results for the various algorithms
using different numbers of subjects. The SLRRPCA algorithm almost
consistently obtained lower mean clustering errors than the other
algorithms for a varying number of subjects. This confirms that our
proposed method is very effective and robust against a varying
number of subjects with respect to face clustering. We also
observed that the clustering performance by SLRRRP outperforms
that of SLRRPCA by a very small margin with 10 subjects. However,
SLRRRP performs worse than SLRRPCA as well as LRRSC and SSC
when the number of subjects is less than 10. However, we also see
that increasing the number of clusters of SLRRRP achieved a greater
improvement compared with LRR. This phenomenon can be
Table 5
Average clustering error (%) for different numbers of subjects on the Extended Yale
B database.

Algorithm SLRRPCA SLRRRP LRRSC LRR SSC LSA LRSC

2 Subjects
Mean 1.29 4.81 1.78 2.54 1.86 41.97 4.25
Median 0.78 2.34 0.78 0.78 0 47.66 3.13

3 Subjects
Mean 1.94 6.18 2.61 4.23 3.24 56.62 6.07
Median 1.56 4.17 1.56 2.6 1.04 61.98 5.73

5 Subjects
Mean 2.72 6.03 3.19 6.92 4.33 59.29 10.19
Median 2.5 4.98 2.81 5.63 2.82 56.25 7.5

8 Subjects
Mean 3.21 7.42 4.01 13.62 5.87 57.17 23.65
Median 2.93 4.98 3.13 9.67 4.49 59.38 27.83

10 Subjects
Mean 3.49 3.44 3.7 14.58 7.29 59.38 31.46
Median 2.81 3.28 3.28 16.56 5.47 60.94 28.13

Table 4
Clustering error (%) by applying different algorithms on the first 10 classes of the
Extended Yale Database B with four artificial pixel corruption levels.

Corruption ratio (%) SLRRRPCA LRRSC LRR SSC LSA LRSC

10 9.23 12.16 21.38 32.84 60.86 16.22
20 10.34 12.25 24.77 39.44 62.89 17.47
30 13.69 12.79 30.44 43.84 61.58 17.2
40 14.59 12.23 31.72 48.95 64.98 20.72
explained as follows. On the one hand, the clustering results of
SLRRRP are effected largely by the randomly generated project
matrix. On the other hand, what we emphasize is the importance
of the determination of low-rank matrix recovery techniques for
an alternative low-rank matrix. Moreover, we also compared the
computational costs shown in Fig. 5. The computational costs of
SLRRPCA and SLRRRP are very similar, and only slightly better than
LRSC. LRSC also had relatively low computational time at the
expense of degraded performance in the experiments. In fact,
SLRRPCA and SLRRRP achieved high efficiency owing to completely
avoiding the iterative SVD computation. Both of these run much
faster than the other algorithms, e.g., LRR, LRRSC, SSC, and LSA.

Fig. 6 depicts seven representative examples of the affinity
graph matrix produced by the different algorithms for the Exten-
ded Yale Database B with five subjects. Clearly there are five
diagonal blocks in each affinity graph. The smaller the number of
non-zero elements lying outside the diagonal blocks is, the more
accurate are the clustering results in spectral clustering. It is clear
from Fig. 6 that the affinity graph matrix produced by SLRRPCA has
a distinct block-diagonal structure as is the case for LRRSC. This
shows why SLRRPCA outperforms the other algorithms.

4.3. Experiments on motion segmentation

In this subsection we discuss applying SLRR to the Hopkins 155
database. The task of motion segmentation involves segmenting
tracked feature points trajectories of multiple rigidly moving
objects into their corresponding motions in a video sequence. Each
video sequence is a sole subspace segmentation task. There are
156 video sequences of two or three motions in the Hopkins 155
database. As pointed out in [13], the tracked feature points tra-
jectories for a single motion lie in a low-dimensional subspace.
Therefore, the motion segmentation problem is equivalent to the
problem of subspace clustering.

For each video sequence, tracked feature points trajectories
were extracted automatically and the original data were almost
noise-free, i.e., low-rank. Hence, we designed two experiments to
evaluate the performance of the proposed SLRR in motion seg-
mentation. First, we used the originally tracked feature points
trajectories, which are associated with motions individually, to
validate SLRR. Next, we used PCA to project the original data onto
a 4n-dimensional subspace, where n is the number of motions in
each video sequence. Note that both scenarios were implemented
in an affine subspace, thereby ensuring that the sum of the feature
points trajectory coefficients was 1.

Fig. 8(a) and (b) shows the influence of parameters λ and α
under two experimental settings of the Hopkins 155 database on
the average clustering error of SLRR. It is clear that increasing α



Fig. 6. Representative examples of the affinity graph matrix produced when using different algorithms for the Extended Yale Database B with five subjects: (a) SLRRPCA ,
(b) SLRRRP , (c) LRRSC, (d) LRR , (e) SSC, (f) LSA and (g) LRSC.

Fig. 7. Example frames from four video sequences of the Hopkins 155 database with traced feature points.
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Fig. 8. Influences of the parameter λ of SLRR. (a) The average clustering error of SLRR on the Hopkins 155 database with the 2F-dimensional data points. (b) The average
clustering error of SLRR on the Hopkins 155 database with the 4n-dimensional data by applying PCA.

Table 6
Average clustering error (%) and mean computation time (seconds) when applying
the different algorithms to the Honkins 155 database, with the 2F-dimensional data
points.

Algorithm Error Time

Mean Median Std. Max.

SLRR 0.88 (3) 0 (0) 3.63 (9.33) 38.06 (49.25) 0.09 (0.09)
LRRSC 1.5 0 4.36 33.33 4.71
LRR 1.71 0 4.86 33.33 1.29
SSC 2.23 0 7.26 47.19 1.02
LSA 11.11 6.29 13.04 51.92 3.44
LRSC 4.73 0.59 8.8 40.55 0.14
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from 1 to 2 produced higher clustering performance. For example,
the clustering error varies from 0.88% to 4.22% while λ ranges from
1e�3 to 1e�2 with α¼ 2 in Fig. 8a. If λ ranges from 4e�3 to 7e�3,
the clustering error appears to change only slightly, varying from
0.88% to 1.04% in Fig. 8(a). However, SLRR suffers from a decline in
clustering performance when α continues to increase from 2 to
4 in Fig. 8(a). We observed a similar influence of parameters λ and
α in Fig. 8(b). This implies that the clustering performance of SLRR
on the Hopkins 155 database remains relatively stable for a large
range of λ with α¼ 2.

Tables 6 and 7 show the average clustering errors of the dif-
ferent algorithms on two experimental settings of the Hopkins 155
database. SLRR obtained 0.88% and 1.3% clustering errors for the
two experimental settings. In both experimental settings, SLLR
significantly outperformed the other algorithms. We used the
normalization step of symmetric low-rank representation to
improve the clustering performance to further seek an affinity
matrix. Under the same parameter settings, we also report the
clustering error of SLRR within parentheses without the normal-
ization step in Tables 6 and 7. The normalization step helps
improve the clustering results. Compared with LRR, SLRR achieved
0.83% and 0.87% improvement on clustering errors for the
two settings, respectively. The improvement comes from the
advantages of the compactness of the symmetric low-rank
representation. LRR has lower errors than SSC owing to the post-
processing of its coefficient matrix. This also confirms the neces-
sity of exploiting the structure of the low-rank representation for
an affinity graph matrix. Besides, LRSC still has higher errors than
the other algorithms in both experiments.

The computational cost of SLRR is much lower than that of the
other algorithms owing to its closed form solution. High clustering
performance can also be obtained when the original data are used
directly in SLRR. This phenomenon occurs because most sequences



Table 7
Average clustering error (%) and mean computation time (seconds) when applying
the different algorithms to the Honkins 155 database, with the 4n-dimensional data
points obtained using PCA.

Algorithm Error Time

Mean Median Std. Max.

SLRR 1.3 (2.42) 0 (0) 5.1 (8.14) 42.16 (49.25) 0.07 (0.08)
LRRSC 1.56 0 5.48 43.38 4.62
LRR 2.17 0 6.58 43.38 0.69
SSC 2.47 0 7.5 47.19 0.93
LSA 4.7 0.6 10.2 54.51 3.35
LRSC 4.89 0.63 8.91 40.55 0.13
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are clean, i.e., low-rankness property. However, this does not deny
the importance of pursing an alternative low-rank matrix by low-
rank matrix recovery techniques. Clean data are not easily
obtained because of noise or corruption in real observations.

4.4. Discussion

Our experiments show that the performance of SLRR and LRR
differs, with a relative clustering error reduction of more than 10%
in some cases. In what follows, we discuss the connection between
SLRR and LRR.

First, LRR not only seeks the best low-rank representation of
high-dimensional data for matrix recovery, but also recovers the
true subspace structures. Contrarily, SLRR focuses only on how to
recover the true subspace structures. Generally, zij differs from zji
in the low-rank representation Z obtained by LRR, where zij or zji
depicts the membership between data points i and j. LRR con-
structs the affinity for the spectral clustering input using a sym-
metrization step of the low-rank representation results, i.e.,
Zn ¼ Zj jþ ZT

��� ���. Evaluating the membership between data points,
however, is not good, because LRR attempts to enforce symmetry
of the affinity using this trick, whereas SLRR directly models the
symmetric low-rank representation, thereby ensuring weight
consistency for each pair of data points. The symmetric low-rank
representation given by SLRR effectively preserves the subspace
structures of high-dimensional data.

Second, SLRR further exploits the intrinsically geometrical
structure of the membership of data points preserved in the sym-
metric low-rank representation. Note that the mechanism for
exploiting this has been elaborated in our previous work, i.e., LRRSC
[37]. In other words, SLRR makes full use of the angular information
of the principal directions of the symmetric low-rank representa-
tion so that highly correlated data points of subspaces are clustered
together. This is a critical step in calculating the membership
between data points. Fig. 6 shows that the block-diagonal structure
of the affinity produced by SLRR is more distinct and compact than
that obtained by LRR. The experimental results demonstrate that
this significantly improves subspace clustering performance.

Finally, SLRR provides a more flexible model of the low-rank
representation. SLRR integrates the collaborative representation
combined with low-rank matrix recovery techniques into a low-
rank representation with respect to various types of noise, e.g.,
Gaussian noise and arbitrary sparse noise. Additionally, it avoids
iterative SVD operations while learning a symmetric low-rank
representation. However, we need to emphasize that SLRR does
not pursue the lowest-rank representation of data for evaluating
the membership between data points. Strictly speaking, it does not
make sense to pursue only the lowest-rank representation of data.
Let us consider the LRR model again. The corresponding optimal
solution can be obtained for an arbitrary value of parameter λ in
problem (3). Obviously, we cannot determine which low-rank
matrix of the optimal solution is desirable without prior knowl-
edge of the data set. Hence, it is reasonable that SLRR tries to
obtain a symmetric low-rank representation of the data. This also
explains why we use the constraint, rankðAÞrr, to guarantee the
low-rank property of the symmetric representation of the data in
problem (5) or (8). In fact, in our experiments, we have also dis-
cussed some of the detail involved in estimating the rank of a data
matrix of images of various examples, for example, images of an
individuals face and handwritten images of a digit.
5. Conclusions

In this paper we presented a method called SLRR, which considers
collaborative representation combined with low-rank matrix recov-
ery techniques to create a low-rank representation for robust sub-
space clustering. Unlike time-consuming SVD operations in many
existing low-rank representation based algorithms, SLRR involves
learning a symmetric low-rank representation in a closed form
solution by solving the symmetric low-rank optimization problem,
which greatly reduces computational cost in practical applications.
Experimental results on benchmark databases demonstrated that
SLRR is efficient and effective for subspace clustering compared with
several state-of-the-art subspace clustering algorithms.

SLRR is a simple and effective method, which is considered an
improvement over our previously proposed LRRSC [37]. However,
several problems remain to be solved. In the implementation of
SLRR, it is important how to introduce low-rank matrix recovery
algorithms, because a proper alternative low-rank matrix may sig-
nificantly improve the subspace clustering performance. In addi-
tion, the determination of the parameter r for pursing an alternative
low-rank matrix by low-rank matrix recovery or feature extraction
is also an intractable problem. Moreover, it is difficult to estimate a
suitable value of λ without prior knowledge. In future work, we will
investigate these problems for practical applications.
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