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Abstract

Recognition of human actions from digital video is a challenging task due to complex interfering 

factors in uncontrolled realistic environments. In this paper, we propose a learning framework 

using static, dynamic and sequential mixed features to solve three fundamental problems: spatial 

domain variation, temporal domain polytrope, and intra- and inter-class diversities. Utilizing a 

cognitive-based data reduction method and a hybrid “network upon networks” architecture, we 

extract human action representations which are robust against spatial and temporal interferences 

and adaptive to variations in both action speed and duration. We evaluated our method on the 

UCF101 and other three challenging datasets. Our results demonstrated a superior performance of 

the proposed algorithm in human action recognition.
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1. Introduction

Action recognition is an important field in computer vision. In recent years, this field 

attracted significant attention for its great value in both research and application [1,2]. 

However, owing to the huge amount of computation required, fickle interference factors and 

high subjectivity of human actions, recognizing human actions is a challenging task, 

especially in real-world environments.

To achieve a high recognition accuracy, the recognition system needs to take full advantage 

of various useful clues to understand video contents, including not only the static elements 

(e.g., senses categories, observed objects and environments), but also dynamic information 

such as the motion’s trajectory, transition and saltation. However, understanding video 

contents has been extremely difficult in real-world scenarios. The following problems have 

been long-standing:
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1. Spatial domain variations: Spatial domain variations mainly refer to the fact that 

images’ appearances are diverse. Videos may suffer from noise. The action 

entities may have different shapes and scales, and the differences in viewing 

location may lead to occlusion.

2. Temporal domain polytropes: Temporal domain polytropes refer to the 

phenomenon that actions may be distorted on the timeline. Usually, the same 

actions in two cases may also have different velocities and durations. We call it 

the actions’ time domain multiscale property.

3. Inter-class and intra-class correlations: Naturally, different classes of actions may 

share some similar local motions, while two instances that belong to the same 

category may yet have quite discrepant motions in some local time. To achieve a 

satisfactory action recognition, the interclass differences must be enlarged while 

the intraclass differences must be reduced.

Generally, most of existing approaches [3–8] address a single aspect of the action 

recognition problem. For example, [7,8] target on camera motion problem, which is one 

factor of spatial domain variations. Refs. [3,4] redefine the notion of “pose”, and propose a 

two-layer classification/regression model for detecting people and localizing body 

components. Refs. [5,6] employ time independent representations to deal with the problem 

of time-scale variations. Ref. [9] uses dynamic time warping (DTW) to regulate intra- and 

inter-person variabilities. Many of these approaches produce good results in their target 

problems, however, in real-world videos, these issues are usually entangled with each other, 

making these approaches ineffective. Moreover, most of existing methods used some simple 

assumptions for model construction, which may not be satisfied in real-life environments.

Although these problems represent enormous challenges to the existing feature designing 

methods, action recognition has numerous practical applications and these problems need to 

be solved. An important question is asked how we jointly address various typical problems, 

rather than just one at a time.

In this paper, we consider all three problems simultaneously, and jointly search and optimize 

our solution by hybrid model designing. Inspired by the data-driven feature learning 

methodology, we approach the solution along two paralleled lines. (1) Data: Inspired by 

methodologies in cognitive neuroscience, we propose a data preparation method specially 

designed for long-term action recognition. (2) Feature extraction: We propose a hybrid deep 

neural network to hierarchically extract features in space, local time and global sequence and 

then fuses them to obtain integrated and highly abstract representation of human actions.

We attempt to provide an architectural framework for the action recognition problem. 

Intuitively, this framework could be described as a “network upon networks” architecture, 

which is composed of a data module and a learning module. The learning module again 

includes local motion learning and global sequence learning submodules. Our proposed 

learning module is called Adaptive Recurrent-Convolutional Hybrid (ARCH) Networks.
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Contributions of this work are two folds: (1) a problem-oriented long-term key data selection 

method based on cognitive theory, and (2) a time–space–sequence combined feature learning 

method implemented by a hybrid deep neural network.

Our feature extraction and action recognition method is evaluated using a common dataset 

UCF101 [10]. We also examine the generalization of feature extraction using other datasets 

by transfer learning. Experiments demonstrated that our method outperforms state-of-the-art 

deep-learning-based methods [11–14].

The rest of this paper is organized as follows. In Section 2, we provide a short review on the 

research status. Our model design is described in Section 3. The details about the 

implementation and training methods are given in Section 4. We demonstrate our 

experimental results in Section 5, and conclude our work in Section 6.

2. Related works

Action recognition has been studied by computer vision community for decades. Early 

studies [15,1] aimed at simple actions such as posture changes, body tracking, and simple 

motions. With rapid developments in feature engineering techniques, studies on human 

actions are gradually advanced towards practical applications. In various methods reported, 

features (and the accesses to good features) are always the core of this research field.

Hand-crafted feature engineering: Hand-crafted designing has long been a feasible way to 

acquire effective features. A variety of approaches utilizes feature engineering for both low-

level and high-level action recognition tasks. Low-level action recognition methods mainly 

focus on recognizing atomic actions of a person. One class of method is based on 3d space–

time volume, e.g. “space–time shapes” [16] and motion history volumes (MHV) [17]. These 

approaches are good at recognizing transient and periodically repeated actions. As an 

improvement, trajectories-based methods concentrate on some relatively spare key-points or 

curves [7,8]. They improved the robustness to viewpoint variation. Another representative 

direction is lots of feature-based approaches, e.g., local interest points features, appearance-

based local features, poselets methods [3,4]. Comparatively, these methods are more reliable 

in the presence of multiple interferences.

High-level actions are usually composed of a set of simple actions. In modeling sequence 

dynamics, there are classical methods such as state-based methods using Markov models 

[18,19] and graph-based methods [20]. In recognizing multiple people or group activities, 

there are description-based [21] and Bayesian-based [22,19] approaches.

Deep-learning-based methods: In recent years, the deep-learning technique was developed 

which attracted great attention in the computer vision field due to its high performance [23–

28]. Comparing with the traditional methods, deep learning automatically selects features, 

which represents a powerful advantage over other methods. However, for video based action 

recognition, the current deep-learning-based methods [14,29,12] achieved only comparable 

or slightly better performance than the best hand-crafted methods. One reason is that the 

deep model requires enormous data for training. However, high-quality and large sets of data 
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are hard to collect. Besides, video data is far larger than image data, which makes the 

training time unrealistically long even powerful computers are used. Nevertheless, 

explorations on deep learning have exhibited promising results and this technique holds 

promise for a significant advancement in the action recognition field.

Convolutional Neural Networks (CNNs), as a specialized kind of neural network, 

demonstrated powerful abilities with the aid of high-performance computing platforms. 

Extending the 2D CNN, [30] uses 3D convolutional filters to address video processing 

problem. Ref. [11] uses a temporal pooling technique to address temporal fusion problem. 

Considering both the still and dynamic information, [14] presents a special “two-stream” 

network with an impressive performance.

Considering the problem of lacking high-quality labeled data, some studies attempt to 

extracts features in an unsupervised fashion. Generally, most of these works follow the 

encoder–decoder style. Ref. [31] uses the Restricted Boltzmann Machines (RBM) to obtain 

informative but short feature vectors, while [29] uses a Long Short-term Memory (LSTM) 

encoder–decoder framework to learn video representations.

Since it is hard to use a single method to accomplish complex tasks, some hybrid methods 

arise. Classical methods such as Dynamic Time Warping (DTW) [9] and Hidden Markov 

Model (HMM) [32] have been used to model sequence dynamics. Generally, both DTW and 

HMM factor certain hypothesis into local (instantaneous) metrics and transition metrics 

[32]. Ref. [33] proposed a hybrid architecture for human pose estimation, which consists of 

a deep convolutional network and a Markov Random Field (MRF). However, although 

superior in the interpretive perspective, these methods have a drawback in lacking 

representability for complex non-linear problems.

Comparably, the Recurrent Neural Network (RNN) [34,35] is a powerful tool for time–

sequence modeling. As an abstract dynamical system, it can well-represent high-

dimensional hidden states and non-linear dynamics [36,34] which are highly desirable in 

action recognition. Therefore, a natural idea is to jointly use CNN and RNN for spatial and 

temporal feature extraction. Ref. [37] reports an initial work on combining 3D CNNs and 

LSTM. Ref. [29] develops a recurrent convolutional architecture for large-scale visual 

learning.

Recent trends on action recognition can be summarized in two major aspects: (1) large-scale 

action classification in real-world applications; (2) recognition of complex and high-level 

sematic activity, e.g., long-term tasks, interactions, event-oriented, and group activities. We 

believe that more advanced methods will be constantly improved. However, a noteworthy 

problem is how to well integrate these methods in a high-efficiency framework.

3. ARCH networks for action recognition

In this section, we propose a static-dynamic-sequential synthesis feature-learning method, 

aiming at extracting a combined action representation in the temporal, spatial and sequential 

domains.
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Usually, a complex human action consists of a set of sub-actions which are short and 

discriminative motions. Each sub-action is characterized with features in time and space. 

These features distribute in different stages of action sequences, providing important cues 

for recognizing the action. In the rest of this section, we first give an overview of our ARCH 

networks. Then, we will describe the details of this model individually.

3.1. Architecture overview

Overall, an ARCH network is composed of two modules, a data module and a feature 

learning module.

Data module: The data module performs data-preparation for the high-level feature 

extraction system. The main functions of this module are compressing data and solving the 

time warping problem. It selects key-frames, generates short-memory sequences (SMSs), 

and performs hybrid data packaging. Its output is fed to the feature-learning module. Details 

of the data module are described in Section 3.2.

Feature learning module: The feature learning module is composed of two parts (Fig. 1) 

where the lower part is a group of specially designed CNNs for extracting key motion 

patterns. Different from the standard CNN, we design a Temporal–Spatial-Fusion 

Convolutional Neural Network (TSF-CNN), which adopts a double-channel architecture 

specifically used for static and dynamic feature exaction. The details of TSF-CNNs are 

provided in Section 3.3. The upper part of the ARCH network is a recurrent network for 

modeling the distribution patterns of typical motions during a human action. The output of 

the recurrent network is integrated ARCH features with respect to the input video. This part 

will be described in Section 3.4.

Our goals of the ARCH network design are described below.

1. The multi-layers fusion feature learned from TSF-CNN should be robust against 

some typical interferences. This robustness is achieved by a unique nosing-

denosing training (see Section 5.2.1). This design addresses the first problem 

stated in the beginning of the Introduction section.

2. Recognizing sparse key-motions (in SMSs) is an effective method to overcome 

the problem of speed variation in an action. Thus, it can be used to solve the time 

domain multi-scale problem (the second problem stated previously). In addition, 

it can remarkably reduce the amount of data to be processed, greatly reducing the 

computational load, which is important in long-term action recognition.

3. Although different classes of action may share common motions at a certain 

time, their orders are unlikely to be the same. The recurrent neural network can 

well model the nonlinear correlation, i.e., the inter-class and intra-class 

variability. This addresses the third problem.

3.2. Data preparation: unsupervised key-motions segmentation

The purpose of data preparation is two-fold. First, it reduces the amount of data to be 

processed. Since videos are rapidly generated and much larger than static images, learning 
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directly from raw data frame-by-frame are computational expensive and redundant. 

Essentially, not all frames are significantly discriminative, and some outliers may even play 

negative roles in action recognition. Hence, utilizing all data (every frame) is not productive, 

and bypassing unimportant frames is a better approach.

Second, data preparation provides a solution to the time-domain multiscale problem. 

Different categories of actions always have different and varying durations. We use the key-

frame concept to partition the action into different sub-actions and normalize them. Our 

concept is implemented by key-frames selection and short-term memory sequence 

generation.

3.2.1. Sparse key-frames selection—Key-frames usually refer to frames at start and 

end points of a smooth motion [1]. Usually, smooth and radical motions are continuously 

distributed in an action sequence. In neuroscience [38,39], it has been demonstrated that the 

human visual perception system is quite sensitive to saltation which refers to a sudden and 

significant change in direction, speed or frequency of the motion. This discovery implies that 

motion transitions play an important part in cognition and recognition. Based on this 

knowledge, we employ some low-level visual processing techniques to segment a motion 

into relatively smooth sub-sequences.

Naturally, this problem could be converted to the sequence partition problem, which can be 

solved by unsupervised clustering methods. However, we cannot assign the number of 

motion cluster centers easily because we do not have the appropriate number of key-frames. 

We approach this problem using a time-constrained clustering method based on the 

FastSearch [40] algorithm to group frames into several fragments. The border time-point of 

each fragment is the key-frame that we want.

Given a sequence S, let the frame at the moment t be ft. We treat the frame order as an extra 

feature dimension in addition to frame data. Formally, the input to the timing-constrained 

cluster is a vector set V, which is composed of vj, V = vj| j ∈ (1, t) where vj is also a 

compound vector, given by

(1)

where f⃗ is the vector form of ft, f⃗ = f(x,y), 1 ≤ x ≤ h, 1 ≤ y ≤ w, h and w are the image height 

and width, ω is the time dimension weight, tnorm is the normalized time vector, .

However, in fact, the clustering cannot work well if it is directly conducted upon original 

high-dimensional data. In Eq. (1), f⃗i is a raw video frame. In order to achieve good 

performance, the dimension of the input vector should be reduced substantially. Despite this 

reduction, the action information in the raw data should be preserved as much as possible. In 

most cases, the input data is highly redundant. Hence, we perform dimensionality reduction 

employing the signal’s sparse prior.
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Compressed sensing [41,42] is an advanced signal processing technique. In this paper, we 

use a sparse measurement matrix [43] R which possesses the Restricted Isometry Property 

(RIP) that reserves the metric distance of data samples in a low-dimensional subspace to 

effectively convert the original data from the image space to a low-dimensional, compressed 

space.

We first construct a random sensing matrix [43] by

(2)

where r(i, j) denotes an element in R. It has been proven that matrix R satisfies the Johnson–

Lindenstrauss lemma [44], which theoretically guaranteed its Restricted Isometry Property 

(RIP).

Then, we conduct dimensionality reduction from f⃗j to xj, by multiplying it with the sparse 

matrix R:

(3)

xj is the dimension-reduced vector.

We replace fj⃗ with xj for clustering. An example is demonstrated in Fig. 2.

Next, action sequence S is segmented into small sub-sequences:

(4)

(5)

where si is a sub-sequence of video sample S, and fj denotes the frame of si.

3.2.2. Short-memory sequence generation—Short-memory sequence (SMS) is 

designed for two purposes. First, different instances of the same action may have various 

relative velocities. Short-memory sequence normalize speed variations (question 2 

mentioned in Section 1), and rapidly achieve week alignment of sequences.

Another important function of SMSs is dealing with long-term issues. In fact, SMSs 

simulate the Short-Term Memory [45] of humans’ cognition system. In 1950s, George 

Armitage Miller, one of the founders of cognitive psychology, conducted a series of quantify 
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research with respect to the short-term memory capacity. One most famous conclusion is 

that humans’ working memory should not be measured by the amount of information, but 

the numbers of “Chunks” [46,47]. Further speaking, human could hold approximately seven 

chunks (so it is called “the magical number seven”) in short-term memory.

The mechanism behind this conclusion is quite attractive. It means that when dealing with 

high-dimensional and rapidly generating data, the working pattern of the human brain is not 

running through all information, but processing several small chunks of information each 

time. This conclusion may partially contradict some viewpoints many studies followed, e.g., 

making the sequence recognition as long as possible. However, this is an effective pattern, 

particularly when facing very long-term tasks.

Inspired, we artificially generate SMS chunks. The method is discrete sampling. In this 

paper, we propose a Gaussian Sampling method.

Gaussian sampling: The “Gaussian Sampling” can also be called the Gaussian contour 
sampling. It assumes that the importance of frames before and after a key-frame satisfies two 

normal distribution with σ1 and σ2. Sampling points are just at the Gaussian curve’s 

contours (Fig. 3). For different lengths of subsequences, sigma parameters are used to adjust 

sampling intervals, so as to bridge the gap of different cases. The details are shown in 

Algorithm 1.

In Algorithm 1, ytc is a predefined truncation value (the Motion-bias Correction Parameter, 

or MCP). Intuitively, it controls the Gaussian curve’s shape. The larger this value is, the 

distance between each sampling point is more uniform, which means the memory’ forgetting 

degrees is set to be weaker and key-frames’ effect is therefore less salient, vice versa.

Algorithm 1

Gaussian sampling.

INPUT: S = {s1, s2, …sn}, s = {f1, f2, …fm}, k = {k1, k2, …kn}, ytc;

for each ki do

 set , calculate the σl;

 Δyl = npd(0, 0, σl)/3

 set , calculate the σr;

 Δyr = npd(0, 0, σr)/3

 x0 = 0;

 for −3 ≤ k < 0 do

  xk = norminv(kΔyl, 0, σl);

 end for

 for 0 < k ≤ 3 do

  xk = norminv(kΔyr, 0, σr);

 end for
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end for

OUTPUT: X = xk | − 3 ≤ k ≤3.

The MCP’s setting is based on statistics. We extracted key-frames from more than 20,300 

video clips from which the average interval between neighboring key-frames is 12.25 frames 

(in 25fps). When the MCP is set to be large (greater than 0.03), the variance of Gaussian 

distribution increases considerably. Then, the Gaussian sampling in this situation is actually 

close to an average sampling (temporal average pooling) within memory spans, which 

means it has lost the ability to normalize motion bias. However, if this value is too small 

(lower than 0.01), sampled frames will gather around the moment that is far from the key-

frame. This will cause a situation that motion-smooth frames impact is too large, while the 

effects of key-frames are suppressed. This will significantly reduce the recognition 

performance. And it may cause instability in the training process. After careful adjustments, 

we found that the recognition accuracy was not significantly changed when the MCP was 

between 0.01 and 0.025. Considering the long training time, we adopted a relatively 

moderate value (0.02) empirically as the recommended truncation value.

It should be noted that one SMS’s border may touch adjacent sub-sequence (si+1) in order to 

achieve associated memory (or context). This elastic structure enlarges the range of 

associated memory.

3.2.3. Data packaging—Next, we conduct hybrid data packaging. The final data structure 

can be represented as “RGB+XY+T”, where “RGB” denotes the color channel, “XY” is the 

optical flow field, and “T” is the time dimension. It is constructed by both raw and artificial 

data.

We first extract the foreground region for each frame f i in SMS, then calculate the optical 

flow displacement field. The complete structure of the output data is as follows:

(6)

where Cr, Cg and Cb are color channels. X and Y are corresponding optical-flow field 

components in x and y directions.

Up to here, we have completed the data-preparation. The following is layer-wise feature 

extraction.

3.3. Local (in time) feature extraction

The learning module of ARCH framework is constructed by two main parts. As 

demonstrated in Fig. 1, the lower part is a group of local space–time feature extractors, and 

the upper part is a sequence dynamics extractor. We introduce them separately in two 

sections (Sections 3.3 and 3.4) for ease of description, but actually they tightly work 

together.
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In this section, we propose a Temporal–Spatial-Fusion ConvNet (TSF-CNN) framework, 

which is designed for learning combined short time action representations in the spatial and 

temporal domains. We redesign a convolutional neural network, and apply it to the short-

term action feature extraction.

Convolutional Neural Networks (CNNs) are famous for their powerful features learning 

abilities. And CNN-based methods achieve superior results on many static visual recognition 

tasks [23,25,27]. However, in video tasks, dynamic features are more important. A local (in 

time) dynamic feature captures short time motion patterns, such as simple movements, 

single motions or poses.

We consider extending CNN to the domain of dynamic feature learning. However, original 

CNNs are designed for static tasks such as image classifications and sense recognition, it is 

not appropriate to apply it directly to non-static/context-sensitive tasks. A challenge is how 

to embed motions information into existing static-feature learner architecture.

The Temporal–Spatial-Fusion ConvNet (TSF-CNN) adopts a double-channel structure (Fig. 

4): one Spatial-Net (S-Net) and one Temporal-Net (T-Net), which are abreast laid on the 

lower part of the model. The S-Net performs stacked 2d convolution on feature maps from 

image data, while the T-Net performs 3d convolution on the movement vector fields. Then, 

the Fusion-Net (F-Net) fuses static and dynamic informations from these two nets.

3.3.1. S-Net: stacked volume convolution in spatial domain—The S-Net is a 

stacked multi-layers convolutional network. It focuses on images’ spatial information.

The structure of the S-Net (Fig. 5) is similar to the classical LeNet [48] model. Stacked 2D 

filters capture spatial features of images, i.e., edges, corners, and more complex patterns. 

However, the convolution operation in S-Net is organized in volume, i.e., a group of 

convolution kernels separately corresponds to a volume of feature maps.

The volume convolution operation is formalized as follows:

(7)

where max(0, x) is the rectified linear unit (ReLU) activation, b is the bias, m denotes the 

number of feature-maps, P and Q are the height and width of one feature map, ω is the 

weight matrix.

We perform volume convolution operations on feature maps, which are originally derived 

from full images, i.e., including not only the foreground (movement region), but also the 

background. This is different from some methods which discard background and purely 

focus on movement regions. We argue that background regions provide important sense 

context information, which is helpful for recognition. For example, the motion patterns of 

“Diving” and “TrampolineJumping” are quite similar (Fig. 6), but they can be easily 
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distinguished by human because the background environments are quite discriminative. 

Hence, we insist on reserving background information.

In our framework, the S-Net consists of five main layers, each of which has different sub-

layers such as convolution (c), pooling (p), activation (a), and normalization (n). The 

detailed configurations of the S-Net are listed in Table 1.

3.3.2. T-Net: stacked cube convolution in temporal domain—In the S-Net, we use 

2d convolution to capture spatial features. The T-Net extracts motions’ movement patterns 

on multiple contiguous frames (Fig. 7). This is achieved by cube convolution operations 

upon 3d spatio-temporal data.

Formally, the temporal-spatio cube convolution is represented as follows:

(8)

where max(0, x) is the ReLU activation function, b is the bias, m denotes the number of 

feature-maps, P and Q are the height and width of a feature map, t is the temporal size of the 

SMS.

The cube convolution is similar to [30], however, we do not have overlapping stride on the 

time dimension, and use the ReLU rather than hyperbolic activation.

The optical flow is focused on the foreground. It does not take the background into 

consideration. This is based on the prior knowledge that key-motions are mainly on 

foreground regions. This approach can reduce interference, because the background may 

also have movement but it is less useful for recognition.

The T-Net in our framework also contains five main layers. Configurations of all sub-layers 

are listed in Table 1.

3.3.3. F-Net: spatial and temporal information fusion—The F-Net is a two-layer full 

connected network (Fig. 8), which is designed for feature fusion and selection.

When used as a part of the ARCH network, the F-Net does not have a classification layer. 

However, for the purpose of step-wise training (Section 4.1), it needs to add a loss layer 

during training temporarily. In our implementation, we use softmax with L1 regularization 

for feature selection. Hence, the complete loss function is as below

(9)

where a(x) = g(Wx+b) and θ = {W(1), b(1), W(2), b(2), …, W(l + 1), b(l + 1)}.
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Considering the magnitude of parameters, we have to carefully handle overfitting. In F-Net, 

we leverage a feature noising technique (the dropout training), to overcome overfitting.

The TSF-CNN can be used in standalone when state and sequence problems are not 

considered, e.g., short animations’ classification or dynamic pictures’ recognition. However, 

since we apply it to the long-term video tasks, time-sequences cannot be neglected. We need 

to model sequence dynamics.

In the ARCH network, a group of TSF-CNNs are ruled by a Recurrent Neural Network 

(RNN).

3.4. Sequence dynamics extraction

In action recognition, errors may happen when different categories of actions possess similar 

sub-actions. This is a typical class of errors, which is caused by intra-class and inter-class 

similarity. Some standard methods such as video pooling or sampling are challenged when 

applied to encode long-term actions, partly because these methods do not consider the 

relationship between sub-actions. However, the sequentiality provides important support for 

solving this problem.

The Recurrent Neural Network (RNN) [34,35] is a powerful tool for time–sequence 

modeling. Comparing with other approaches such as HMM, the RNN provides further data-

driven character and generalization.

As an abstract dynamical system, RNN could well represent high-dimensional hidden states 

and non-linear dynamics [36,34]. The special rollback structure (Fig. 9) between hidden and 

input layers allows hidden neurons to remember the history of previously processed status. 

Theoretically, an RNN with a sufficient number of hidden units can approximate any 

measurable sequence-to-sequence mapping to arbitrary accuracy [49]. A standard RNN’s 

[50] output is calculated by the following equations:

(10)

(11)

However, although it is superior in theory, some drawbacks limited its usage in some real-

world tasks. For example, RNN is difficult to train. Some studies attribute the training 

problem to the reason of “pathological curvature problem” [51]. Hence, some 2nd-order 

optimization methods are proposed to substitute 1st-order optimization methods. However, 

recent studies show that previous attempts at training RNN failed partly due to improper 

random initialization methods [34]. This opinion directly contradicts widespread beliefs 

about the inability of 1st-order methods.

We consider this problem in another way. Most approaches directly train RNN upon raw 

data, however, we prefer the RNN modeling high-level (more abstract) information. 
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Although RNN has a wide range, the depth of model’s abstraction is not sufficient. A deeper 

feature pre-extraction can get rid of the unnecessary information, and help the RNN to work.

3.4.1. Memory-weights-independent RNN—The TSF-CNN is an initialization for 

high-level feature extraction. In our work, RNN receives input data from TSF-CNNs’ output. 

This design reduces sequences’ length, so as to help RNN overcome training problems.

Furthermore, we make an improvement to the standard RNN model. In the original RNNs, 

weight parameters are shared over different time steps, so as to avoid the parameters grow 

exponentially with the length of sequence. The price to be paid for that advantage is that 

optimizing the parameters is more difficult. However, in ARCH network, thanks to the 

SMSs and TSF-CNNs, the sequences imputed into the RNNs are much shorter than original 

sequences. We hence can use non-shared parameters in ARCH networks.

As shown in Fig. 10, in the ARCH network, an RNN is connected with multiple TSF-CNNs. 

For each time step t, the output of TSF-CNN is a vector x(t). Correspondingly, it is 

multiplied with a weight matrix Ut, which is specially for the current time-step and non-

shared with others.

The outputs of the hidden layer and the output layer are computed as follows:

(12)

(13)

For the reason that SMSs are much shorter (usually less than 10 steps) than original video 

frames, it suffers less from weight decay. This advantage is more significance for long 

actions. Meanwhile, owing to independent weights, it is more dedicated to sequence states’ 

changes.

The RNN’s output is a combined representation with respect to the input video. And this 

representation is generalized for typical video tasks such as video classification, action 

recognition, and video parsing. In classification tasks, RNN’s output vector is connected to a 

classification layer so as to convert the output into a probability distribution with respect to 

categories. We simply use a softmax layer here. The RNN is trained by standard BPTT 

algorithm [52,53]. The final output is a predicted probability distribution (a 101 dimensions 

vector) w.r.t. the action’s category.

4. Implementation details

The ARCH network is a big model, which is not only on aspect of model’s depth 

(abstraction levels), but also on width (temporal context range). One advantage of large 

models lies in the information capacity, meaning that it can store knowledge in a larger 

capacity, and utilize more extensive context information. However, drawbacks are also 
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obvious. It is computationally time-consuming, and may suffer from vanishing gradient (or, 

unusual, explosion) problem, which is commonly believed to be one factor of training 

failure.

Although these problems are inherent, we take some necessary measures to deal with them. 

Approaches are both in aspects of models’ design and training method.

4.1. Step-wise training and global fine-tuning

The ARCH network is stepwise trained, which means we do not optimize the whole model 

simultaneously, but train each part asynchronously. Generally, this is achieved by three 

stages.

Stage 1: Train TSF-CNNs group separately. We first add a classification layer to the 

top of the TSF-CNN, and use the SGD algorithm to update weights at each back-

propagation progress. We use 64 samples each mini-batch (momentum=0.9, dropout 

rate=0.9). The learning rate is initially set to be 10−2, and this value is decreased to 

1/5 every 10,000 iterations.

Stage 2: Train RNN separately. When the test accuracy outperforms an acceptable 

level (70%, set by us), the RNN’s training is activated. We discard the temporary 

classification layer of TSF-CNN, and connect the penultimate layer to the RNN. 

During this stage, gradients of errors are temporarily not continually downward 

propagate to the TSF-CNNs.

Stage 3: Global fine-tuning. This is achieved by rounds of global back-propagation. 

The learning rate is kept on 10−3. The error is back propagated from RNN to TSF-

CNN. After 12,000 iterations, one round of training completes.

This training method is more complex than directly end-to-end training from the beginning. 

However, our test demonstrates that, achieving similar accuracy, this method costs less time. 

Although a theoretical proof could not be given so far, intuitively, this approach can be seen 

as optimization by adding supervised information step-wisely, so as to boost each parts’ 

performance and achieve a global optimization finally. Besides, another advantage is that it 

allows us solely pre-training some modules on other more diversified dataset, which plays an 

important role in boosting robustness.

Stages from 1 to 3 constitute one round of whole model training. It can obtain better 

performance if we perform several rounds of training, especially combined with some tricks 

such as artificial data augmentation and pre-training on S-Net and T-Net. However, that 

depends on the expectation between time consuming and model accuracy.

4.2. Distributed implementation

The TSF-CNN is implemented based on the open-source Caffe project [54], and the RNN is 

based on the RNNLM [55]. We conduct many customized modifications.

Due to huge computational complexity, we utilize distributed computing techniques to 

accelerate the processing. One latent property of ARCH network is that its parallelism in 

both model and data. In our implementation, computations are physically distributed among 
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multiple servers. Different from some popular architectures that use one server with multiple 

GPUs, we employ a distributed GPU cluster for offloading computation.

The system follows a master–slave style. One server runs RNN, and the other three run TSF-

CNNs. They are connected by 10 Gbps ethernet. To eliminate the time delay caused by data 

handling, each server reserves a copy of the entire dataset. They pass messages and 

necessary intimidate results among nodes.

Totally, we trained 10 TSF-CNNs, 9 for each key-motion step, and 1 for any else. Notice that 

TSF-CNNs are not trained simultaneously. We first train one TSF-CNN. After 1 round of 

whole samples iteration, the next TSF-CNN’s training is started. One-by-one, the former 

provides initialization for the next. This is for the purpose of overcoming the bias in samples 

amount, and decreasing the time-consumption.

The whole framework is developed by C+ + for efficiency. The training lasted 18 days.

5. Experiments

We focus on the UCF101 [10] dataset to evaluate our methods. The UCF101 dataset 

contains 13,320 clips (101 actions categories) which are collected from internet videos. 

Samples in UCF101 dataset are unconstrained real videos, and they are unprocessed with 

camera motion, various lighting conditions, partial occlusion, low resolution, etc. Besides, 

we also evaluate our work on other popular datasets, including HMDB51 [56], KTH [57], 

and Holly-wood2 [58] dataset.

5.1. Results

5.1.1. Tests on the TSF-CNN—We first evaluate the performance of TSF-CNN. Some 

early works demonstrated that training ConvNet on single dataset may cause over-fitting 

[14]. Considering that, we pre-train the TSF-CNN on ILSVRC-2012 [59] (just for the S-Net) 

and HMDB51 [56] (just for the T-Net) dataset.

In Table 2, the TSF-CNN is compared with some state-of-the-art methods, which can be 

categorized into two classes. Refs. [10,60–62] are all feature-designing-based methods using 

HoF, DCS descriptor, combined multi-descriptor or trajectory as basic features. Refs. [11–

14,64] are all feature-learning-based methods employing CNN, 3D-CNN, heterogeneous-

data CNN, or LSTM as core feature extractor. The results for UCF101 and HMDB51 dataset 

are reported in Table 2. For a given video, each TSF-CNN at t output a prediction. We report 

the dominant values to evaluate the performance of TSF-CNN.

As shown in Table 2, the TSF-CNNs’ recognition accuracy outperforms state-of-the-art 

feature-designing-based and deep-learning-based methods. Specially, we examine the 

differences between deep-learning-based methods. Ref. [11] uses temporal convolution and 

the “Slow Fusion” technique, which is analogous to our S-Net and F-Net. Ref. [12] uses 3D 

convolution that is similar to the cube convolutions in T-Net although they are quite different 

in detail. However, [11,12] do not have motion information embedding. Although they have 

deeper network configurations, we outperform these methods by more than 8%. Besides, 
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both [14] and TSF-CNN adopt juxtaposed networks to accommodate motion information. 

TSF-CNN have a slightly better performance.

Compared with these methods, we speculate that optical flow (or prior-knowledge-based 

data preprocessing) plays a crucial role in TSF-CNN. To verify this speculation, we examine 

the contribution of motion information in TSF-CNN. Two scenarios are compared: (a) 

discarding T-Net’s output in F-Net; (b) discarding S-Net’s output in F-Net. Then, we retrain 

the TSF-CNN. The results are shown in Table 3.

From Table 3, we can observe that the TSF-CNN without T-NET is significantly weaker 

than integrated TSF-CNN. This test quantitatively verified T-Net’s importance: motion 

information embedding is indispensable in our model. Some similar conclusions also can be 

found in [14,8].

5.1.2. Tests on the ARCH network—Furthermore, we evaluate the ARCH network, and 

take the UCF101 dataset as a benchmark test. We run seven rounds of stepwise training as 

introduced in Section 4.1.

Comparison with the state-of-the-art methods: We make a comparison with some state-

of-the-art works, including “Improved Trajectories” [8], “Two-stream” ConvNet [14] and 

“Slow Fusion” CNN [11]. These methods could be categorized into two classes: hand-

crafted feature methods and feature learning methods.

As can be seen in Table 4, ARCH outperforms all other state-of-the-art methods. Refs. [11–

14,29] are deep-learning-based methods. Specially, [29] also follows a hybrid network 

architecture, which use CNN and LSTM as stacked feature extractor. Ref. [13] is a novel 

unsupervised method for video representation. Nevertheless, according to its report, its 

performance relies more on data supply. Generally, they both do not have motion 

information embedding. However, akin to ARCH network’s architecture, they also take 

videos’ global sequentiality into consideration.

Therefore, we investigate the contribution of each part in ARCH networks. In Fig. 11 we can 

observe that, in quality, the RNN’s contribution is not so noticeable. However, we found that 

some samples that are misclassified by TSF-CNNs are corrected by RNN. And most of these 

samples contain some sub-actions which are easy to be confused in some individual time 

points. Hence, we argue that RNN plays a rectification role upon TSF-CNNs.

Transfer learning: To evaluate the generalization performance of ARCH networks, we 

perform cross-dataset evaluation. Leveraging the transfer learning techniques, we examine 

ARCH network’s performance on three popular datasets: KTH [57], Hollywood2 [58] and 

HMDB51 [56] dataset.

We examine two distinct forms of approaches: (1) retraining all layers from scratch; (2) 

retraining the F-Net of TSF-CNN and the classification layer which is upon the RNN, then 

conducting global fine-tuning. To our surprise, the second method performs better than the 

first one. Hence we report the results achieved by the second method (listed in Table 5).
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In Table 5, we can observe that ARCH network’s performance is comparable or better than 

the state-of-the-art techniques.

5.2. Analysis

Recall the three problems which are stated at the beginning of the Introduction section.

5.2.1. Spatial domain variations—Many studies have demonstrated CNN’s superiority 

on learning robust features from raw images [23,66]. A common strategy used for boosting 

the robustness of feature extractors and resisting over-fitting is “data augmentation” [23]. To 

make the feature extractor steadier to spatial domain interference, we add extra training data, 

which simulate the variations in spatial domain.

In ARCH network, we adopt two methods to artificially augment datasets. The first method 

is adding spatial interference (image blur, random occlusion and noises) on original samples. 

It also conducts image mirroring, scaling and cropping operations during training. The 

second method inserts fragments from other clips, which may belong to the same or 

different categories (1:1.5 in quantity). The former aims at boosting TSF-CNN’s robustness, 

and the latter is used to reinforce the RNN’s discrimination to stochastic destabilization. Fig. 

12 demonstrates an example. Totally, we randomly processed 2525 clips (nearly 19% of the 

whole dataset) using the first method, and added 1500 fragments (5–8 frames per fragment) 

for artificial confusion.

As reported in Table 6, we can observe that data augmentation demonstrated effects to the 

recognition performance. By this method, TSF-CNN’s robustness to spatial interference is 

reinforced. And the RNN is more stable to interferences in temporal domain.

5.2.2. Temporal domain polytropes—We employ SMSs to normalize speed and 

compress data. It should be noted that the SMSs are not used for achieving precisely aligned 

sequences. This is because precise alignments are time-consuming, however, our application 

scenario is rapidly generating videos. As a trade-off, the ARCH network is trained on weak 

alignment sequences.

We make a comparison with some precise alignment methods. We use the DTW [9] and the 

GTW [67] method to substitute the SMSs, and set the same sampling rate as SMSs. Then we 

retrain the ARCH network from scratch. The results are reported in Table 7.

Our experiments demonstrated that, for ARCH networks, temporal alignment is important 

for recognition, however, precise alignment is not very necessary. This is because we employ 

RNN to encode sub-actions, while precise alignments are more important to video pooling 

methods.

5.2.3. Inter-class and intra-class correlations—The fundamental reason of 

employing RNNs to enlarge interclass differences is that RNNs are used for modeling the 

probability distribution of sub-actions’ relationships.
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RNNs can be viewed as a directed graphical model [68]. The random variable is the 

sequence of vectors X = (x1, x2, …, xT). For a classification problem, we want to achieve the 

joint probability of a sequence of variables.

A common strategy used for achieving video-level classification is some video pooling-

based methods [69]. For these methods, generally, P(X) is estimated using a subset of 

sequence states

(14)

where si denotes a sampling point.

However, for standard RNNs, the graphical model is generally fully connected, not 

discarding any dependency a priori. Moreover, P(X) is estimated by

(15)

which decompose the joint probability of a sequence of variables into ordered conditionals 

precisely corresponds to the sequence of computations performed by an RNN [68]. Hence, 

the joint probability achieved by RNN is more discriminative to sub-actions’ mutual 

relationships.

To quantitatively evaluate the discriminative ability, we substitute the RNN for a video 

pooling operation, and calculate the cosine similarity of feature vectors of intro-class and 

inter-class exemplars, separately using the video pooling and the RNN. The results are 

shown in Fig. 13.

In Fig. 13(a), we can observe that similarity distributions achieved by video pooling are far 

from 0, and distribute over a large range. These observations indicate that features of inter-

class and intro-class exemplars are low discriminative. However, Fig. 13(b) demonstrates the 

results achieved by the RNN method. We can observe that the similarities of a large 

proportion of inter-class exemplars are very close to 0, which means that the inter-class 

variations are more significant. Meanwhile, the overlapping of these two distributions is 

smaller than Fig. 13(a), which means that the inter-class and intra-class correlations are 

enlarged.

5.2.4. Further discussions

(a) Accuracy vs. sequence length: We found that ARCH networks are good at recognizing 

long sequences. Fig. 14 reports recognition results on samples of different lengths. Fig. 14(a) 

exhibits detailed results on split 1, including samples’ number, proportion and recognition 

accuracy. Fig. 14(b) records accuracies’ tendency, and samples’ quantitative distribution 

across three test splits.
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To the best of our knowledge, the relationship between recognition precision and sequences 

length was not studied adequately in previous works. We reached out the authors of other 

methods to obtain comparison results. Unfortunately, these results were unavailable. Hence, 

we could not give a comprehensive evaluation so far. However, it can be observed in Fig. 14 

that recognition accuracy on long sequences is better than short ones, although former’s 

samples are relatively less. The best results achieve 90%. To some extent, this refiected 

ARCH network’s advantage on long sequence recognition.

(b) Error analysis: Then we investigate the error cases. Some misclassification cases are 

listed in Fig. 15(a). It could be found that most of error cases share some common 

characteristics, e.g., actions and scenes are both very similar (row 1 vs. row 2), actions are 

short and fast repeated (row 3), or actions’ region is very small and complexity is relatively 

low (row 4). On this point, we believe that our SMS selection method still has improvement 

space.

Interestingly, we also found some good performance on several hard decided cases (Fig. 

15(b)), such as fine-grained classifications and long-term actions. For example, row 1 and 

row 2 are “Breaststroke” and “FrontCrawl”, where their senses are almost the same, and 

actions have finely differences (similar cases are “Dive” and “TrampolineJumping”). 

Another case is “HighJump” and “Javelin”, which are both long-term actions and share the 

similar “run-up” progress (about 2/3 length of the whole sequence). On this point, we argue 

that SMS and the RNN have a positive effect.

(c) Data consumption: Another key point is that achieving this result we use less data (Fig. 

16).

For example, the original number of frames in the class “ApplyEyeMakeup” is 24,358. With 

the help of SMS mechanism, only 10,437 frames (about 43%) are enough for our method. 

This means that it just needs to store SMS data instead of complete videos, which could be 

regarded as a summary-like storage. This character is meaningful in production 

environment, especially in internet scale.

On this point, we make a statistics to compare the amount of original data and SMS data. 

The details are listed in Fig. 16. It can be observed that the amount of data of SMSs are 

much less at all classes. The average data usage is 40.95% of the original video data.

5.3. Visualization

In this part, we provide a visual demonstration on features learned by TSF-CNN.

In Fig. 17, the first row includes 7 image frames, which are the image channels (Cr, Cg, Cb) 

of one SMS. The second row is correspondingly 7 feature maps derived from the first 

convolutional layer. They come from one volume filter kernel.

Fig. 18 shows the T-Net features. The first row lists 7 frames which are the optical flow 

channels (Cx, Cy) of a SMS. The second row lists corresponding 6 feature maps derived 
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from one cube convolution kernel. The temporal stride of cube convolutional kernel is 2. 

They are normalized to range(0, 255) for a better display.

6. Conclusion

This paper focuses on improving the long-term action recognition. Our idea is both on 

aspects of data preparation and feature extraction. Utilizing integrated information and 

efficient feature learning method to solve several important problems in action recognition 

domain.

Our work can be concluded as follows:

A. We use unsupervised cluster and data reduction to address the data amount and 

temporal multiscale problem. This idea helps us manage the challenge from 

long-term and high-dimensional data.

B. We design an efficient architecture, the TSF-CNN, an upgraded convolutional 

neural network, for local static and dynamic information abstraction. 

Furthermore, a “network up networks” structure makes an RNN rules a group of 

TSF-CNNs, which seamlessly connects local feature extraction and global 

sequence pattern modeling.

C. We develop a training method to optimize this big model, and utilize some tricks 

to boost its generalization. Besides, we develop a distributed training 

architecture.

Finally, we conduct a suit of experiments. The result demonstrated that we achieve a leading 

result at the UCF101 dataset.

On methodology, we believe that a problem-oriented learner designing and efficient 

optimization method are both very important.

In future directions, we plan to train our model on larger datasets (e.g., the Sport1M dataset) 

which contain more action categories and rich changes. This could help the model achieve 

better generalization ability on big data. Besides, we will establish a long-term action dataset 

for the further studies. We also have the plan to dock the ARCH network with an object 

tracking system.
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Fig. 1. 
Overview of an ARCH network.
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Fig. 2. 
Key-frames of the video sample “vArcheryg01c03”. The first row is key-frames selected 

from original video. The second row is corresponding optical flow diagram.
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Fig. 3. 
Gaussian contour sampling. The x-axis is frame number. The frame at x=0 is the current 

key-frame. Given the key-frame, we sample frames from each side of the key-frame.
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Fig. 4. 
Basic structure of TSF-CNN.
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Fig. 5. 
S-Net of the TSF-CNN.
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Fig. 6. 
(a) is Diving and (b) is TrampolineJumping. Motion patterns are quite similar, but owing to 

the differences in scene, they can be easily distinguished by human.
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Fig. 7. 
T-Net of TSF-CNN.
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Fig. 8. 
F-Net of TSF-CNN.
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Fig. 9. 
A standard recurrent network. Parameters (U, W and V) are shared for all time steps.
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Fig. 10. 
The memory-weights-independent RNN. Ut is non-shared with others.
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Fig. 11. 
TSF-CNN and RNN’s contributions on recognitor accuracy. This figure is best viewed in 

color. (For interpretation of the references to color in this figure caption, the reader is 

referred to the web version of this paper.)
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Fig. 12. 
An example of data augmentation: (a) original frame; (b) blurred frame; (c) noised frame; 

(d) adding random occlusion; (e) adding confusion fragments: red bounding box is an added 

fragment. (For interpretation of the references to color in this figure caption, the reader is 

referred to the web version of this paper.)
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Fig. 13. 
Cosine similarities achieved by the video pooling method and the RNN. Given two feature 

vectors, similarity=1 means they are exactly the same, while 0 indicates decorrelation. This 

figure is best viewed in color: (a) similarity distribution achieved by video pooling; (b) 

similarity distribution achieved by RNNs. (For interpretation of the references to color in 

this figure caption, the reader is referred to the web version of this paper.)
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Fig. 14. 
Recognition results w.r.t. different lengths of videos in UCF101. (a) lists results on split 1, 

including numbers and proportions of samples in each range of lengths, and corresponding 

recognition accuracies. (b) Line chart demonstrates recognition results on three splits. 

Histogram is samples’ quantitative distribution across all splits.
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Fig. 15. 
(a) lists some misclassification cases. Row 1 is “Shaving Beard” actions and row 2 is “Brush 

Teeth”. Senses and motions are both quite similar. Row 3 is some short-term and fast 

repeated actions such as “JumpRope” and “Nunchucks”. Row 4 is several actions that 

perform on small regions, such as “Apply Eye Makeup” and “Apply Lipstick”. (b) lists some 

hard but correctly classified cases, e.g., “Breaststroke” vs. “Front Craw” (row 1, row 2), and 

“High Jump” vs. “Javelin” (row 3, row 4).
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Fig. 16. 
Comparisons on numbers of frames between original video and SMS on 101 classes: (a) the 

1st to the 50th class, (b) the 51th to the 101th class.
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Fig. 17. 
S-NET features. The first row is the RGB channels of a SMS. The second row is their 

corresponding feature maps derived from the first volume convolutional layer.
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Fig. 18. 
T-NET features. The first row is the XY channels of a SMS (visualized in Munsell color 

space). The second row is their corresponding feature maps derived from the first cube 

convolutional layer. Temporal stride is 2. (For interpretation of the references to color in this 

figure caption, the reader is referred to the web version of this paper.)
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Table 2

TSF-CNN recognition accuracy on UCF101 and HMDB51.

Method UCF101 (%) Method HMDB51 (%)

STIP+BoV [10] 44.5 ω-Flow+VLAD [60] 52.1

SFV [61] – SFV [61] 54.8

MVSV [62] 83.5 MVSV [62] 55.9

Slow Fusion CNN [11] 65.4 DT [63] 46.6

C3D+fc6 [12] 76.4 iDT [8] 57.2

Spatial ConvNet [14] 73.0 Two-stream ConvNet [14] 59.4

VGGA [64] 68.4 Composite-LSTM [13] 44.0

TSF-CNN (from scratch) 79.6 TSF-CNN (from scratch) 51.7

TSF-CNN + pre-training 85.3 TSF-CNN + pre-training 58.2

Neurocomputing. Author manuscript; available in PMC 2017 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xin et al. Page 46

Table 3

Experimental result testing on ARCH.

Methods MAcc (%)

TSF-CNN (5L) without T-Net 58.5

TSF-CNN (5L) without S-Net 69.7

TSF-CNN 85.3

Neurocomputing. Author manuscript; available in PMC 2017 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xin et al. Page 47

Table 4

Comparison with state-of-the-art action recognition models.

Categories Methods MAcc (UCF101) (%)

Hand-crafted iDT+FV [8] 87.9

MVSV [62] 83.5

Slow Fusion CNN [11] 65.4

C3D+fc6 [12] 76.4

Learned feature Two-stream ConvNet [14] 87.6

LRCN [29] 82.9

Composite-LSTM [13] 84.3

ARCH 88.2
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Table 6

Experimental result testing on ARCH.

Training methods MAcc (UCF101) (%)

Training on UCF101 from scratch 82.6

Training on UCF101 + data augmentation 83.5

Training on UCF101 + pre-training + data augmentation 88.2
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Table 7

Experimental results using different preprocessing methods.

Preprocessing methods MAcc (UCF101) (%)

No alignment 77.1

DTW 80.7

GTW 81.5

SMS 82.6
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