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Abstract

Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis 

and treatment but it can be problematic given the small visual variations between anatomical 

structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify 

discriminative characteristics between different medical images with Pruned Dictionary based on 

Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two 

main components. First, we calculate a topic-word significance value for each visual word given a 

certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are 

learnt, based on the relationship between the images and words, and are employed to bridge the 

gap between low-level visual features and high-level semantics. These latent topics describe the 

images and words semantically and can thus facilitate more meaningful comparisons between the 

words. Second, we compute an overall-word significance value to evaluate the significance of a 

visual word within the entire dictionary. We designed an iterative ranking method to measure 

overall-word significance by considering the relationship between all latent topics and words. The 

words with higher values are considered meaningful with more significant discriminative power in 

differentiating medical images. We evaluated our method on two public medical imaging datasets 

and it showed improved retrieval accuracy and efficiency.
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1. Introduction

Content-based medical image retrieval (CBMIR), which retrieves a subset of images that are 

visually similar to the query from a large image database, is the focus of intensive research 

(Müller et al., 2004; Akgül et al., 2011; Kumar et al., 2013). CBMIR provides the potential 

of having an efficient tool for disease diagnosis, by finding related pre-diagnosed cases and 

it can be used for disease treatment planning and management. In the past three decades, but 

in particular in the last decade, medical image data have expanded rapidly due to the pivotal 

role of imaging in patient management and the growing range of image modalities (Duncan 

and Ayache, 2000; Menze et al., 2014). Traditional text-based retrieval, which manually 

indexes the images with alphanumerical keywords, is unable to sufficiently meet the 

increased demand from this growth. At the same time, advances in computer-aided content-

based medical image analysis systems mean that there are methods that can automatically 

extract the rich visual properties/features to characterize the images efficiently (El-Naqa et 

al., 2004; Lehmann et al., 2004; Napel et al., 2010; Avni et al., 2011; André et al., 2012a; Xu 

et al., 2012; Zhang et al., 2015c).

In CBMIR research, the main challenge is to design an effective image representation so that 

images with visually similar anatomical structures are closely correlated. A number of 

research groups are working in this area (Müller et al., 2004; Zhang et al., 2010; Akgül et 

al., 2011; Kumar et al., 2013), and there is a trend to use a bag-of-visual-words (BoVW) for 

medical image representation (Castellani et al., 2010; Cruz-Roa et al., 2012; Kwitt et al., 

2012; Foncubierta-Rodríguez et al., 2013; Liu et al., 2013a; Depeursinge et al., 2014). The 

BoVW model represents an image with a visual word frequency histogram that is obtained 

by assigning the local visual features to the closest visual words in the dictionary. Rather 

than matching the visual feature descriptors directly, BoVW retrieval approaches compare 

the images according to the visual words that are assumed to have higher discriminative 

power (Foncubierta-Rodríguez et al., 2012; Tamaki et al., 2013). The BoVW model was 

proposed by Sivic and Zisserman (Sivic and Zisserman, 2003) and has been adopted by 

many researchers in non-medical domains such as computer vision (Li and Pietro, 2005; 

Yang et al., 2007; Bosch et al., 2008), showing the advantages of describing local patterns 

over using global features only. This model has recently been applied to tackle the large-

scale medical image retrieval problem (Jiang et al., 2015; Zhang et al., 2015d). In this study, 

we focus on a new BoVW-based retrieval for better retrieval accuracy and efficiency.

1.1. Related work

The aim of CBMIR is to extract visual characteristics of images to identify the level of 

similarity between two images. Feature extraction can be categorized into global-(GFM) and 

local-feature (LFM) models based on the scope of descriptors (Bannour et al., 2009). The 

GFM extracts a single feature vector from the whole image and the LFM partitions the 

image into a collection of smaller regions, namely patches, and considers that each patch has 

Zhang et al. Page 2

Neurocomputing. Author manuscript; available in PMC 2017 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



its own importance in describing the whole image (Avni et al., 2011). This patch-based 

model is particularly useful in medical image analysis since different image regions can 

represent the anatomical structures that play different and essential roles in medical imaging 

diagnosis (Tong et al., 2014; Zhang et al., 2014).

The BoVW representation builds upon the LFM. Visually similar patches from different 

images are assigned to the same code in a codebook. Then, the patch-code co-occurrence 

assignment can be used to describe the image features and to compute the similarity between 

images. The workflow of BoVW-based image retrieval can be generalized into three steps 

(Caicedo et al., 2009): feature extraction, BoVW construction and similarity calculation. 

Specifically, the LFM is used to extract a collection of local patch features from each image. 

The entire patch feature set computed from all images in the database is then grouped into 

clusters, with each cluster regarded as a visual word and the whole cluster collection 

considered as the visual dictionary. Then, all patch features in one image are assigned to 

visual words, generating a visual word frequency histogram to represent this image. Finally, 

the similarity between images is computed based on these frequency histograms for 

retrieval.

In this workflow, an important issue is the dictionary construction. The visual word in the 

dictionary corresponds to a group of visually similar patches. Normally, these words are 

obtained within the local patch feature space using unsupervised clustering methods, e.g., k-

means (André et al., 2011; Yang et al., 2012). These approaches often generate a redundant 

and noisy dictionary since they tend to accommodate all local patch feature patterns 

(Foncubierta-Rodríguez et al., 2013), thus reducing the effects of the most crucial words and 

increasing the computational cost. Hence, it is preferable to remove the visual words that are 

less essential for the BoVW representation.

To ensure that only the meaningful feature patterns are included, the supervised clustering 

method of Bilenko et al (Bilenko et al., 2004) can be used to regulate the construction of 

dictionary, but the method adaptability is limited because prior knowledge is required for the 

learning process. Another approach is to analyze the discriminative power of visual words 

(Caicedo et al., 2009), but the weighting scheme also requires supervised classifiers. Some 

researchers have suggested that the most frequent visual words in images are ‘stop words’, 

which occur widely but have little influence on differentiating images, and need to be 

removed from the dictionary (Sivic and Zisserman, 2003). Yang et al., however, showed that 

ranking the visual words based on their occurrences in the different images only was not 

sufficient to evaluate the importance of visual words (Yang et al., 2007). Term frequency-

inverse document frequency (TF-IDF) (Jones, 1972) relies on the inverse frequency 

weighting and has demonstrated its benefits on visual word evaluation. Nevertheless, it 

merely utilizes the direct co-occurrence relationship between the images and visual words. 

Jiang et al. (Jiang et al., 2015) proposed an unsupervised approach to refine the weights of 

visual words within the vocabulary tree and showed the advantages of using the correlations 

among the visual words. We suggest that this relationship can be further used to infer the 

semantic information and can provide a better description of the discriminative power of 

visual words.
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The ultimate goal of CBMIR is to identify cases with similar clinical properties (Müller et 

al., 2004). Such similarity may not be accurately captured in the low-level visual features 

(Depeursinge et al., 2014). The BoVW model is also mostly restricted within the visual 

appearance scope since the images are represented by a collection of visual words (Yang et 

al., 2012). One approach to handle this limitation is to perform semantic feature extraction 

by inferring the high-level semantic information based on the low-level visual data. A 

number of researchers have shown the effectiveness of high-level feature description 

(Quellec et al., 2010; Batet et al., 2011; André et al., 2012b; Quddus and Basir, 2012; Kurtz 

et al., 2014a,b). It is important to emphasize that most of these approaches require additional 

information in-cluding manual annotation (André et al., 2012b), supervised learning (André 

et al., 2012b; Quddus and Basir, 2012) and biomedical ontological knowledge (Batet et al., 

2011; Kurtz et al., 2014a,b).

The latent semantic topic model (LSTM) (Li and Pietro, 2005; Bosch et al., 2008) can be 

used to automatically extract semantic information and it has been recently introduced into 

medical image analysis (Castellani et al., 2010; Cruz-Roa et al., 2012; Kwitt et al., 2012; 

Foncubierta-Rodríguez et al., 2013). Probabilistic Latent Semantic Analysis (pLSA) 

(Hofmann, 2001) is one of the more popular latent topic techniques. pLSA is a language 

modeling technique and it is widely used in document analysis. The underlying idea is that 

each document can be considered as a mixture of latent topics. The latent topic is a 

probability distribution of words, and can be inferred from the co-occurrence relationship 

between documents and words, i.e., the latent topics. It has been used to extract the semantic 

relationship of morphological abnormalities on the brain surface (Castellani et al., 2010) and 

model histological slides to construct similarities between images (Cruz-Roa et al., 2012). 

pLSA is also employed to identify the meaningful visual words for BoVW based on the 

latent topics (Foncubierta-Rodríguez et al., 2013). The words with conditional probabilities 

below a significance threshold are regarded meaningless and removed from the visual 

dictionary. Since the conditional probabilities only describe the individual words, this 

method does not consider the relationship among the words. It also assumes that all latent 

topics can be treated equally in the evaluation of significant words but this is controversial, 

and so, this work reported by Foncubierta-Rodríguez et al (Foncubierta-Rodríguez et al., 

2013) has not resulted in clear improvements in retrieval accuracy.

1.2. Contributions

We propose a BoVW-based medical image retrieval method with a Pruned Dictionary based 

on the Latent Semantic Topic description, which we refer to as PD-LST retrieval. Our goal is 

to measure the discriminative power of a visual word in the dictionary so that less 

meaningful words are removed to enable better similarity computation between images. This 

discriminative power is quantitatively measured by a ranking metric, which we define as the 

significance value. Our method has two main contributions: a topic-word significance 

computing with pLSA topic extraction and an overall-word significance computing with a 

ranking approach. For the topic-word significance, we compute a significance value for a 

word relative to a certain latent topic. A pLSA method is applied to extract the latent topics 

between images and words, and the learnt conditional probability of a word given a latent 

topic is then adopted to quantitatively measure the topic-word significance. For the overall-
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word significance, we calculate a final significance value for each word. We designed a 

ranking method to incorporate the overall relationship between all latent topics and words. 

While the topic-word significance is used to describe a word’s individual significance, the 

overall-word significance is used to evaluate the word’s discriminative power in the entire 

dictionary.

The benefits of this pruning are: a) The updated BoVW representation can better capture the 

similarity level between images so that it can obtain higher retrieval accuracy. b) Our PD-

LST method can largely reduce the amount of required words, leading to higher retrieval 

efficiency. We evaluated our method on two publicly available datasets - the Early Lung 

Cancer Action Program (ELCAP) (ELCAP and VIA, 2003) and Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) (Jack et al., 2008). Our prior work (Zhang et al., 2015a) 

showed the effectiveness of the dictionary pruning-based analysis and reported some 

preliminary results. In this work, we elaborate the topic-word and overall-word significance 

computation process with further details. The ranking method is justified by a mathematical 

explanation. We extend the evaluation to the ADNI dataset for brain image retrieval task, in 

addition to the originally used ELCAP dataset, to demonstrate the general applicability of 

our method. More comprehensive performance comparison with various approaches are 

performed on the two datasets. We also compared the execution time for efficiency analysis.

The structure of this paper is as follows: in Section 2 we describe the two stages of the 

proposed PD-LST method; in Section 3 we introduce the experimental datasets and 

experimental design; in Section 4 we present the experimental results and discussion, and we 

provide a conclusion and an outline of future work in Section 5.

2. Methods

2.1. Overview of the PD-LST retrieval

The outline of our PD-LST method is shown in Fig. 1(a). The left part shows the standard 

BoVW workflow (Section 1.1). A dictionary of size M is generated from the extracted low-

level features using k-means. The word frequency histograms of images are then calculated 

and used to compare the image similarity with Euclidean distance for retrieval. In addition to 

the standard BoVW model, PD-LST incorporates a dictionary pruning stage to remove the 

less meaningful words, i.e., the ones with limited discriminative power, as illustrated in the 

right part of Fig. 1(a). A pLSA method is employed to extract the latent semantic topics 

based on the image-word co-occurrence relationship, and the learnt conditional probability 

of a word given the latent topics is adopted to measure its individual significance (Section 

2.2). A ranking algorithm is designed to update the significance value of the words by 

incorporating the overall relationship among all latent topics and words, and calculate the 

final significance of each word (Section 2.3). The words with lower overall-word 

significance are removed to prune the dictionary. The similarity between images is then 

calculated based on the new frequency histograms using the pruned dictionary, followed by a 

k-NN for retrieval (Section 2.4).

Fig. 1(b) gives the visual illustration of our PD-LST method. The underlying idea of our 

method is that the visual dictionary used for constructing the BoVW model can be very 
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noisy and redundant, reducing the representative and discriminative power of the visual 

words in identifying similar images. For example, the patches from the pleural surface of 

lung nodule image in Fig. 1 (b) (left sample) are visually different, making the local features 

of these regions assigned to different visual words, i.e., w2, w3 and w4, and causing 

confusions in finding similar images based on the visual word distributions. Building upon 

the aforementioned work of Foncubierta-Rodríguez et al (Foncubierta-Rodríguez et al., 

2013), we propose a new way to prune the dictionary considering the overall relationship 

between latent topics and visual words. We hypothesize that such a design would perform 

well because with the help of latent topics, the relationship between images is captured in 

terms of semantic descriptions, instead of the visual appearance. In this example, w2, w3 and 

w4 are connected to the first latent topic representing the pleural surface. Then w2 and w3 

would be removed since they don’t present the co-occurrence information between the two 

images, and the corresponding patches would be assigned to w4. In this way, the Euclidean 

distance between the two images from the same category is smaller after the dictionary 

pruning process.

2.2. Topic-word significance

The topic-word significance describes the significance of a word based on the latent 

semantic topics inferred from the relationship between the images and words. These latent 

topics provide the semantic description to bridge the gap between low-level visual features 

and high-level semantics. While the words are considered as the visual content pattern 

obtained from the visually similar patches, the latent topics are regarded as the pattern 

categories (Bosch et al., 2008). For example, in images to evaluate lung nodules, the latent 

topics can be used to describe the pulmonary structure that the patches belong to. An image 

that contains multiple instances of these patterns is modeled as a mixture of latent topics. A 

latent topic that describes the common characteristic of the content patterns is modeled as a 

mixture of words. The words are thus linked to the latent topics rather than directly to the 

images.

For this study, we used pLSA to extract the latent topics. In pLSA, the similar words tend to 

have high conditional probabilities given the same latent topic. The anatomical structures 

represented by the visual words are thus correlated indirectly with the latent topics. In an 

unsupevised manner, we do not need to explicitly specify these correlations, making our 

method more adaptive to different imaging problems, e.g., lung nodule and brain images. 

Fig. 2 shows the flow of topic-word significance measurement using pLSA. A visual word is 

connected to a latent topic with a conditional probability that can quantitatively evaluate the 

significance of the word regarding this certain latent topic, i.e., the topic-word significance.

Formally, an image-word co-occurrence matrix OCCM × N is computed by assigning all local 

patch features in an image to the visual words, where the element occ(wi, Ij) refers to the 

number of occurrences of word wi with i ∈ [1, M] in image Ij with j ∈ [1, N], in which N is 

the number of images and M is the size of the dictionary. pLSA considers that the observed 

probability of a word wi occurring in a given image Ij can be expressed with a latent or 

unobserved set of latent topics Z = {zh : h ∈ [1, H]} where H is a constant parameter as the 

number of latent topics, as:
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(1)

The probability P(wi|zh) describes how word wi is linked to latent topic zh, with higher value 

of P(wi|zh) indicating it is more connected. The latent topics Z can be learnt by fitting the 

model with Expectation-Maximization (EM) (Hofmann, 2001) algorithm that maximizes the 

likelihood function L:

(2)

A total of H latent topics and the conditional probabilities of all words given these latent 

topics are learnt using pLSA. We consider that a visual word is more meaningful / 

discriminative if it is connected to the important latent topics (Section 2.3). The conditional 

probability is thus adopted as the topic-word significance to measure the closeness of a word 

relative to a certain latent topic for the overall-word significance computation.

2.3. Overall-word significance

With the obtained topic-word significance, the simplest dictionary pruning approach would 

be to keep the words with high conditional probabilities for all latent topics. Such an 

approach is based on the assumption that all latent topics can be treated equally, which is not 

appropriate for practical application. Taking lung nodule images as an example (Section 

3.1), the latent topics are regarded as the local content pattern categories, which represent 

different types of anatomical structures such as the nodule, vessel, pleural surface or 

background. However, these structures do not have the same importance in determining the 

pathological categories of lung nodule images. A word might have high topic-word 

significance for certain latent topics, but it would be less significant compared to the other 

words if the connected latent topics are unimportant. For example, some stop-words that 

describe the background regions in lung nodule images tend to have high conditional 

probabilities with the unimportant latent topics that imply the ‘background’. Thus, we 

wanted to compute the contribution of the latent topics for measuring the overall 

significance of words, i.e., the overall-word significance.

We designed a ranking-based method, based on the relationship between the latent topics 

and words, to derive their contributions and significances. Suppose we have some latent 

topics that make high contributions, then the word that is strongly connected with these 

latent topics will have a higher significance value. Similarly, if many high-significance 

words are strongly connected to a certain latent topic, it reflects that this latent topic will 

make a high contribution. The proposed ranking metric is based on this relationship to 

compute the significance of words and contribution of latent topics conditioned on each 

other. Fig. 3 shows the flow of the overall-word significance measurement.
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Firstly, a higher topic-word significance means the word is more closely linked to this latent 

topic, and thus is used to describe the ‘strongly connected’ relationship between the latent 

topic and word. Specifically, a topic-word threshold twth is used so that only the words with 

higher topic-word significance are regarded as strongly connected with the latent topic. 

Thus, the relationship between the latent topics and words is represented with a bipartite 

graph B, as:

(3)

where twth is a percentage such that the top twth, e.g., 10%, words with higher P(wi|zh) are 

kept for the latent topic zh. In this way, we can have the same number of words connected to 

each latent topic (we will discuss this after introducing the ranking method). With the 

connections defined in the bipartite graph B, the relationship between the latent topics and 

words for significance and contribution computation can be explained as follows: the 

significance value s(wi) of a word wi is approximated from the contributions of the 

connected latent topics, and the contribution value c(zh) of a latent topic zh is approximated 

based on the significance of the connected words. We define the values as:

(4)

(5)

Eqs.(4) and (5) can be alternatively solved iteratively to calculate the final overall-word 

significance, as shown in Algorithm 1. Supposing the significance value of all words is 

denoted with a vector S ∈ RM × 1 and the contribution value of all latent topics is represented 

with a vector C ∈ RH × 1, both the significance value vector S = {s(wi) : i ∈ [1,M]} and 

contribution value vector C = {c(zh) : h ∈ [1,H]} are initialized with 1, i.e., s0(wi) = c0(zh) = 

1. At each iteration t ∈ [1,T], the significance value st(wi) is updated with Eq.(4) and then 

the contribution value ct(zh) is updated with Eq.(5). The two vectors are then L2 normalized 

so their squares sum to 1 at the end of each iteration, as:

(6)

(7)
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The significance value of a word wi at the final iteration T is thus the desired overall-word 

significance.

Algorithm 1

Pseudo code of the iterative ranking algorithm.

Input: Number of iterations T, bipartite graph B.

Output: Overall-word significance value vector ST.

1: initialize s0(wi) = 1 and c0(zh) = 1.

2: for each t in [1,T] do

3:     for each i in [1, M] do

4:         Compute st(wi) based on ctüéí×–1(zh) using Eq.(4);

5:     end for;

6:     for each h in [1, H] do

7:         Compute ct(zh) based on st(wi) using Eq.(5);

8:     end for;

9:     normalize st(wi) and ct(zh) with Eqs.(6) and (7);

10: end for;

11: return ST.

The ranking algorithm updates the significance and contribution values iteratively. At the 

beginning, we have the same number of words connected to each latent topic (same twth for 

all latent topics) and initialize the same contribution and significance values (s0 = 1 and c0 = 

1) for all latent topics and words. In this way, without the prior knowledge on the 

contribution of latent topics and discriminative power of words, we can treat all latent topics 

and words without any bias at the beginning of the ranking method. Then, within each 

iteration, the significance of a word is computed according to the most related latent topics 

and the shared knowledge between the latent topics and words is incorporated. Across the 

iterations, the significance of a certain word is diffused to the latent topics at the current 

iteration and gathered at the next iteration for updating the other words so that the 

relationship between the words is also used. Thus, the overall-word significance is derived 

based on the words and latent topics collectively.

The algorithm can be formulated alternatively as follows. With the bipartite graph B ∈ 
RM × H that indicates the adjacent matrix between all latent topics and words, Eq.(4) for 

word significance updating and Eq.(5) for latent topic contribution updating can be 

expressed as:

(8)

(9)
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Given the iteration t ∈ [1,T], the sequence of the significance vectors {St} can be expressed 

as:

(10)

With the normalization in Eq.(6), St is the unit L2-norm vector in the direction of (BBT)t S0 

(similarly to Ct). As reported by Golub, Van Loan and Wilkinson, the unit L2-norm vector 

sequence of {S1…St} converges to a limit S* as t increases arbitrarily, and so does the 

sequence of {C1…Ct} (Wilkinson, 1965; Golub and Van Loan, 2012).

The above explanation illustrates that our ranking method generates a convergent ranking 

result and the significance and contribution values can be estimated approximately with the 

principal eigenvectors of BBT and BT B. This provides an alternative to compute the 

significance values. However, through the experiments, we observed that the retrieval 

performance tends to be stable with a relatively small number of iterations (Section 4.1). We 

can thus obtain the final ranking order for the retrieval without achieving the converged 

ranking values. This can also be helpful to improve the efficiency if there are a large amount 

of image data. In addition, the proposed iterative method represents that the significance of 

words and contribution of latent topics are computed based on each other and the final 

ranking is obtained from the overall perspective

2.4. PD-LST retrieval using the pruned dictionary

The dictionary is pruned according to the overall-word significance in the final step. All 

words within the dictionary are ranked, and the ones below a percentage point, namely the 

pruning percentage p, are considered meaningless and are removed, leading to a pruned 

dictionary with the size of p × M. Then, the standard BoVW retrieval is conducted on the 

pruned dictionary. The co-occurrence matrix of the images is reconstructed by computing 

the new visual word frequency histograms on the pruned visual dictionary. Euclidean 

distance similarity is employed to calculate the similarity between images and k-NN method 

is used for retrieval.

3. Dataset and experimental design

We employed two publicly available medical imaging datasets, i.e., the ELCAP (ELCAP 

and VIA (2003)) and ADNI databases (Jack et al. (2008)), for experimental evaluations.

3.1. Datasets

The ELCAP database contains 50 sets of low-dose computed tomography (LDCT) human 

lung scans, with the lung nodules annotated at the centroid. In our study, a set of 379 lung 

nodule images were used for evaluation. Lung nodules are small masses in the lung and can 

be divided into four different categories based on their location and connection with the 

surrounding structures such as vessels and the pleural surface (Diciotti et al. (2008)), as 

follows: well-circumscribed (W), vascularized (V), juxta-pleural (J) and pleural-tail (P), as 

shown in Fig. 4. The numbers of nodules for the four types are 57 (W), 60 (V), 114 (J), and 
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148 (P) respectively. The ADNI database comprises 331 subjects with magnetic resonance 

(MR) and positron emission tomography (PET) scans with a diagnosis of cognitively 

normal, mild cognitive impairment (MCI) and Alzheimer’s Disease (AD). Examples are 

shown in Fig. 5. We segmented each brain scan into 83 functional regions. The risk of 

progression to dementia is higher if more regions display glucose hypometabolism (Liu et al. 

(2013b)). The numbers of subjects for the three stages are 77 (normal), 169 (MCI) and 85 

(AD) respectively.

The literatures suggest that identifying the location information of lung nodules is essential 

for the early detection of lung cancer and determining the neurodegenerative progression 

stages is helpful for finding the patients at a high risk of dementia. Finding a list of related 

cases is of high clinical interest for the disease diagnosis and treatment. Therefore, in this 

study for the ELCAP dataset, we tried to retrieve the lung nodules at similar locations 

relative to the surrounding pulmonary structures as W, V, J and P, and for the ADNI dataset, 

we aimed to retrieve images with similar neurodegenerative progression patterns as AD, 

MCI and the cognitive normal.

3.2. Feature extraction and dictionary construction

In the ELCAP database the lung nodules are small and have an average size of 4 × 4 pixels 

(approximately from 3 × 3 to 7 × 7 pixels) across the centroid in the axial direction. 

Therefore, to restrict the problem scope to lung nodule analysis, an ROI of 33 × 33 pixels 

was cropped from each image slice with the annotated nodule centroid appearing in the 

center, similar to the processing in some related works for lung nodule analysis (Wu et al., 

2010; Farag et al., 2010; Farag, 2013). We conducted a pixel-by-pixel patch feature 

extraction process to build the LF representation for the nodule and surrounding pulmonary 

structures. For each pixel around the annotated centroid (including the centroid pixel) as a 

keypoint, we computed a scale invariant feature transform (SIFT) (Lowe, 1999) descriptor 

using the VLfeat library1, with the parameter frames = [x, y, s = 4, o = 0], where x and y 
indicate the pixel position, s is the scale and o is the orientation. A 128-dimension vector 

was obtained for each frame and used as a local patch feature. Based on our previous work 

(Zhang et al., 2014), incorporating too many surrounding pulmonary structures, e.g., 

including extra pleural surface, or too few, e.g., excluding the essential vessels, reduces the 

performance of recognizing the nodule type. Therefore, a total of 100 patch features were 

used by selecting the SIFT descriptors from the nearest 100 pixels around the nodule 

centroid.

For the ADNI dataset, the MR and PET data were preprocessed following the ADNI image 

correction protocols and nonlinearly registered to the ICBM 152 template to segment the 

entire brain into 83 functional regions (Liu et al., 2013b). Then, for each subject, we 

extracted 8 features. Each feature was an 83-dimension vector where each element described 

one of the 83 functional regions. The mean (Cai et al., 2010) and Fisher (Liu et al., 2011) 

indices, and difference-of-Gaussian-based (DoG area, DoG contrast, DoG mean) features 

(Toews et al., 2010; Cai et al., 2014a) were extracted from the PET data, and solidity, 

1From VLfeat project, downloaded at: http://www.vlfeat.org/index.html
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convexity (Batchelor et al., 2002) and volume (Heckemann et al., 2011) were extracted from 

the MR data. Thus, we obtained an 8-dimension vector for each functional region as one 

local patch feature, and 83 feature vectors for each subject to construct the LFM. The overall 

statistics of the two datasets are shown in Table 1.

3.3. Experimental design

In our study, leave-one-case-out cross-validation was conducted by using each case as query 

and the remaining cases in the dataset as the retrieval candidates. In this way, we can provide 

a comprehensive comparison by enabling the similarity computation between every two 

cases in the dataset. During the experiments, we had the same parameter setting for all 

testing queries. Therefore, the optimal values of the parameters did not result in biases with 

the leave-one-case-out cross-validation. All images in the dataset were included for, e.g., 

dictionary construction, latent topic extraction, word significance computing and dictionary 

pruning, due to the unsupervised nature of all comparison methods involved. With such 

experimental design, we could better utilize the image information including the testing 

images. It is worth noting that the class label information was not involved in these steps but 

only for the accuracy computation.

The most related items were retrieved for a given query as the retrieval results with an output 

number K. The performance was measured using the average retrieval accuracy (i.e., 

retrieval precision) of N queries, as,

(11)

where TP is the number of true positive items within the K retrieved results for the query 

image Ql with l indicating the index of the query Q. The retrieved item is true positive if it is 

within the same class with the query image.

4. Experimental results and discussion

4.1. Parameter analysis

Our method has four major parameters: the number of latent topics H, topic-word threshold 

twth, number of iterations T, and the pruning percentage p. We have conducted the 

experiments given various dictionaries (M was from 100 to 2000) and outputs (K was from 1 

to 10). In the following paragraphs, we provide the retrieval results from the 1-output for the 

500-dictionary to show the effects of the four parameters.

Fig. 6 displays the accuracy curves given different numbers of latent topics on the two 

datasets. For each H (50 to 600), the maximum, minimum and average accuracies across 

different twths (0.05 to 1) and ps (10 to 90) with T fixed at 20 are reported. While the curves 

on the ADNI dataset fluctuated more than with the ELCAP dataset, the accuracies of these 

two datasets were stable, in particular, for the average accuracy curves. This suggested that 

the number of latent topic had a limited impact on retrieval accuracy, due to the fact that 

only the latent topics making greater contributions affected the dictionary pruning.

Zhang et al. Page 12

Neurocomputing. Author manuscript; available in PMC 2017 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given different topic-word threshold twths, Fig. 7 shows that if too few or too many words 

were kept to construct the bipartite graph between the latent topics and words there was 

lower performance. This finding was because too few words led to the loss of important 

knowledge and too many produced noise. In general, keeping relatively few words for each 

topic (10% and 30% for the ELCAP; 20% to 40% for the ADNI) generated better 

performance.

As shown in Fig. 8, the retrieval accuracy gradually increased with larger T values and then 

stayed constant after T reached a certain value. Less iterations were needed for stable 

retrieval results with a smaller dictionary and a larger number of outputs. The smaller 

dictionary led to a fewer connections between the latent topics and words and the larger 

number of outputs made it easier to include the most related items into the results. Overall, 

fixing T at 20 was sufficient to obtain stable accuracies given different numbers of iterations.

Fig. 9 shows the effects of different pruning percentages on the two datasets. For each p (10 

to 90), the maximum, minimum and average accuracies given different Hs (50 to 600) and 

twths (0.05 to 1) with T fixed at 20 are reported. In general, the best accuracy results were 

obtained when p was between 20% and 40%. The similarity between images was better 

represented on the pruned dictionary, since the similar local patch features were more likely 

to be assigned to the same word. Based on our observations, incorporating more words for 

the dictionary construction helped on computing the similarities between the less related 

items, e.g., a pruning percentage of 40% normally performed better when K = 9 but 20% 

generate higher accuracy when K = 1. Hence, we suggested that a larger number of outputs 

needs more words kept and vice versa.

4.2. Retrieval performance evaluation

4.2.1. Visual retrieval results—Figs. 10 and 11 give the visual examples of the retrieval 

results from the standard BoVW method and our PD-LST method. The results were 

obtained on the original dictionary with M = 100. Our method conducted the dictionary 

pruning with H = 50, twth = 0.2, T = 20 and p = 20. It can be seen that our method can 

retrieve the cases with the same diagnosis, which are visually similar or different. For 

example of the lung nodule images, we retrieved #16(W) and #1(W) as the most desired 

cases. While the first result is visually similar to the query, the second one is with a larger 

lung nodule than that in the query image and has more noise in the background regions. In 

addition, the proposed method can find the differences between the visually similar images 

that present different diseases. For instance, given the query case #298(AD), our method 

retrieved #286(AD) as the first result and the standard BoVW found #163(MCI). While the 

two retrieved cases are very similar to the query case regarding the visual appearance, our 

method obtained the case with the same stage to the query. These observations can be 

explained by the fact that our method conducted the similarity computation between images 

through the latent topics, which provide high-level semantic descriptions, instead of merely 

using the visual content information. Given the pruned dictionary, our method generated a 

more compacted word frequency histogram that can better differentiate the images with the 

most discriminative words. We can observe that the frequency distributions between the 
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query and retrieved results were more consistent with the pruned dictionary than the original 

one.

4.2.2. Accuracy analysis—We then quantitatively analysed the performance of the 

proposed method compared to related retrieval approaches regrading the retrieval accuracy. 

The experiments were conducted as follows: a) the comparison among the approaches that 

are based on the subsections of our method’s pipeline (Table 2), b) the evaluation regarding 

the different dictionary pruning approaches in the literature (Fig. 12), and c) the 

investigation of performance improvement by integrating other retrieval methodologies (Fig. 

13).

a) Table 2 shows the retrieval accuracy comparisons of the approaches that are based on 

parts of our PD-LST method on the ELCAP and ADNI datasets for the 1-NN retrieval. 1) 

For the GFM, we calculated a global feature vector2 to represent an individual image and 

performed the k-NN retrieval with the Euclidean distance. 2) For the BoVW, it followed the 

standard BoVW model as introduced in Section 2.1. This method was adopted as baseline. 

3) For the pLSA-F, we calculated the similarities between images based on the latent topic 

distribution P(zh|Ij) obtained during the pLSA parameter estimation (Bosch et al., 2008). 4) 

For the pLSA-P, we pruned the dictionary based on the conditional probability of a word 

given a certain latent topic (Foncubierta-Rodríguez et al., 2013), i.e., the topic-word 

significance. 5) For the VWW, we utilized the overall-word significance to perform visual 

word weighting, instead of pruning the visual dictionary. The images were represented as 

vectors with the element of a visual work’s significance value other than its frequency. (6) 

For the TD, we truncated the word frequency histogram of the image based on the pruned 

dictionary instead of recomputing the histogram.

The GFM retrieval obtained the lower accuracies when compared to BoVW method that was 

based on the LFM feature extraction. By making use of more local content information, e.g., 

the surrounding pulmonary structures of a nodule and the spatial structure of different 

regions of the brain, the LFM is more effective in capturing the similarity between images. 

The pLSA-F retrieval had the lowest accuracies among all approaches over the two datasets. 

As we explained previously, latent topics can be used to categorize different anatomical 

structures. The pLSA-F method represents the images as the latent topic distributions, which 

can describe what structures are contained in the images but cannot differentiate the role of 

these structures for the diagnosis. The pLSA-P retrieval obtained higher accuracies regarding 

the pLSA-F method. This suggests that although the latent topics were not effective in 

measuring image similarity directly, they can be employed to evaluate the words’ 

significance for the improved similarity computation. On the other hand, the pLSA-P 

method achieved the similar accuracies with the BoVW approach, indicating that measuring 

the significance of the word individually would restrict the ability to identify the most 

meaningful words.

2In the ELCAP dataset, we extracted one SIFT descriptor from the centroid of the nodule as the global feature; in the ADNI dataset, 
we used the combination of the eight features (introduced in Section 3.2) for global feature representation.
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The VWW method showed retrieval improvement over the aforementioned methods. This 

was attributed to the overall-word significance that can emphasize the effects of the words 

with the most discriminative ability, considering the overall relationship between all latent 

topics and words. The TD method had an approximate 6% accuracy improvement on the 

ADNI dataset compared to the BoVW. However, TD did not perform well on the ELCAP 

dataset. This was due to the reason that some lung nodule images only contain a few 

anatomical structures, e.g., some type W nodule images only have nodules except for the 

background regions. The word frequency histograms can be very concentrated on a few 

words. Truncating the frequency histogram may remove these words resulting in an empty 

histogram. For the PD-LST method, recomputing the frequency histogram based on the 

pruned dictionary can relocate the local features to other words and thus can reserve the 

original feature information in the images.

b) In Fig. 12, we compared the following state-of-the-art dictionary pruning approaches on 

the ELCAP and ADNI datasets. 1) For the OCC, it ranks the words according to their 

occurrences on all images and prunes the ones with higher frequencies (Yang et al., 2007). 

2) For the IDF, the method weights the visual words according to the inverse image 

frequency and keeps the ones with higher IDF values (Yang et al., 2007). 3) For the pLSA-P, 

it evaluates the words according to the conditional probabilities for each latent topic and 

prunes the ones with lower probabilities (Foncubierta-Rodríguez et al., 2013). 4) For the 

Fisher3, the method aggregates local image descriptors in terms of the Fisher kernel 

representation and conducts the dimensionality reduction by principal component analysis 

(PCA) (Jégou et al., 2012). 5) For the VLAD4, considered as a simplification of the Fisher 

kernel, it works on the visual dictionary obtained with k-means rather than with Gaussian 

mixture model (GMM) in the Fisher method, with the PCA employed for the dimensionality 

reduction (Jégou et al., 2012). 6) For our PD-LST, the method measures the words according 

to the overall-word significance and prunes the ones with lower values. During the 

experiments, we observed that the methods can obtain different retrieval accuracies given 

different parameter settings and datasets. Therefore, we reported the mean, maximum and 

minimum of the highest retrieval accuracies across the different dictionaries to compare the 

overall performances.

The OCC method generated the worst results and so had an unfavorable performance. These 

findings were in accordance with the work of Yang et al. who showed that the most frequent 

words are unlikely to be the stop words (Yang et al., 2007). Such comparison suggested that 

it was not sufficient to evaluate the significance of the words merely based on occurrence. 

The IDF method obtained retrieval improvement when compared to the OCC method, 

indicating that the inverse frequency weighting can assist on identifying discriminative 

power of the words. The IDF however utilized the direct image-word co-occurrence 

information to wight the words without further analysing the relationship among the words, 

which can lead to performance enhancement as used in our method. The pLSA-P method 

was also more accurate than the OCC approach but were similar to the baseline of BoVW as 

discussed above. Hence, the pLSA conditional probabilities can describe the significance of 

3The Fisher package was downloaded from http://lear.inrialpes.fr/src/inria_fisher/
4From VLfeat project, downloaded at: http://www.vlfeat.org/index.html
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a word to a certain extent but it can be further improved upon. Although pLSA pruning did 

not achieve an observable improvement in retrieval accuracy, it did reduce the number of 

words required for feature representation and so would improve the efficiency of retrieval.

The Fisher and VLAD methods obtained better retrieval performance by incorporating the 

local feature encoding process. One reason for the improvements is the feature 

dimensionality reduction with PCA as reported in the work by Jégou et al. In general, for the 

datasets under study, the highest accuracies were obtained given the reduction according to 

the first half components with PCA. These improvements showed the benefits of evaluating 

the discriminative ability of the visual words, though the two methods obtained the visual 

dictionaries in different ways (with GMM and k-means). Our method achieved the higher 

retrieval accuracies across all the approaches. The improvements were because that our 

method not only utilizes the semantic descriptions of the latent topics learnt from the word-

image co-occurrence relationship but also measures the contributions of the topics based on 

the overall relationship between the words and latent topics. In addition, the differences 

between the maximum and minimum highest accuracies given different dictionary sizes of 

the proposed method were relatively smaller. These observations indicated the stability of 

our method with different dictionaries.

c) Fig. 13 shows the retrieval performance of the approaches that utilize our PD-LST 

method. The large margin nearest neighbor (LMNN) retrieval5 is a supervised method using 

distance metric learning to identify the most related neighbors (Weinberger and Saul, 2009). 

This method usually shows performance improvement over k-NN, therefore we employed it 

to exploit the accuracy enhancement with the pruned dictionary. During the experiments, 

half of the dataset was randomly selected for training the LMNN model. A leave-one-case-

out cross-validation was then used to perform the retrieval given the trained model. The 

iterative ranking (ITRA) retrieval conducts the retrieval result refinement by calculating the 

ranking scores of the retrieved items and remaining candidates, which are the similarity 

measurement to depict their distances with the query, corresponding to the overall-word 

significance and contribution values of the words and latent topics (Cai et al., 2014b). The 

ranking score is computed based on the bipartite similarity relationship between the 

retrieved items and remaining candidates, in a way similar to the ranking method that works 

between the latent topics and words in this study. Therefore, we employed this method to 

investigate the performance of ranking method. The retrieval accuracies of the two 

approaches and k-NN method based on the original and pruned dictionaries are displayed.

Applying the LMNN method on the pruned dictionary gave retrieval accuracy improvement 

when compared to the original dictionary on the two datasets by incorporating the distance 

learning metric. The higher accuracies suggested our method’s potential on retrieval 

improvement by using the prior knowledge, e.g., the labeling information. Although 

employing the ITRA method on the two dictionaries for the ELCAP dataset achieved similar 

accuracy, applying it on the pruned dictionary for the ADNI dataset gave the highest 

retrieval accuracy. The improvement showed the benefit of the combination of the retrieval 

result refinement and the pruned dictionary.

5The LMNN package was downloaded from http://www.cse.wustl.edu/~kiliancode/lmnn/lmnn.html
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4.2.3. Efficiency analysis—The process of PD-LST retrieval has two components: an 

offline dictionary construction stage and an online image retrieval stage. The first 

component contains the original dictionary construction and dictionary pruning and the 

second consists of the word frequency histogram calculation and similarity computation for 

the query image. Table 3 shows the comparisons of execution time between the two stages 

(with same parameter settings for the two datasets as M = 1000, H = 300, twth = 0.3, T = 20, 

p = 0.2). It can be observed the offline stage required more processing time (about 25 times 

for the ELCAP dataset and 15 times for the ADNI dataset) than online retrieval. In addition, 

the dictionary pruning only occupied a small portion of the whole offline processing.

Our method prunes the dictionary by keeping the most meaningful words and thus obtains a 

low-dimensional word frequency histogram vector for each image. Such dimensionality 

reduction can increase the speed of the retrieval process. Table 4 shows the total retrieval 

time of all query images (for leave-one-case-out validation) from the two datasets based on 

the original dictionary and the pruned dictionary. Our method had the shortest processing 

time with the pruned dictionary, suggesting an efficiency improvement.

5. Conclusions and future work

We have presented a PD-LST retrieval method for medical image analysis. Our method 

focused on dictionary pruning so that only the words with high discriminative power are 

kept. The method has two main components: topic-word significance and overall-word 

significance computing. By pruning the trivial words, the updated BoVW representation 

better captures the similarity relationships between images and largely reduces the amount 

of required words.

In the study, we aimed at investigating the performance of dictionary pruning, hence we did 

not overemphasize on the analysis of the image data themselves. One aspect of the future 

work will be conducted by further exploring the image data. For example, we will use 3D 

raw data of the ELCAP dataset, which would provide a more comprehensive description of 

the lung nodule structures than the 2D images. For tackling a certain task in which more 

domain-specific knowledge can be incorporated, the analysis about the latent topic 

categories will be conducted to explore the correlations among different anatomical 

structures. In addition, the effectiveness of different low-level features, such as histogram of 

oriented gradients (HOG) (Dalal and Triggs, 2005), GIST (Oliva and Torralba, 2001) and 

Hashing features (Zhang et al., 2015c), for constructing the BoVW model will be further 

investigated. More experimental comparisons will be conducted to furhter validate the 

effectiveness of our methond. For instance, Zhang et al. (Zhang et al., 2015b) proposed an 

interesting re-ranking approach based on graph analysis, which is highly related to the 

currently used compared method of ITRA. We will also test our method on other medical or 

general imaging domains such as the lung tissue classification in high-resolution computed 

tomography (HRCT) images (Song et al., 2013a) and the thoracic tumor retrieval in positron 

emission tomography–computed tomography (PET-CT) images (Song et al., 2013b). As the 

scalability of image data has become an important issue in medical image retrieval, it would 

be also interesting to test if PD-LST can be integrated in a scalable CBIR approach, e.g., 

building on vocabulary tree (Jiang et al., 2015) or hashing methods (Zhang et al., 2015d).

Zhang et al. Page 17

Neurocomputing. Author manuscript; available in PMC 2017 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This work was supported in part by ARC, AADRF, NIH NA-MIC (U54 EB005149) and NAC (P41 EB015902).

References

Akgül CB, Rubin DL, Napel S, Beaulieu CF, Greenspan H, Acar B. Content-based image retrieval in 
radiology: current status and future directions. Journal of Digital Imaging. 2011; 24:208–222. 
[PubMed: 20376525] 

André, B.; Vercauteren, T.; Ayache, N. Content-based retrieval in endomicroscopy: toward an efficient 
smart atlas for clinical diagnosis, in; Proceedings of the International Conference on Medical Image 
Computing and Computer Assisted Intervention Workshop on Medical Content-Based Retrieval for 
Clinical Decision Support (MICCAI MCBR-CDS); 2012a. p. 12-23.

André B, Vercauteren T, Buchner AM, Wallace MB, Ayache N. A smart atlas for endomicroscopy 
using automated video retrieval. Medical Image Analysis. 2011; 15:460–476. [PubMed: 21414833] 

André B, Vercauteren T, Buchner AM, Wallace MB, Ayache N. Learning semantic and visual 
similarity for endomicroscopy video retrieval. IEEE Transactions on Medical Imaging. 2012b; 
31:1276–1288. [PubMed: 22353403] 

Avni U, Greenspan H, Konen E, Sharon M, Goldberger J. X-ray categorization and retrieval on the 
organ and pathology level, using patch-based visual words. IEEE Transactions on Medical Imaging. 
2011; 30:733–746. [PubMed: 21118769] 

Bannour H, Hlaoua L, el Ayeb B. Survey of the adequate descriptor for content-based image retrieval 
on the Web: global versus local features. CORIA. 2009:445–456.

Batchelor PG, Castellano Smith AD, Hill DLG, Hawkes DJ, Cox TCS, Dean A. Measures of folding 
applied to the development of the human fetal brain. IEEE Transactions on Medical Imaging. 2002; 
21:953–965. [PubMed: 12472268] 

Batet M, Sáanchez D, Valls A. An ontology-based measure to compute semantic similarity in 
biomedicine. Journal of Biomedical Informatics. 2011; 44:118–125. [PubMed: 20837160] 

Bilenko, M.; Basu, S.; Mooney, RJ. Integrating constraints and metric learning in semi-supervised 
clustering, in; ACM. Proceedings of the Twenty-first International Conference on Machine Learning 
(ICML); 2004. p. 11

Bosch A, Zisserman A, Muñoz X. Scene classification using a hybrid generative/discriminative 
approach. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2008; 30:712–727. 
[PubMed: 18276975] 

Cai, W.; Liu, S.; Song, Y.; Pujol, S.; Kikinis, R.; Feng, D. A 3D difference-of-Gaussian-based lesion 
detector for brain PET, in; IEEE. IEEE International Symposium on Biomedical Imaging (ISBI); 
2014a. p. 677-680.

Cai, W.; Liu, S.; Wen, L.; Eberl, S.; Fulham, MJ.; Feng, D. 3D neurological image retrieval with 
localized pathology-centric CMRGlc patterns, in. IEEE. IEEE International Conference on Image 
Processing (ICIP); 2010. p. 3201-3204.

Cai, W.; Zhang, F.; Song, Y.; Liu, S.; Wen, L.; Eberl, S.; Fulham, M.; Feng, D. Automated feedback 
extraction for medical imaging retrieval, in. IEEE. IEEE International Symposium on Biomedical 
Imaging (ISBI); 2014b. p. 907-910.

Caicedo J, Cruz A, Gonzalez F. Histopathology image classification using bag of features and kernel 
functions. Artificial Intelligence in Medicine. 2009; 5651:126–135.

Castellani, U.; Perina, A.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P. 
Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer Berlin 
Heidelberg; 2010. Brain morphometry by probabilistic latent semantic analysis; p. 177-184.

Cruz-Roa, A.; Gonzalez, F.; Galaro, J.; Judkins, A.; Ellison, D.; Baccon, J.; Madabhushi, A.; Romero, 
E. Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer Berlin 
Heidelberg; 2012. A visual latent semantic approach for automatic analysis and interpretation of 
anaplastic medulloblastoma virtual slides; p. 157-164.

Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection; IEEE. IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR); 2005. p. 886-893.

Zhang et al. Page 18

Neurocomputing. Author manuscript; available in PMC 2017 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Depeursinge A, Kurtz C, Beaulieu C, Napel S, Rubin D. Predicting visual semantic descriptive terms 
from radiological image data: preliminary results with liver lesions in CT. IEEE Transactions on 
Medical Imaging. 2014:1. [PubMed: 23782798] 

Diciotti S, Picozzi G, Falchini M, Mascalchi M, Villari N, Valli G. 3-D segmentation algorithm of 
small lung nodules in spiral CT images. IEEE Transactions on Information Technology in 
Biomedicine. 2008; 12:7–19. [PubMed: 18270032] 

Duncan JS, Ayache N. Medical image analysis: progress over two decades and the challenges ahead. 
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000; 22:85–106.

El-Naqa I, Yang Y, Galatsanos NP, Nishikawa RM, Wernick MN. A similarity learning approach to 
content-based image retrieval: application to digital mammography. IEEE Transactions on Medical 
Imaging. 2004; 23:1233–1244. [PubMed: 15493691] 

ELCAP, VIA. ELCAP public lung image database [online database]. 2003. URL: http://
www.via.cornell.edu/databases/lungdb.html

Farag, A.; Elhabian, S.; Graham, J.; Farag, A.; Falk, R. Medical Image Computing and Computer-
Assisted Intervention (MICCAI). Springer; 2010. Toward precise pulmonary nodule descriptors 
for nodule type classification; p. 626-633.

Farag, AA. A variational approach for small-size lung nodule segmentation; IEEE. IEEE International 
Symposium on Biomedical Imaging (ISBI); 2013. p. 81-84.

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, 
Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image 
computing platform for the quantitative imaging network. Magnetic Resonance Imaging. 2012; 
30:1323–1341. [PubMed: 22770690] 

Foncubierta-Rodríguez, A.; Depeursinge, A.; Müller, H. Using mul-tiscale visual words for lung 
texture classification and retrieval; Springer Berlin Heidelberg. Proceedings of the International 
Conference on Medical Image Computing and Computer Assisted Intervention Workshop on 
Medical Content-Based Retrieval for Clinical Decision Support (MICCAI MCBR-CDS); 2012. p. 
69-79.

Foncubierta-Rodríguez, A.; Herrera, AGSd; Müller, H. Medical image retrieval using bag of 
meaningful visual words: unsupervised visual vocabulary pruning with pLSA; ACM. Proceedings 
of the 1st ACM international workshop on Multimedia indexing and information retrieval for 
healthcare; 2013. p. 75-82.

Golub, GH.; Van Loan, CF. Matrix computations. Vol. ume 3. The Johns Hopkins University Press; 
2012. 

Heckemann RA, Keihaninejad S, Aljabar P, Gray KR, Nielsen C, Rueckert D, Hajnal JV, Hammers A. 
Automatic morphometry in Alzheimer’s se and mild cognitive impairment. NeuroImage. 2011; 
56:2024–2037. [PubMed: 21397703] 

Hofmann T. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning. 2001; 
42:177–196.

Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJL, 
Whitwell J, Ward C. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. 
Journal of Magnetic Resonance Imaging. 2008; 27:685–691. [PubMed: 18302232] 

Jégou H, Perronnin F, Douze M, Sáanchez J, Pérez P, Schmid C. Aggregating local image descriptors 
into compact codes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012; 
34:1704–1716. [PubMed: 22156101] 

Jiang M, Zhang S, Li H, Metaxas D. Computer-aided diagnosis of mammographic masses using 
scalable image retrieval. IEEE Transactions on Biomedical Engineering. 2015; 62:783–792. 
[PubMed: 25361497] 

Jones KS. A statistical interpretation of term specificity and its application in retrieval. Journal of 
Documentation. 1972; 28:11–21.

Kumar A, Kim J, Cai W, Fulham M, Feng D. Content-based medical image retrieval: A survey of 
applications to multidimensional and multimodality data. Journal of Digital Imaging. 2013; 
26:1025–1039. [PubMed: 23846532] 

Zhang et al. Page 19

Neurocomputing. Author manuscript; available in PMC 2017 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.via.cornell.edu/databases/lungdb.html
http://www.via.cornell.edu/databases/lungdb.html


Kurtz C, Beaulieu CF, Napel S, Rubin DL. A hierarchical knowledge-based approach for retrieving 
similar medical images described with semantic annotations. Journal of Biomedical Informatics. 
2014a; 49:227–244. [PubMed: 24632078] 

Kurtz C, Depeursinge A, Napel S, Beaulieu CF, Rubin DL. On combining image-based and 
ontological semantic dissimilarities for medical image retrieval applications. Medical Image 
Analysis. 2014b; 18:1082–1100. [PubMed: 25036769] 

Kwitt R, Vasconcelos N, Rasiwasia N, Uhl A, Davis B, Hafner M, Wrba F. Endoscopic image analysis 
in semantic space. Medical Image Analysis. 2012; 16:1415–1422. [PubMed: 22717411] 

Lehmann TM, Gold M, Thies C, Fischer B, Spitzer K, Keysers D, Ney H, Kohnen M, Schubert H, 
Wein BB. Content-based image retrieval in medical applications. Methods of Information in 
Medicine. 2004; 43:354–361. [PubMed: 15472746] 

Li, FF.; Pietro, P. A bayesian hierarchical model for learning natural scene categories; IEEE. IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR); 2005. p. 524-531.

Liu, S.; Cai, W.; Song, Y.; Pujol, S.; Kikinis, R.; Feng, D. A bag of semantic words model for medical 
content-based retrieval; Proceedings of the International Conference on Medical Image Computing 
and Computer Assisted Intervention Workshop on Medical Content-Based Retrieval for Clinical 
Decision Support (MICCAI MCBR-CDS); Springer Berlin Heidelberg. 2013a. p. 125-131.

Liu, S.; Cai, W.; Wen, L.; Eberl, S.; Fulham, MJ.; Feng, DD. Generalized regional disorder-sensitive-
weighting scheme for 3D neuroimaging retrieval; IEEE. Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society (EMBC); 2011. p. 7009-7012.

Liu, S.; Song, Y.; Cai, W.; Pujol, S.; Kikinis, R.; Wang, X.; Feng, D. Multifold Bayesian kernelization 
in Alzheimer’s diagnosis; Springer Berlin Heidelberg. Medical Image Computing and Computer-
Assisted Intervention (MICCAI); 2013b. p. 303-310.

Lowe, DG. Object recognition from local scale-invariant features; IEEE. IEEE International 
Conference on Computer Vsion (ICCV); 1999. p. 1150-1157.

Menze, B.; Langs, G.; Montillo, A.; Kelm, M.; Müller, H.; Zhang, S.; Cai, W.; Metaxas, D. Lecture 
Notes in Computer Science. Springer; 2014. Medical computer vision: Algorithms for big data; p. 
8848

Müller H, Michoux N, Bandon D, Geissbuhler A. A review of content-based image retrieval systems in 
medical applications—clinical benefits and future directions. International Journal of Medical 
Informatics. 2004; 73:1–23. [PubMed: 15036075] 

Napel SA, Beaulieu CF, Rodriguez C, Cui J, Xu J, Gupta A, Koren-blum D, Greenspan H, Ma Y, 
Rubin DL. Automated retrieval of CT images of liver lesions on the basis of image similarity: 
method and preliminary results. Radiology. 2010; 256:243–252. [PubMed: 20505065] 

Oliva A, Torralba A. Modeling the shape of the scene: A holistic representation of the spatial envelope. 
International journal of computer vision. 2001; 42:145–175.

Quddus A, Basir O. Semantic image retrieval in magnetic resonance brain volumes. IEEE Transactions 
on Information Technology in Biomedicine. 2012; 16:348–355. [PubMed: 22389157] 

Quellec G, Lamard M, Cazuguel G, Cochener B, Roux C. Wavelet optimization for content-based 
image retrieval in medical databases. Medical Image Analysis. 2010; 14:227–241. [PubMed: 
20007020] 

Sivic, J.; Zisserman, A. Video Google: a text retrieval approach to object matching in videos; IEEE. 
IEEE International Conference on Computer Vision (ICCV); 2003. p. 1470-1477.

Song Y, Cai W, Zhou Y, Feng D. Feature-based image patch approximation for lung tissue 
classification. IEEE Transactions on Medical Imaging. 2013a

Song, Y.; Cai, W.; Zhou, Y.; Wen, L.; Feng, DD. Pathology-centric medical image retrieval with 
hierarchical contextual spatial descriptor; IEEE International Symposium on Biomedical Imaging 
(ISBI); 2013b. p. 198-201.

Tamaki T, Yoshimuta J, Kawakami M, Raytchev B, Kaneda K, Yoshida S, Takemura Y, Onji K, Miyaki 
R, Tanaka S. Computer-aided colorectal tumor classification in NBI endoscopy using local 
features. Medical Image Analysis. 2013; 17:78–100. [PubMed: 23085199] 

Toews M, Wells W III, Collins DL, Arbel T. Feature-based morphometry: discovering group-related 
anatomical patterns. NeuroImage. 2010; 49:2318–2327. [PubMed: 19853047] 

Zhang et al. Page 20

Neurocomputing. Author manuscript; available in PMC 2017 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tong T, Wolz R, Gao Q, Guerrero R, Hajnal JV, Rueckert D. Multiple instance learning for 
classification of dementia in brain MRI. Medical Image Analysis. 2014; 18:808–818. [PubMed: 
24858570] 

Weinberger KQ, Saul LK. Distance metric learning for large margin nearest neighbor classification. 
The Journal of Machine Learning Research. 2009; 10:207–244.

Wilkinson J. Convergence of the LR, QR, and related algorithms. The Computer Journal. 1965; 8:77–
84.

Wu, D.; Lu, L.; Bi, J.; Shinagawa, Y.; Boyer, K.; Krishnan, A.; Salganicoff, M. Stratified learning of 
local anatomical context for lung nodules in CT images; IEEE. IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR); 2010. p. 2791-2798.

Xu J, Faruque J, Beaulieu CF, Rubin D, Napel S. A comprehensive descriptor of shape: method and 
application to content-based retrieval of similar appearing lesions in medical images. Journal of 
Digital Imaging. 2012; 25:121–128. [PubMed: 21547518] 

Yang, J.; Jiang, YG.; Hauptmann, AG.; Ngo, CW. Evaluating bag-of-visual-words representations in 
scene classification; ACM. Proceedings of the International Workshop on Multimedia Information 
Retrieval; 2007. p. 197-206.

Yang W, Lu Z, Yu M, Huang M, Feng Q, Chen W. Content-based retrieval of focal liver lesions using 
bag-of-visual-words representations of single- and multiphase contrast-enhanced CT images. 
Journal of Digital Imaging. 2012; 25:708–719. [PubMed: 22692772] 

Zhang, F.; Song, Y.; Cai, W.; Hauptmann, AG.; Liu, S.; Liu, S.; Feng, DD.; Chen, M. Artificial Life 
and Computational Intelligence, Lecture Notes in Artificial Intelligence 8955. Springer; 2015a. 
Ranking-based vocabulary pruning in bag-of-features for image retrieval; p. 436-445.

Zhang F, Song Y, Cai W, Lee MZ, Zhou Y, Huang H, Shan S, Fulham M, Feng D. Lung nodule 
classification with multi-level patch-based context analysis. IEEE Transactions on Biomedical 
Engineering. 2014; 61:1155–1166. [PubMed: 24658240] 

Zhang, J.; Zhou, SK.; Brunke, S.; Lowery, C.; Comaniciu, D. Detection and retrieval of cysts in joint 
ultrasound B-mode and elasticity breast images; IEEE International Symposium on Biomedical 
Imaging (ISBI); 2010. p. 173-176.

Zhang S, Yang M, Cour T, Yu K, Metaxas DN. Query specific rank fusion for image retrieval. IEEE 
Transactions on Pattern Analysis and Machine Intelligence. 2015b; 37:803–815. [PubMed: 
26353295] 

Zhang X, Liu W, Dundar M, Badve S, Zhang S. Towards large-scale histopathological image analysis: 
Hashing-based image retrieval. IEEE Transactions on Medical Imaging. 2015c; 34:496–506. 
[PubMed: 25314696] 

Zhang, X.; Su, H.; Yang, L.; Zhang, S. Fine-grained histopathological image analysis via robust 
segmentation and large-scale retrieval; IEEE. IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR); 2015d. p. 5361-5368.

Zhang et al. Page 21

Neurocomputing. Author manuscript; available in PMC 2017 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Outline (a) and visual illustration (b) of the proposed PD-LST retrieval framework. The 

samples are lung nodule images of type J (please see Section 3.1 for details).
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Figure 2. 
Outline of topic-word significance measurement with pLSA. The occurrence relationship 

(green lines) between the images (large blue rectangles) and visual words (small orange 

rectangles) is computed. pLSA is then used to extract the latent topics (purple ellipses). The 

conditional probability P(wi|zh) (black line) of word wi given the latent topic zh is learnt and 

used to measure the significance of the word. The word with the higher probability (yellow) 

has the higher topic-word significance regarding this latent topic (shadowed).
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Figure 3. 
Outline of the overall-word significance measurement: (a) The relationship between the 

latent topics and words in terms of the conditional probabilities; (b) Bipartite relationship 

between the latent topics and words; (c) Computation of significance score of word w2, i.e., 

s(w2) = c(z1) + c(z3); and (d) Computation of contribution score of latent topic z2, i.e., c(z2) 

= s(w1) + s(w3).
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Figure 4. 
Transaxial CT images with typical nodules (from left to right) - well-circumscribed (W), 

vascularized (V), juxta-pleural (J) and pleural-tail (P). The nodules are circled in red.
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Figure 5. 
Lesion patterns for the three stages, shown from left to right as cognitively normal, MCI and 

AD. Red indicates high metabolism and blue color indicates low metabolism. Images were 

generated using 3D Slicer (Version 4.3) (Fedorov et al., 2012).
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Figure 6. 
The retrieval accuracy curve given the number of latent topics.
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Figure 7. 
The retrieval accuracy curve given the topic-word thresholds.
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Figure 8. 
The retrieval accuracy curve given the number of iterations.
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Figure 9. 
The retrieval accuracy curve given the pruning percentages.
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Figure 10. 
Visual retrieval results from the standard BoVW and PD-LST methods on the ELCAP 

dataset. The first two retrieved results are displayed for each method, followed by the cases 

retrieved by the other method. The case indices and categories are given below images. The 

corresponding word frequency histograms are showed with the x-coordinate as the index of 

the visual word and y-coordinate as the frequency.
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Figure 11. 
Visual retrieval results from the standard BoVW and PD-LST methods on the ADNI dataset. 

The case indices and categories are given around images. The corresponding word frequency 

histograms are showed with the x-coordinate as the index of the visual word and y-

coordinate as the frequency.
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Figure 12. 
Comparisons among different dictionary pruning approaches on the two datasets. The 

statistics are from the highest retrieval accuracies across the dictionaries with the sizes from 

100 to 2000. The mean of highest accuracies is shown with the bar, and the maximum and 

minimum are given as the upper and lower errors in the error-bar.
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Figure 13. 
Retrieval accuracy comparisons among the k-NN, LMNN and ITRA approaches. For the 

LMNN method, the default parameter settings of the LMNN package were used with 

maximum number of iterations as 1000, suppress output as 0, output dimensionality as 3, 

tradeoff between loss and regularizer as 0.5. For the ITRA method, we fixed the numbers of 

initial retrieval results and neighbours for bipartite graph construction at 10 and the iteration 

number at 20. The parameter settings for obtaining the original and pruned dictionaries were 

the same as used for the BoVW and PD-LST in Table 2.
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Table 1

Overall feature statistics of the two datasets.

Datasets Patch
feature
length

Number of
patches per

case

Number
of total
cases

ELCAP 128 100 379

ADNI 8 83 331
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Table 3

Comparison of execution time between the offline and online stages.

ELCAP ADNI

Offline
ODC 237.713 s 154.541 s

DP 8.883 s 9.910 s

Online R 1.856 s 1.246 s

*
ODC = original dictionary construction, DP = dictionary pruning, R = retrieval, s = second.
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Table 4

Comparison of execution time between the standard BOVW and our method.

ELCAP ADNI

BoVW 2.567 s 2.053 s

PD-LST 1.856 s 1.246 s

*
s = second

Neurocomputing. Author manuscript; available in PMC 2017 February 12.


	Abstract
	1. Introduction
	1.1. Related work
	1.2. Contributions

	2. Methods
	2.1. Overview of the PD-LST retrieval
	2.2. Topic-word significance
	2.3. Overall-word significance

	Algorithm 1
	2.4. PD-LST retrieval using the pruned dictionary

	3. Dataset and experimental design
	3.1. Datasets
	3.2. Feature extraction and dictionary construction
	3.3. Experimental design

	4. Experimental results and discussion
	4.1. Parameter analysis
	4.2. Retrieval performance evaluation
	4.2.1. Visual retrieval results
	4.2.2. Accuracy analysis
	4.2.3. Efficiency analysis


	5. Conclusions and future work
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Table 1
	Table 2
	Table 3
	Table 4

