
ar
X

iv
:1

51
0.

01
99

1v
1

 [
cs

.I
R

]
 7

 O
ct

 2
01

5

HDIdx: High-Dimensional Indexing for Efficient

Approximate Nearest Neighbor Search

Ji Wan, Sheng Tang, Yongdong Zhang, Jintao Li
† Key Lab of Intelligent Information Processing,

ICT, CAS, Beijing 100190, China

‡ University of the CAS, Beijing 100049, China

{wanji,ts,zhyd,jtli}@ict.ac.cn

Pengcheng Wu, Steven C.H. Hoi
∗School of Information Systems,

Singapore Management University,

Singapore 178902

{pcwu,chhoi}@smu.edu.sg

Abstract

Fast Nearest Neighbor (NN) search is a fundamental challenge in large-scale data processing and
analytics, particularly for analyzing multimedia contents which are often of high dimensionality.
Instead of using exact NN search, extensive research efforts have been focusing on approximate NN
search algorithms. In this work, we present “HDIdx”, an efficient high-dimensional indexing library
for fast approximate NN search, which is open-source and written in Python. It offers a family of
state-of-the-art algorithms that convert input high-dimensional vectors into compact binary codes,
making them very efficient and scalable for NN search with very low space complexity.

Keywords: High-Dimensional Indexing, Approximate Nearest Neighbor Search, Product
Quantization, Spectral Hashing

1. Introduction

Nearest neighbor (NN) search, also known as proximity search or similarity search, aims to find
closest or most similar data points/items from a collection of data points/items. It is a fundamental
technique for many application domains. In many real-world applications, like content-based image
retrieval [1] and multimedia data mining [2], data is often represented in high-dimensional spaces.
This makes NN search on large-scale high-dimensional data very challenging given limited storage
and computational resources. Instead of achieving the exact NN search, recent research efforts have
been devoted to approximate NN (ANN) search. Among varied solutions, hashing based techniques
have been one of the most powerful techniques to index large-scale high-dimensional data. There
are two kinds of hashing algorithms for ANN search: 1) mapping data to the Hamming space
while preserving similarities in the original space, and 2) compressing data into short codes and
approximating the distance with the one computed over these codes. Comprehensive studies of
hashing algorithms for ANN search can be found in [3, 4].

In this work, we present a new library of high-dimensional indexing solutions for fast ANN
search, which is open-source and written in Python. Python is a powerful and successful pro-
gramming language for scientific computing, and becomes very popular for big data analysis re-

This work was done when Ji Wan visited Dr Hoi’s group at SMU.

Preprint submitted to Neurocomputing October 8, 2015

http://arxiv.org/abs/1510.01991v1

9 Searching

8 Building

Indexes

7 Learning

Encoder

Query

Vector

Base

Vectors

Base

Codes

Query

Code

Indexer

Base

Indexes

Encoder

Learning

Vectors Storage

Results

Figure 1: System architecture of the proposed HDIdx solution.

cently [5, 6]. SeveralANN search libraries have already existed for Python, including the well-known
scikit-learn [5], Annoy 1 and NearPy 2. All these libraries are based on Locality Sensitive Hashing
(LSH) [7], a scalable ANN search solution in high-dimensional space. However, LSH is a data-
independent algorithm which maps the input vectors to hash codes by random projections. It often
requires long codes to guarantee a high precision and many hash tables to ensure a high recall.
Moreover, original vectors are also needed for ranking the candidates returned by LSH. As a result,
LSH based ANN solutions usually require large amounts of memory.

In contrast to the above mentioned libraries, we use unsupervised learning to hash algorithms
in HDIdx. By exploring the underlying distribution of data using machine learning techniques,
we can map the high-dimensional input vectors to compact hash codes and apply highly efficient
search algorithms on these binary codes. Original vectors can be discarded once they are mapped
to the compact codes, thus leading to very small memory cost required. Empirical studies show
that HDIdx can search a million-scale high-dimensional database in less than one millisecond.

2. Software Framework

Fig. 1 shows the proposed system architecture of HDIdx, which consists of three main modules:
1) Encoder : it compresses the input vectors into compact hash codes, 2) Indexer : it indexes the
base items and performs NN search, and 3) Storage : it encapsulates the underlying data storage
and provides unified interface for the Indexer .

The work flow of HDIdx is detailed as follows. First of all, an Encoder is learned from some
vectors. Then, the base vectors are mapped to hash codes using the learned Encoder . After that,
an Indexer builds indexes over these hash codes, and writes the indexes to memory or database.
When a query vector arrives, it is first mapped to some hash codes by the same Encoder , and then
the Indexer searches for similar items from hashing code database to match this query according to
its hash codes.

1https://github.com/spotify/annoy
2https://github.com/pixelogik/NearPy

2

https://github.com/spotify/annoy
https://github.com/pixelogik/NearPy

3. Implementation and Empirical Results

3.1. Implementation Details

HDIdx is mainly developed and implemented in the Python language, with some computation-
ally intensive part implemented in C language. The Storagemodule consists of wrappers for various
storage media, like memory and databases, and is easy to understand. Here we only present details
of the Encoder and the Indexer modules.

3.1.1. Encoder

The Encoder module compresses the input vectors into compact hash codes, which requires little
storage resource and can be searched very fast. Two unsupervised learning to hash algorithms are
used for ANN search in HDIdx: Spectral Hashing (SH) [8] and Product Quantization (PQ) [9].

SH maps the input vector to binary codes, and measures the similarities by Hamming distance.
HDIdx uses the compiler intrinsics to compute the Hamming distance between these codes, which
is extremely fast. Even with ordinary computational resources (e.g. a laptop or a PC), it can
compute one million distances for 64-bit binary codes in 0.01 seconds. Additionally, since the
number of distinct Hamming distances is very limited, which is bounded by the number of bits, the
NN s can be found using efficient partial counting sort algorithm with a time complexity of O(N),
where N is the number of base vectors.

PQ divides the vector space into m parts and maps an input vector to m precomputed centroids
in each sub-space. Then the distance in the original space can be approximated by the one between
these centroids. HDIdx uses Asymmetric Distance Computation (ADC) for distance approximation.
ADC only maps the base vectors to the precomputed centroids, then approximates the distance
by comparing the centroids and the original query vector, instead of quantized query vector. The
distance calculation between PQ codes is accelerated by look-up tables. For exhaustive search over
PQ codes, the time complexity is O(N logR), where R is the number of returned base vectors.

The main parameter in HDIdx is the number of bits b. For the PQ algorithm, we fix the
codebook size of each sub-quantizer to 256, so each index is encoded by 8 bits and the number of
sub-quantizer m = b/8.

3.1.2. Indexer

The Indexer module indexes the base items and performs fast NN search, and provides non-
exhaustive searching schemes to accelerate the search on large scale database.

One way to perform non-exhaustive search on the SH codes is to build a hash table with the
SH codes as indexes, then the NN s can be found by exploring a sequence of Hamming balls with
progressively increasing radius. However, the number of buckets will increase exponentially with
respect to the code length, and most computation will be wasted on checking empty buckets when
the codes get longer. Multi-index hashing (MIH) [10] is used to address this issue. The basic idea
is to split the b-bit code into t substrings, then build t hash tables using these t substrings as
keys respectively. We can get candidate NN s by exploring much smaller Hamming balls in each
subspace, and final results can be obtained by ranking these candidates with full-length codes.

To accelerate the search on PQ codes, we implements an inverted file system (IVF) to perform
non-exhaustive search [9]. The base vectors are first separated into k′ groups by a coarse quantizer
qc, then the residual vectors in each group are compressed to PQ codes. Here residual vector is the
offset with respect to the centroid in each group: r(x) = x − qc(x). When a query comes, only w
groups correspond to the w nearest neighbors of the query in the coarse codebook will be checked.
The final results is obtained by searching the PQ codes in these groups exhaustively.

3

100 101 102 103 104

R

0.0

0.2

0.4

0.6

0.8

1.0

re
ca
ll

8-bit

16-bit

32-bit

64-bit

128-bit

(a) SH

100 101 102 103 104

R

0.0

0.2

0.4

0.6

0.8

1.0

re
ca
ll

8-bit

16-bit

32-bit

64-bit

128-bit

(b) PQ - bruteforce

Figure 2: Recall rate of different indexing schemes.

Table 1: Search time for 100-NN search (ms).

Number of bits 8 16 32 64 128

Spectral Hashing 3.923 5.843 7.221 11.965 20.478
Product Quantization 15.078 15.340 16.932 20.628 28.296

3.2. Empirical results

We evaluate HDIdx on the SIFT1M dataset [9], which consists of 3 subsets: 1) 1-million base
vectors on which the search is performed, 2) 10,000 query vectors, and 3) 100,000 training vectors
for learning the Encoder , where each vector is of 128 dimensions. The time costs of 100-NN
search is used to measure the search efficiency, and recall@R is used to measure the search quality.
recall@R is the proportion of query vectors for which the NN is ranked in the first R positions.
The experiments were conducted on a laptop with 2.40GHz i7 processor and 16GB RAM.

First of all, we evaluate the exhaustive search performance of SH and PQ codes with respect to
b. Fig. 2 shows that recall@R increases with b, and PQ is always better than SH with the same b.
On the other hand, Table 1 shows that SH is much faster than PQ, especially for small b.

Moreover, we compare HDIdx with Annoy and NearPy in a 100-NN search task. We evaluate
64-bit SH and PQ codes, together with multi-index hashing (MIH) on SH codes for t = 4, inverted
file (IVF) on PQ codes for k′ = 1024, w ∈ {5, 10}. Annoy is evaluated with nt ∈ {16, 32}, where nt
is the number of trees. NearPy is evaluated with nb ∈ {16, 32} and L = 8, where nb is the number
of binary projections and L is the number of hash tables. Server observations can be obtained from
Table 2. First, both MIH and IVF significantly speed up the search on SH and PQ codes without
sacrificing the search quality. Second, both HDIdx and Annoy are much faster and more accurate
than NearPy. Third, the search time and quality of IVF is comparable with Annoy, but HDIdx
is more efficient in terms of storage costs since it does not store the original vectors while Annoy
does. It requires 512MB for 1 million 128-D vectors, but only 8MB for 64-bit hash codes.

In the above experiments, IVF beats MIH in terms of both speed and quality. Optimization for
MIH according to [11] is under development, there are also research on optimization of PQ [12].
These improvements will be put into the future release of HDIdx.

4

Table 2: Performance for 100-NN search.

Method SH PQ MIH IVF IVF Annoy Annoy NearPy NearPy

Parameters - - t = 4 w = 5 w = 10 nt = 16 nt = 32 nb = 16 nb = 32

Time (ms) 11.965 20.628 4.978 0.540 0.915 0.516 0.920 138.076 2.412

recall@R 0.532 0.915 0.543 0.826 0.904 0.753 0.892 0.654 0.205

4. Illustrative Examples

Illustrative examples of HDIdx can be found at: http://goo.gl/eMyh3Z.

5. Conclusions

This work presented the HDIdx software that offers cutting-edge solutions for indexing large-
scale high-dimensional data. The current library implemented two state-of-the-art high-dimensional
feature compressing algorithms, SH and PQ, and their respective indexing solutions, MIH and IVF.
Our empirical results showed that our solution is very efficient in both time and storage costs. In the
future work, we wish to keep improving HDIdx by exploring some more state-of-the-art research.

References

[1] J. Wan, D. Wang, S. C. Hoi, P. Wu, J. Zhu, Y. Zhang, J. Li, Deep learning for content-based image
retrieval: A comprehensive study, in: Proceedings of the ACM MM, 2014, pp. 157–166.

[2] S. Wang, Q. Huang, S. Jiang, Q. Tian, L. Qin, Nearest-neighbor method using multiple neighborhood
similarities for social media data mining, Neurocomputing 95 (2012) 105–116.

[3] J. Wang, H. T. Shen, J. Song, J. Ji, Hashing for similarity search: A survey, CoRR abs/1408.2927.

[4] K. Grauman, R. Fergus, Learning Binary Hash Codes for Large-Scale Image Search, Springer Berlin
Heidelberg, 2013.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in python, The Journal of Machine
Learning Research 12 (2011) 2825–2830.

[6] I. Idris, Python Data Analysis, Packt Publishing Ltd, 2014.

[7] P. Indyk, R. Motwani, Approximate nearest neighbors: Towards removing the curse of dimensionality,
in: Proceedings of the ACM STOC, 1998, pp. 604–613.

[8] Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: Proceedings of the NIPS, 2008, pp. 1753–1760.

[9] H. Jégou, M. Douze, C. Schmid, Product quantization for nearest neighbor search, IEEE Trans. Pattern
Anal. Mach. Intell. 33 (1) (2011) 117–128.

[10] M. Norouzi, A. Punjani, D. J. Fleet, Fast search in hamming space with multi-index hashing, in:
Proceedings of the IEEE CVPR, 2012, pp. 3108–3115.

[11] J. Wan, S. Tang, Y. Zhang, L. Huang, J. Li, Data driven multi-index hashing, in: Proceedings of the
IEEE ICIP, 2013, pp. 2670–2673.

[12] T. Ge, K. He, Q. Ke, J. Sun, Optimized product quantization, IEEE Trans. Pattern Anal. Mach. Intell.
36 (4) (2014) 744–755.

5

http://goo.gl/eMyh3Z

	1 Introduction
	2 Software Framework
	3 Implementation and Empirical Results
	3.1 Implementation Details
	3.1.1 Encoder
	3.1.2 Indexer

	3.2 Empirical results

	4 Illustrative Examples
	5 Conclusions

