
Ordered Decompositional DAG Kernels Enhancements

Giovanni Da San Martinoa, Nicolò Navarinb,∗, Alessandro Sperdutib

aQatar Computing Research Institute, HBKU, P.O. Box 5825 Doha, Qatar
bDepartment of Mathematics, University of Padova, via Trieste 63, Padova, Italy

Abstract

In this paper, we show how the Ordered Decomposition DAGs (ODD) ker-
nel framework, a framework that allows the definition of graph kernels from
tree kernels, allows to easily define new state-of-the-art graph kernels. Here
we consider a fast graph kernel based on the Subtree kernel (ST), and we
propose various enhancements to increase its expressiveness. The proposed
DAG kernel has the same worst-case complexity as the one based on ST, but
an improved expressivity due to an augmented set of features. Moreover, we
propose a novel weighting scheme for the features, which can be applied to
other kernels of the ODD framework. These improvements allow the pro-
posed kernels to improve on the classification performances of the ST-based
kernel for several real-world datasets, reaching state-of-the-art performances.

Keywords: Kernel Methods, kernel functions, Graph Kernels, Classification

1. Introduction

The increasing availability of data in structured form, such as trees [1] or
graphs [2, 3, 4], has led to the development of machine learning techniques
able to deal directly with such types of data. Among these, kernel meth-
ods, such as Support Vector Machines (SVM) [5], have become very popular
due to their generalization ability and state of the art performances in many
tasks, such as relationship extraction [6], analysis of RDF data [7], action

∗Corresponding author
Email addresses: gmartino@qf.org.qa (Giovanni Da San Martino),

nnavarin@math.unipd.it (Nicolò Navarin), sperduti@math.unipd.it (Alessandro
Sperduti)

Preprint submitted to Neurocomputing October 20, 2018

ar
X

iv
:1

50
7.

03
37

2v
2

 [
cs

.L
G

]
 2

8
D

ec
 2

01
5

recognition [8], text categorization of biomedical data [9] and bioinformat-
ics [10].

The class of kernel methods comprises all those learning algorithms which
do not require an explicit representation of the input, but only information
about the similarities among them. A simple way of assessing the similarity
between two objects described by a set of features is to compute the dot
product of their representation in feature space. If a “similarity” function
k(·, ·), corresponding to a dot product 〈·, ·〉 in feature space, is available,
the intermediate step of explicitly representing the data can be avoided.
In fact, computing k(x1, x2) implicitly corresponds to perform a nonlinear
transformation of the input vectors x1 and x2 via a function φ(·) and then
to compute the dot product of the resulting vectors φ(x1) and φ(x2). The
function φ(·) projects the input vectors into a feature space of much higher
(possibly infinite) dimension where it is more likely to accomplish the learning
task. Kernel methods generally formulate a learning problem as a constrained
optimization one, where an objective function combining an empirical risk
term with a (quadratic) regularizer must be minimized. If the employed
kernel function is symmetric positive semidefinite, the problem is convex and
thus has a global minimum [5].

Any kernel method can be decomposed into two modules: i) a problem
specific kernel function; ii) a general purpose learning algorithm (the solver).
Since the solver interfaces with the problem only by means of the kernel
function, it can be used with any kernel function, and vice-versa. Examples
of popular kernel methods are the perceptron [11] for the on-line setting, and
the Support Vector Machines [5] for the batch setting. Note that, provided
an appropriate kernel function is given, any kernel method can be applied
to any type of data. More importantly, the kernel function encodes all the
information about the input data, thus the definition of appropriate kernel
functions is crucial for the outcome of the learning algorithm.

A popular strategy for defining kernel functions for structured data is
to decompose the structures into their constituent parts, and then, for each
pair of parts, apply a local kernel [12]. While this strategy has been proved
successful for strings and trees [13, 14, 15, 16, 17, 18], it is not directly appli-
cable to graphs because of the computational complexity issues which arise:
representing a graph in terms of its subgraphs is not feasible since subgraph
isomorphism, an NP-complete problem, should be solved for each pair of
subgraphs. In [19] it has been demonstrated that, any kernel whose feature
space mapping is injective, is as hard to compute as graph isomorphism, an

2

NP problem that still is not known whether it is in P or if it is NP-complete.
Due to this limitation, the available strategies for building kernels are: i) re-
stricting the input domain to a class of graphs for which isomorphism can be
checked quickly [20]; ii) select a priori a set of features, usually corresponding
to a specific type of substructure, such as walks [19], paths [21, 22], subtree
patterns [23, 24]. The former approach can be applied to a limited type
of graphs, the latter tends to have a limited flexibility: when the available
kernels are not relevant to the task, a new one has to be designed. However,
defining an efficient symmetric positive semidefinite kernel, corresponding to
the desired feature space, can be an extremely difficult task. All the above
approaches discard information about the original graph and are effective
only when the selected features are relevant for the current problem. We
propose to design graph kernels as follows: first transform the graphs into
simpler structures, i.e. multisets of directed acyclic graphs (DAGs), and then
extend the definition of a large class of already available kernels for trees to
DAGs. Our approach allows the application of the vast literature on kernels
for trees, which consists of fast and/or very expressive kernels, to the graph
domain.

Generally speaking, a serious drawback which prevents many of the ker-
nels listed above to be applied to large datasets is their computational time
complexity. Those kernels which can be applied to large datasets exploit a
“limited” number of features to represent a graph. For example, the ker-
nel proposed in [24] has a linear complexity in the number of edges of the
graphs because any graph is represented in the feature space by a number of
non-zero features which is proportional to the number of nodes of the graph.
On the other hand, a too compact representation of a graph in feature space
may have a negative impact on the effectiveness of the kernel because of a
reduced discrimination ability.

In this paper, we tackle this problem by proposing various enhancements
to a fast graph kernel based on the Subtree kernel for trees (ST) [25]. Among
these, the main contribution is a novel tree kernel, which has the same worst-
case complexity of the ST kernel, while the size of its feature space is much
larger.

The paper is structured as follows. Section 2 introduces some basic no-
tation and definitions. Section 3 recalls the ODD framework, of which the
proposed kernels are instances. Section 4 describes the main contributions
of the paper: the ST+ kernel for DAGs and a novel weighting scheme for
the features, which can be applied to other kernels of the ODD framework.

3

Section 5 discusses some related kernels for graphs, and Section 6 provides ex-
perimental evidence of the effectiveness of the proposed approaches. Finally,
Section 7 draws conclusions.

The paper extends the work in [26] by adding: i) a self-contained and
simplified description of the ST+ kernel; ii) a novel, more effective, feature
weighting scheme; iii) an extended and revised “Related Work” section; iv) a
novel set of experiments which are now performed on much larger benchmark
datasets and for a larger number of competing graph kernels; v) a comparison
among empirical execution times of the various experimented kernels.

2. Notation

A graph is a triplet G = (V,E, L), where V (alternatively VG) is the
set of nodes (|V | is the number of nodes), E the set of edges and L() a
function returning the label of a node. All labels are obtained from a fixed
alphabet A. A graph is undirected if (vi, vj) ∈ E ⇔ (vj, vi) ∈ E, otherwise
it is directed. A path in a graph is a sequence of nodes v1, . . . , vn such that
vi ∈ V, 1 ≤ i ≤ n, (vi, vi+1) ∈ E and ∀1 ≤ i ≤ n, 1 ≤ j < n, j 6= i.vi 6= vj
(no node, except the first one, can appear twice in the same path). A cycle
is a path for which v1 = vn; a cycle is even/odd if its number of nodes is
even/odd, respectively. A graph is connected if there exists a path connecting
each pair of nodes. A connected graph is rooted if exactly one node has no
incoming edges. A graph is ordered if the set of neighbours of each node is
ordered. A tree is a rooted connected directed acyclic graph where each node
has at most one incoming edge. A subtree of a tree T is a connected subset
of nodes of T . A proper subtree is a subtree composed by a node and all of
its descendants. Given a node v of a tree, ρ(v) represents the outdegree of
v, i.e. the number of nodes connected to v. We will use ρ as the maximum
outdegree of a node in either a tree or a graph. The depth depth(v) of a
node v is the number of edges in the shortest path between the root of the
tree and v. If the tree is ordered, chv[j] represents the j-th child of v and
chsv[j1, j2, . . . , jn] indicates the set of children of v with indices j1, j2, . . . , jn.
Given a graph G and a node v ∈ V (G), we define a subtree-walk of size h
as the tree obtained by the following procedure: the root of the tree is v; at
each step i, with 1 ≤ i ≤ h, and for each current leaf node vj of the tree, any
neighbouring node of vj in G is added to the tree as a child of vj. Note that,
when h > 1, typically a node of G can appear multiple times in the same
subtree-walk. Given a DAG D and a node vi ∈ V (D), we define a tree-visit,

4

denoted by
vi
4, as the tree resulting from the visit of D starting from the

node vi. Such visit returns all the nodes of D reachable from vi. If a node
vj can be reached more than once, more occurrences of vj will appear in

vi
4

(see Figure 2-b for an example).

3. Preprocessing: from Graphs to Multisets of DAGs

This section recalls the ODD-Kernels framework for graphs [27]. The
idea of our approach is to transform the graphs into simpler structures, i.e.
DAGs, and then apply a kernel for such structures. The following subsections
explain each step of the transformation.

3.1. From Graph to DAGs

The graph G is mapped into a multiset of DAGs DDG = {DDvi
G |vi ∈ VG},

where DDvi
G = (V vi

G , E
vi
G , L) is obtained by keeping each edge in the shortest

path(s) connecting vi with any vj ∈ VG. From a practical point of view, DDvi
G

can be built by performing a breadth-first visit on the graph G starting from
node vi and applying the following rules:

1. during the visit a direction is given to each edge; if vj is reached from
vi in one step, then (vi, vj) ∈ Evi

G (note that edge (vj, vi) is not added
to Evi

G);

2. edges connecting nodes reached at level l of the visit to nodes reached
at level g < l are not added to Evi

G (such edges would induce a cycle in
DDvi

G .)

For every choice of G and vi, a single Decompositional Dag DDvi
G is gener-

ated. By repeating the procedure for each node of the graph, |V | DAGs are
obtained. Figure 1 shows the four DDs obtained from the undirected graph
in Figure 1-a. Note that when the same node is reached simultaneously (at
the same level of the visit) from different nodes, then all involved edges are
preserved. For example, when considering the visit at level 2 starting from
node s, the node d is reached simultaneously by edges (b,d) and (e,d), and
both of them are preserved in the corresponding Decompositional DAG (see
Figure 1-b). In order to reduce the total number of nodes of DDv

G, we pro-
pose to limit the depth of the visits during the generation of the multiset of
DAGs [27] to a constant value h. The resulting DAG will be referred to as
DDv,h

G . Given v ∈ VG, let H be the number of nodes generated by the visits
up to depth h. An upper bound for H is ρh. Notice, this is a loose bound,

5

d

b

e

s
a)

b) c)

d) e)

s

e

d

b

e

s b d

b

s e d

d

b

s

e

Figure 1: Example of decomposition of a graph a) into its 4 DDs b-e).

in many practical cases. The total number of nodes of DDG is |VG|H. Note
that, if ρ is constant, then also H is constant.

3.2. Ordering DAG nodes

The kernels we define in the following, which are all straightforwardly
derived from tree kernels, require DAG nodes to be ordered. Therefore,
we define a strict partial order <̇ between DAG nodes in DDvi

G obtaining
Ordered DAGs ODDvi

G . The ordering makes use of a unique representation
of subtrees as strings inspired by [14]. Here we modify such mapping by
employing perfect hash functions, i.e. hash functions which guarantee to
have no collisions, to encode subtrees [24, 28]. Let κ() be a perfect hash
function, #, d, c be symbols never appearing in any node label and chv[j] the
j-th node in the ordered sequence of outcoming edges of v, then

π(
v

4) =

{
κ(L(v)) if v is a leaf node

κ
(
L(v)

⌈
π(

chv [1]

4)# . . .#π(
chv [ρ(v)]

4)
⌋)

otherwise
(1)

where the children of v are recursively ordered according to their π() values.
To simplify notation, in the following, when it is clear from the context, we

will use the notation π(v) instead of π(
v

4). Then vi<̇vj if π(vi) < π(vj),
where < is the relation of order between alphanumeric strings. Notice that
π(vi) = π(vj) ⇔ ¬(vi<̇vj) ∧ ¬(vj<̇vi), i.e. π(vi) = π(vj) if and only if the
nodes vi and vj are not comparable. In such case, many orderings for non
comparable children nodes according to <̇ are possible. We are now going to
prove some results that will make it easier to show, in Section 4, that each
kernel described in this paper (as well as for a large class of kernels for trees)
yield the same features, independently of the ordering of non comparable
nodes. Since all the features of the kernels in Section 4 are extracted from

6

tree visits of DAG nodes, our goal here is to show that isomorphic DAGs
yield the same tree visits. We first show that if two DAGs DDvi

G1
and DD

vj
G2

are isomorphic, then the root nodes of the DAGs are not comparable with
respect to the ordering <̇, in fact:

Theorem 3.1. if two DAGs DDvi
G1

and DD
vj
G2

are isomorphic, then
¬(vi<̇vj) ∧ ¬(vj<̇vi).

Proof Let f : VG1 → VG2 be an isomorphism between DDvi
1 and DD

vj
2 . We

prove the thesis by induction. Let f(vi) = vj, since the nodes are iso-
morphic L(vi) = L(vj). If vi and vj are leaf nodes, then π(vi) = π(vj)
and consequently ¬(vi<̇vj) ∧ ¬(vj<̇vi). Otherwise, by inductive hypothe-
sis ∀l.1 ≤ l ≤ ρ(vi). π(chvi [l]) = π(chf(vi)[l]) and L(vi) = L(f(vi)), thus
π(vi) = π(f(vi)) = π(vj).

The following theorem shows that two non comparable nodes vi, vj, yield

identical tree visits
vi
4,

vj

4:

Theorem 3.2. Given the ordering <̇, ¬(vi<̇vj) ∧ ¬(vj<̇vi) if and only if
vi
4

and
vj

4 are identical.

Proof If ¬(vi<̇vj) ∧ ¬(vj<̇vi) then π(vi) = π(vj). Recalling that κ(), the
function on which π() is based on, is a perfect hash function, we prove the
thesis by induction. If vi, vj are leaf nodes, then π(vi) = π(vj) ⇔ L(vi) =

L(vj). If vi, vj are not leaf nodes, then ∀l.1 ≤ l ≤ ρ(vi)
chvi [l]

4 is identical

to
chvj [l]

4 for inductive hypothesis, and then it must be L(vi) = L(vj) since

π(vi) = π(vj); therefore
vi
4 is identical to

vj

4. Now we show that if
vi
4 is

identical to
vj

4, then π(vi) = π(vj) by induction. The base case has already
been proved by the equality π(vi) = π(vj) ⇔ L(vi) = L(vj). By inductive
hypothesis π(chvi [m]) = π(chvj [m]) for each child m of vi and vj. Then
π(vi) = π(vj) and ¬(vi<̇vj) ∧ ¬(vj<̇vi).

Note that, since any ordering between non comparable vertices is equiv-
alent for our goals, we avoid to give a specific ordering. If the π() values
are computed according to a post order visit of the DAG, then the values
π(chv[l]) for 1 ≤ l ≤ ρ(v) are already available when computing π(v). Thus
the time complexity of the ordering phase of the DAG is O(|VG|ρ log ρ) where
the term ρ log ρ accounts for the ordering of the children of each node.

7

3.3. Applying Tree Kernels to DAGs

If we restrict to the kernels which are going to be presented in this paper,
the general formula for graph kernels derived from the ODD framework [27]
can be simplified as follows

ODDK(G1, G2) =
∑

D1∈ODDG1
D2∈ODDG2

〈φK(D1), φK(D2)〉, (2)

where 〈·, ·〉 is the dot product operator, and φK(D) is the explicit fea-
ture space projection of the DAG D with respect to the kernel K and
ODDG = {ODDv,h

G |v ∈ VG}. Section 4.1 gives an example of an instance
of the kernel defined in (2).

4. Kernels for DAGs

In Section 3, we showed a preprocessing procedure for transforming a
graph into a multiset of ordered DAGs. In this section, we first recall the
ODDSTh kernel, presenting it in a slightly different way than as it was orig-
inally introduced in the paper [27]. Then, we describe the original contri-
butions of the paper, i.e. a novel kernel for DAGs, named ST+, and a
novel weighting scheme for the features which is specifically designed for our
setting.

4.1. ST kernel for DAGs

Let us consider
v

4, the tree resulting from the visit of ODDv
G starting

from the root node v. The visit can be stopped when the tree
v

4 reaches a

maximum depth h. Such tree is referred to as
v

4|h.
As an example of kernel in (2), we recall the ODDSTh kernel [27]. The

features of the kernel are
v

4|l, for each v ∈ VD, where D ∈ ODDG as defined

in the previous section and for each 0 ≤ l ≤ h. Specifically, any node v
of the DAG contributes to the feature vector φ(·) as φπ(v) = λ

size
2 , where

size = | v4|l| for some l, and π(v) (we recall that this notation stays for

π(
v

4|l)) is the function defined by (1). This weighting scheme for the features

is inherited by the ST [25] kernel and it is motivated by the fact that when
computing a kernel involving two matching large trees, the value returned
by the kernel is very large because not only the whole trees will match, but

8

all their subtrees will match as well. To correct that, the contribution to the
kernel of a matching tree is down-weighted by λ

size
2 , where 0 < λ ≤ 1.

In order to demonstrate that the resulting graph kernel is positive semidef-
inite, we need to prove that our φ(·) function is well-defined, i.e. it gives the
same result when the representation of the input is changed without changing
the value of the input. If two graphs are isomorphic, they generate the same
multiset of DAGs (since they are defined over shortest paths). We know
from Theorem 3.1 that isomorphic DAGs generate the same visits. Since
the features considered by the ST kernel are subtrees, it directly follows from
Theorem 3.2 that the swapping of non comparable vertices in the ordering do
not affect the feature space representation of a graph. Thus, we provided a
well-defined feature space representation for ODDSTh , from which it follows
that the kernel is positive semidefinite.

4.2. The ST+ Kernel for DAGs

The kernel we introduce in this section enlarges the feature space of the
ST kernel, with a modest increase in computational burden, and is referred
to as ST+. In Algorithm 1 we define a procedure to compute the explicit
feature space representation φ(·) of ST+. Note that this procedure accesses

the graph only by means of
v

4 and
v

4|l, moreover if two trees
vi
4 and

vj

4 are

identical, than also all their subtrees are. Thus, if two nodes generates the

same π(vi) = π(vj), then
vi
4 =

vj

4 and
chm[vi]

4 |l =
chm[vj]

4 |l for each m and

l. Thus, by Theorem 3.2 the procedure is well defined also in the presence
of non-comparable nodes, since the resulting tree visits are the same. This
proves that the kernel is positive semidefinite. The set of features related to
the ST+ kernel is a superset of the features of ST and a subset of the features
of PT [15]. Line 8 of Algorithm 1 depicts a generic feature introduced by
ST+. Given a node v and an index j, the feature is defined as the subtree
v

4 where all subtrees rooted at children of v, except for the j-th child, are
replaced by a corresponding limited visit of l levels. Notice that the feature
actually depends on v ∈ VD, the index of a child j and a limit l on the depth
of the visits. The function π(f) returns the index of the feature f in φ(·).
Figure 2 depicts a partial feature space representation of a DAG according
to ST+. While for the ST kernel there is one feature for each v ∈ VD,
ST+ associates at most (ρ(v) · h) + 1 features for any v ∈ VD. For each
node v ∈ VD, for example the node with label v highlighted in Figure 2-a,
the algorithm inserts the following features:

9

Algorithm 1 A procedure for computing the features of the ST+ kernel.
1: Input: an ordered DAG D, the maximum depth of the visit h
2: for each v ∈ VD do
3: f =

v
4

4: φπ(f) = φπ(f) + λ
|f|
2 // add the proper subtree rooted at v as a feature.

5: // if the feature is first encountered, it is assumed φπ(f) = 0

6: for 0 ≤ l < min(h, depth(f)) do
7: for 1 ≤ j ≤ ρ(v) do

8:

v

ch1[v]

4 |l
. . . chj−1[v]

4 |l
chj [v]

4
chj+1[v]

4 |l
. . . chρ(v)[v]

4 |l

f ′ =

9: φπ(f ′) = φπ(f ′) + λ
|f′|
2 // add the subtree f ′ as a feature.

10: end for
11: end for
12: end for
13: Output: φ(·), the set of features of D

1. the proper subtree rooted at v, which in our example is the one in
Figure 2-b;

2. given chj[v], the subtree composed by:

• v;

• the proper subtree rooted at the j-th child of v;

• the subtrees resulting from a visit limited to 1 ≤ l ≤ h levels
starting from the other children of v

is added as feature. As l ranges from 0 to h, the features/subtrees from
Figure 2-c to Figure 2-e are added.

Recalling that H is the number of nodes in a DAG ODDv
G, the complexity

of Algorithm 1 is O(Hh2ρ2 log ρ). The complexity of the ODD kernel in
(2), instantiated with ST+ as base kernel is O(|VG| log |VG|), assuming ρ
constant.

4.3. A Novel Feature Weighting Scheme

The features associated with many kernels for graphs, including ODDSTh

and ODDST+, are not independent from each other. They are, instead, or-
ganized in a hierarchical structure [29]. Let us consider the ODDSTh kernel
as an example: given any pair ti, t such that ti is a subtree of t, if t occurs
as a feature for a graph G, then ti must occur as features as well. As a
consequence, sticking to our example, there is a monotonic increasing rela-
tionship between the frequencies of the subtree features ti and the subtree

10

s

d

f

v

a x

d

e f

e

e f

g

e

g

b
a)

v

a x

d

e f

e

e

g

f

g

e

g

b)

v

x

d

e f

c)

l = 0 l = 1

d)

v

a x

d

e f

e e

e)

l = 2

v

a x

d

e f

e

e f

e

g

Figure 2: Feature space representation related to the kernel ST+: a) an
input DAG; b) the proper subtree rooted at the node labelled as v; c)-e)
given the child x of v, the features related to visits limited to l levels.

features t. Such relationship is quantified in the upper-left plot of Figure 3,
which reports the frequencies of the features generated by the ODDSTh ker-
nel, for h ∈ {0, . . . , 3}, on one of the datasets we will consider in Section 6.
The points in the x-axis correspond to features, sorted according to their
weights. The y-axis, since λ = 1, reports the frequencies of the features in
the dataset, i.e. the number of times each feature appears in all input graphs.
Note that the x-axis is in logarithmic scale. The frequencies are distributed
according to a Zipfian distribution, which means that there are very few fea-
tures with high frequency. Given the structured nature of the feature space,
such features are the “simple” ones, i.e. those associated with small sized
subtrees, for example single nodes. Any kernel function evaluation will then
be highly influenced by such features, which are typically the least discrim-
inative ones. In the case of the ODDSTh and ODDST+ kernels, which we
recall first decompose the graph into a set of DAGs, the difference between
the frequencies of small-sized and large-sized features is even greater since
they are extracted from multiple DAGs: the smaller the size of a subtree, the
more likely for it to appear in multiple DAGs. The fact that the distribution
of weights of the features is particularly skewed, may negatively impact the
predictive performance of the kernel since, in principle, we would like to give
more emphasis to (i.e. to weight more) bigger, discriminative features with

11

Cumulative Feature Weight, CAS dataset, ODDST kernel

0
100000
200000
300000
400000
500000
600000
700000

 1 10 100

Σ G
 w

G
(f

)

λ=1

h=0 h=1 h=2 h=3

 1 10 100

λ=1.8

0

1000

2000

3000

4000

5000

1 10 100

Σ G
 w

t G
(f

)

f (log scale)

λ=1

1 10 100

f (log scale)

λ=1.8

Figure 3: Comparison between the weighting schemes wG(f) (3) and
wtG(f) (4). On the x axis, in a logarithmic scale, the first 100 features
generated by the ODDSTh kernel for different h values. The y axis reports
the cumulative weight of each feature among all the graphs in the dataset.

respect to small ones, that tend to appear in almost all examples, and thus
are generally not correlated with the target concept.

One way to tackle this issue is to adopt the weighting scheme explained
in Section 4.1, that has been designed specifically for the case of the compu-
tation of tree kernels [25]. This scheme has been implemented in the original
ODDSTh kernel formulation, and we maintained it for the proposed ODDST+

kernel: given a graph G, the weight wG(f) of each feature f (see lines 4 and
9 of Algorithm 1) is computed as

wG(f) = freqG(f) · λ
|f |
2 , (3)

where freqG(f) is the frequency of the feature f in G. Therefore the contri-
bution to the kernel of the same matching feature (computed via dot product)

12

in two input graphs G1 and G2 is freqG1(f) · freqG2(f) · λ|f |. A value of λ
greater than 1 would give more importance to large matching trees. How-
ever, the contribution of the less frequent, possibly interesting, small features
could be underweighted. The upper-right plot in Figure 3 shows that, with
this weighting approach, there are slightly more features with a relatively
high weight w.r.t. the case where no weighting scheme is applied (i.e. when
λ = 1). Nonetheless, the distribution is still very skewed.

Another possibility is to define a different weighting scheme, more suited
to our approach. As a first step in this direction, we propose to mitigate the
contribution of otherwise overweighted features with a different definition1

of wG(f), in the following denoted as wtG(f), i.e.

wtG(f) = tanh(λ|f |) · tanh(freqG(f)), (4)

where tanh(·) is the hyperbolic tangent function. Note that the original
weighting scheme depends nonlinearly (exponentially) on the size of the fea-
ture |f | and linearly on its frequency. The novel scheme we are proposing, on
the other hand, depends nonlinearly on both |f | and freqG(f). In this way,
the contribution of each feature is smoothly and non-linearly normalized in
the interval [0, 1].
Note that the hyperbolic tangent function is almost linear around zero, and
asymptotically tends to one for positive values. This means that the contri-
bution of frequent features is truncated, while the less frequent features are
still discriminated since they fall in the linear part of the function. The same
is true for the λ|f | factor.

The lower plots in Figure 3 reports the weights distribution according to
the new wtG weighting function proposed in (4) with λ = 1 and λ = 1.8,
respectively. The final result is that the weights are distributed in a smoother
way.
The new weighting scheme is applied to the ST kernel, obtaining a variant
of the kernel proposed in [27], and to the ST+ kernel first proposed in this
paper. Note that this novel weighting scheme is just one possibility among
several ones. The key point is that we want to achieve a smoother distribution
of the weights associated to the features. The tanh function implements all
our desiderata, but any other sigmoidal function can be adopted. Notwith-

1This is an evolution of the scheme proposed in [26].

13

standing the heuristic nature of our choice, the experimental results we have
obtained on several real world datasets, as reported in Section 6, show that
the novel proposed weighting scheme allows to reach statistically significant
improvements over state-of-the-art kernels. This seems to confirm that both
our intuition on the smoothness of the weight distribution, as well as its
implementation via the tanh function, are useful.

5. Related work

Graph data is usually high-dimensional. For this reason, in order to
perform learning on graph datasets, there are two possible approaches:

1. applying a preprocessing phase aimed at selecting possibly relevant
features;

2. in the context of kernel methods, using tractable kernel functions.

Generally speaking, the methods following the first approach extract fre-
quent patterns, build a vectorial representation of the graphs according to
such patterns and then apply a kernel method. When the kernel method is
an SVM, the approach is referred to as SVM with frequent pattern mining
(freqSVM). The techniques for extracting the features include Gaston [30],
Correlated Pattern Mining (CPM) [31], MOLFEA [32]. Saigo et al. [33]
proposed gBoost, a boosting method that progressively collects informative
(according to the target output) patterns.

The second approach includes a set of kernel functions for graphs. The
Marginalized Graph Kernel (MGK) considers common walks as features [34]
(the work has been extended in order to make it more efficient and effective
in [35]). Informally, this kernel is defined as the expected value of a kernel
over all possible pairs of label sequences generated by random walks on two
graphs. The worst case time complexity of the algorithm presented in [36] is
O(|VG|3).

The Shortest Path Kernel associates a feature to each pair of nodes of one
graph. The value of the feature is the length of the shortest path between
the corresponding nodes in the graph [37]. The complexity of the kernel is
O(|V |4). Being the Shortest Path Kernel based on paths, it can be repre-
sented as an instance of (2). We do not report experimental results about
this kernel because of its high computational complexity, and its inferior re-
sults compared to other state of the art kernels on many of the datasets
considered in this paper [24, 38].

14

In [39] it is described an effective method for computing path based ker-
nels. First a graph is decomposed into a set of trees of totally t nodes. Then
the Burrows-Wheeler transform is employed for fast and space-efficient enu-
meration of paths. The complexity of the kernel is O(t log tε), with ε < 1.
The graphlet kernel [40] counts all types of matching subgraphs of small size
k (e.g. k = 3, 4 or 5). There are efficient schemes for computing this ker-
nel, but they are applicable only on unlabeled graphs. For the labeled case,
the computational complexity of this kernel is O(nk). In the experimental
section of this paper, we considered the Graphlet kernel instantiated with
k = 3, that will be referred as 3-Graphlet kernel.

The Weisfeiler-Lehman Fast Subtree kernel (FS) counts the number of
identical subtree patterns obtained by subtree-walks up to height h [24, 38].
The complexity of the kernel is O(|E|h). While being fast to compute, the
kernel may lack of expressiveness for some tasks given that the number of
non-zero features generated by one graph is at most |V |h. Note that the
subtree-walks extracted by the kernel differ from the tree structures extracted
by the kernels proposed in Section 4: in FS a node usually appears multiple
times in the same subtree-walk, while in the ODD kernel only DAG nodes
which have multiple incoming edges appear multiple times in the extracted
tree structures. Such difference makes the Weisfeiler-Lehman Fast Subtree
kernel not reproducible from (2); a discussion on the differences between
the feature spaces induced by the Weisfeiler-Lehman Fast Subtree and the
ODDSTh kernels can be found in [27]. Moreover, the features of the FS
kernel are subtree-walks, while specific features (as explained in Sections 4.1
and 4.2) are extracted from the tree-visits obtained from the ODDSTh and
ODDST+ kernels.

Costa and De Grave [21] extended the Fast Subtree Kernel by comput-
ing exact matches between pairs of subgraphs with controlled size and dis-
tance. Their kernel, named Neighborhood Subgraph Pairwise Distance Ker-
nel (NSPDK), has O(|V ||Vh||Eh| log |Eh|) time complexity, where |Vh| and
|Eh| are the number of nodes and the number of edges of the subgraph ob-
tained by a breadth-fist visit of depth h. The authors state that, for small
values of the subgraph size and distance, the complexity of the kernel be-
comes in practice linear.

The Weisfeiler-Lehman Shortest path Kernel proposed in [38] is similar
in spirit to the NSPDK kernel. Indeed, it considers pairs of subtree patterns
and their distance. However it does not limit the maximum distance between
the considered patterns, resulting in a computational complexity of O(n4).

15

Kernel Complexity
RW [34] O(|V |3)
SP [37] O(|V |4)
WL-SP [38] O(|V |4)
3-Graphlet [40] O(|V |3)
Treelet [41] O(|V |ρ5)
FS [24, 38] O(|E|h)∗

NSPDK [21] O(|V |)∗,∗∗
ODDST [27] O(|V |log|V |)∗
ODDST+ O(|V |log|V |)∗

Table 1: Computational complexity of the Shortest Path, the 3-Graphlet, the
fast Subtree, the NSPDK, the ODDST and ODDST+ kernels. *: considering
ρ constant; **: with high constants.

Mahé and Vert [23] described a graph kernel based on extracting tree patterns
from the graph. The difference with the approach of this paper is that the tree
patterns are obtained as result of walks on the graph, i.e. the same node can
appear more than once in the same tree pattern. The complexity of the kernel
is O(|V1||V2|hρ2ρ), where h is the depth of the visit. Finally, [41] proposed
the treelet kernel, based on frequent pattern mining of tree-substructures.
The kernel implementation considers subtrees with a maximum of 6 nodes,
and its computational complexity is O(nρ5). Table 1 summarizes the
computational complexity of some of the kernels cited in this section, and
the ones proposed in this paper. Moreover, just to give an idea about how
many features are generated by a graph kernel on a real-world dataset, in
Figure 4 we have reported the number of different features generated on a
chemical dataset (NCI1) by the most efficient aforementioned kernels.

6. Experimental results

6.1. Experiments on common benchmark graph datasets

The experimental assessment of the proposed kernels has been performed
on a total of eight datasets. The first six datasets involve chemo and bioin-
formatics data: CAS2, CPDB [32], AIDS [4], NCI1, NCI109 [3] and GDD [2].

2http://www.cheminformatics.org/datasets/bursi

16

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 1 2 3 4 5 6 7 8

F

ea
tu

re
s

h

Number of generated features for NCI1 dataset

ODDST
ODDST+

FS

NSPDK d=1
NSPDK d=7

Figure 4: Number of features generated by the ODDSTh , ODDST+ , FS and
NSPDK kernels on the NCI1 dataset as a function of their parameter h.

The first five datasets involve chemical compounds and represent binary clas-
sification problems. The nodes are labeled according to the atom type and
the edges represent the bonds. GDD is a dataset composed by proteins rep-
resented as graphs, where the nodes of the graphs represent amino acids and
two nodes are connected by an edge if they are less than 6Å apart. More-
over, we adopted from [42] two real-world image datasets: MSRC9-class and
MSRC21-class3. Each image is represented by its conditional Markov random
field graph enriched with semantic labels, and the task is scene classification.
Both the datasets are multi-class single-label classification problems. For our
experiments, we adopted a SVM classifier [43]. For the multi-class problems,
we adopted a one-vs-one scheme. We compare the predictive abilities of the
ODDST+ kernel and the two proposed variants ODDTANH

STh
and ODDTANH

ST+
to

the original ODDSTh kernel [27], the Fast Subtree Kernel (FS) [24] and the
Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) [21]. Moreover,
we also report the performances of the p-random walk kernel, that is a kernel

3http://research.microsoft.com/en-us/projects/ObjectClassRecognition/

17

Dataset graphs pos(%) avg nodes avg edges
CAS 4337 55.36 29.9 30.9
CPDB 684 49.85 14.1 14.6
AIDS 1503 28.07 58.9 61.4
NCI1 4110 50.04 29.9 32.3
NCI109 4127 50.37 29.7 32.1
GDD 1178 58.65 284.3 2862.6
MSRC 9 221 multi-class 40.6 97.9
MSRC 21 563 multi-class 77.5 198.3
NCI123 40952 4.76 26.8 28.9
NCI AIDS 42682 3.52 45.7 47.7

Table 2: Statistics of CAS, CPDB, AIDS, NCI1 , NCI109, GDD, MSRC 9,
MSRC 21, NCI123 and NCI AIDS datasets: number of graphs, percentage
of positive examples, average number of atoms, average number of edges.

that compares random walks up to length p in two graphs (special case of [34]
and [35]) as representative for the family of kernels based on random walks,
and the graphlet kernel [40]. Note that the complexity of the graphlet kernel
(when applied to labeled graphs) is exponential in the size k of the graphlet.
Because of that, following [38], we restricted our experimentation to a value
of k that allows for an efficient computation of the kernel, i.e. k = 3.

The experiments are performed using a nested 10-fold cross validation:
for each of the 10 folds another inner 10-fold cross validation, in which we
select the best parameters for that particular fold, is performed. All the
experiments have been repeated 10 times using different splits for the cross
validation, and the average results (with standard deviation) are reported.
For all the experiments, the values of the parameters of the ODDSTh and
ODDST+ kernels, including their variants using tanh, have been restricted
to: λ = {0.1, 0.2, . . . , 2.0}, h = {1, 2, . . . , 10}. For the Fast Subtree kernel
the only parameter h = {1, 2, . . . , 10} is optimized. For the NSPDK, the
parameters h = {1, 2, . . . , 8} and d = {1, 2, . . . , 7} are optimized. Finally, for
the p-random walk kernel we selected p = {1, 2, . . . , 10}, and for the graphlet
kernel we considered only the graphlets of size 3, as mentioned above. A
10x10 CV test with confidence level 95% (and 10 degrees of freedom) has been
executed between each pair of kernels on all datasets [44]. In the following
the term significant will refer to this statistical test. Table 3 reports the

18

Kernel CAS CPDB AIDS NCI1

p-random walk 70.16* (8) 64.14* (8) 73.55* (8) -
±0.20 ±1.35 ±0.49 ±−

Graphlet 71.10* (7) 67.36* (7) 73.98* (7) 69.68* (7)
±0.48 ±0.96 ±0.65 ±0.52

FS 83.32* (6) 76.36 (5) 82.02 (5) 84.41 (4)
±0.37 ±1.48 ±0.4 ±0.49

NSPDK 83.60* (2) 76.99 (1) 82.71 (1) 83.45 (5)
±0.34 ±1.15 ±0.66 ±0.43

ODDSTh 83.34* (4) 76.44 (4) 81.51 (6) 82.10* (6)
±0.31 ±0.62 ±0.74 ±0.42

ODDTANH
STh

83.40* (3) 76.56 (3) 82.51 (3) 84.57 (3)
±0.41 ±0.97 ±0.52 ±0.43

ODDST+
83.90 (1) 76.30 (6) 82.06 (4) 84.97 (1)

±0.33 ±0.23 ±0.70 ±0.47

ODDTANH
ST+

83.33* (5) 76.74 (2) 82.54 (2) 84.81 (2)
±0.34 ±1.81 ±0.75 ±0.41

Kernel GDD NCI109 MSRC 9 MSRC 21

p-random walk - - 67.01* (7) 18.88* (8)
±− ±− ±2.22 ±1.4

3-Graphlet 74.92 (6) 68.07* (7) 60.83* (8) 19.66* (7)
±1.40 ±0.31 ±2.0 ±0.96

FS 75.46 (3) 85.02 (1) 89.26* (6) 89.87 (6)
±0.98 ±0.44 ±0.82 ±0.71

NSPDK 74.09 (7) 84.17 (2) 89.48* (4) 90.24 (3)
±0.91 ±0.33 ±1.0 ±0.49

ODDSTh 75.27 (5) 81.91* (6) 90.80 (3) 89.92 (5)
±0.68 ±0.42 ±1.10 ±0.73

ODDTANH
STh

76.09 (1) 83.68 (4) 94.39 (1) 92.60 (1)
±0.85 ±0.39 ±1.21 ±0.45

ODDST+
75.33 (4) 83.08* (5) 89.33* (5) 89.94 (4)

±0.81 ±0.49 ±1.2 ±0.80

ODDTANH
ST+

75.52 (2) 83.93 (3) 92.99 (2) 91.74 (2)
±0.88 ±0.42 ±1.26 ±0.77

Table 3: Average accuracy results ± standard deviation in nested 10-fold
cross validation for the p-random walk, the Graphlet, the Fast Subtree, the
Neighborhood Subgraph Pairwise Distance, the ODDSTh , the ODDTANH

STh
, the

ODDST+ and the ODDTANH
ST+

kernels on CAS, CPDB, AIDS, NCI1, GDD,
NCI109, MSRC 9 and MSRC 21 datasets. The rank of the kernel is reported
between brackets. The symbol * denotes the kernels whose performance
difference with respect to the top-ranked kernel is statistically significant.

19

average accuracies and the rankings obtained by the different kernels on the
considered datasets. The symbol * in Table 3 denotes, for each dataset, the
kernels whose performance difference with respect to the top-ranked kernel
is statistically significant.

Let us now focus on the experimental results obtained for the six chemi-
cal datasets. The kernels ODDTANH

STh
, ODDST+, ODDTANH

ST+
together have best

accuracy on three out of six datasets, and the second best accuracy on two
others. On the datasets in which the FS and NSPDK kernels perform better
than the ODD ones, i.e. CPDB, AIDS and NCI109, the performance dif-
ference, at least with respect to the best performing ODD kernel, is never
significant. Note that ODDST+ performs significantly better than NSPDK
and FS on the CAS dataset. The variant employing the hyperbolic tangent
is always useful for the ST kernel, making it the best performing kernel on
GDD, and is able to boost the accuracy performance of ODDST+ on AIDS,
CPDB , GDD and NCI109 datasets. The generally good results of the ODD
kernels, with respect to FS and NSPDK, may be attributed to the fact that
they have associated a large feature space, which makes them more adapt-
able to different tasks. Note that the execution of p-random walk kernel did
not complete in 4 days for NCI1, NCI109 and GDD datasets, so the results
are missing.

Let us now focus on the image datasets (MSRC 9 and MSRC 21). On
these datasets, the baselines FS, NSPDK, ODDSTh kernels and the proposed
ODDST+ kernel show very similar performances. On these datasets, the
introduction of the hyperbolic tangent weighting scheme is very beneficial.
Both ODDTANH

STh
and ODDTANH

ST+
performs better than all the baselines, with

the former being the best performing kernel on both datasets.
The p-random walk kernel and the graphlet kernel show poor performances
on these datasets. We argue that this is because they are the only ones among
the considered kernels that do not consider all the neighbors of a node as a
feature.

Figures 5 and 6 report the computational times required by the ODDSTh ,
ODDST+, NSPDK and the FS kernels as a function of the parameter h de-
termining the size of the considered substructures on the NCI1 and CAS
datasets, respectively.

All the experiments are performed on a PC with two Quad-Core AMD
Opteron(tm) 2378 Processors and 64GB of RAM. The proposed kernels have
been implemented in C++. In addition, we implemented a fast version of

20

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8

K
er

ne
l M

at
rix

 C
om

pu
ta

tio
n

(s
ec

)

h

Gram matrix computation for NCI1 dataset

ODDST
ODDST+

FS
NSPDK d=1
NSPDK d=7

Figure 5: Time needed to compute the kernel matrix for the ODD-STh,
ODD-ST+h, the NSPDK and the FS kernels, as a function of their parameter
h, on NCI1.

the FS kernel in C++. All these kernels adopt an hashing function, similar
in spirit to [45]. As for the p-random walk and graphlet kernels, we adopted a
publicly available Matlab implementation4. Thus, the times for the p-random
walk and the graphlet kernels are reported just for a qualitative comparison.
The time needed to compute the kernel matrix for the ODDST+ kernel in-
creases roughly linearly with respect to the parameter h for both datasets.
As expected the constant factors are higher than the ones of the ODDSTh ,
but the ODDST+ is faster than (or comparable to) NSPDK. Note that we do
not report the computational times for ODDTANH

STh
and ODDTANH

ST+ since their
computational requirements are basically the same as the corresponding base
kernels: the computation of the novel weight function does not add a signif-
icant computational burden.

Moreover, in Table 4 we report the average computational time for a
single fold with the optimal parameters on the four largest datasets: CAS,

4http://www.di.ens.fr/∼shervashidze/code.html

21

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8

K
er

ne
l M

at
rix

 C
om

pu
ta

tio
n

(s
ec

)

h

Gram matrix computation for CAS dataset

ODDST
ODDST+

FS
NSPDK d=1
NSPDK d=7

Figure 6: Time needed to compute the kernel matrix for the ODD-STh,
ODD-ST+h, the NSPDK and the FS kernels, as a function of their parameter
h, on CAS dataset.

AIDS, NCI1, GDD. The parameters influencing the speed of the kernel are
reported between brackets. In this case, we reported the times corresponding
to all the considered kernels. Even when comparing the executions related
to the optimal parameters, ODDST+ is faster or comparable to NSPDK and
ODDSTh is faster or comparable to FS.

6.2. Experiments on full NCI datasets

In this set of experiments, we analyze how the proposed kernels and
the competitors scale up with bigger datasets. We considered two datasets,
NCI123 and NCI AIDS, each one with more than 40, 000 examples (see Ta-
ble 2).
In NCI1235 the growth inhibition of the MOLT-4 human Leukemia tumor
cell line is measured as a screen for anti-cancer activity. For each compound
an activity score of -LogGI50 is measured, where GI50 is the concentration
of the compound required for 50% inhibition of tumor growth. A compound

5http://pubchem.ncbi.nlm.nih.gov/bioassay/123

22

Kernel CAS AIDS NCI1 GDD
Graphlet 58′′ 54′′ 133′′ 1715′′

p-random walk 76h 35h − −
(h=7) (h=8) (h=−) (h=−)

FS 13′′ 5′′ 28′′ 17′′

(h=3) (h=9) (h=8) (h=1)

NSPDK 24′′ 217′′ 192′′ 395′′

(h=2, d=6) (h=8,d=6) (h=5,d=4) (h=2,d=6)

ODDSTh 18′′ 56′′ 44′′ 29′′

(h=3) (h=7) (h=4) (h=1)

ODDTANH
STh

47′′ 51′′ 110′′ 246′′

(h=5) (h=6) (h=6) (h=2)

ODDST+ 32′′ 111′′ 205′′ 199′′

(h=4) (h=8) (h=1) (h=1)

ODDTANH
ST+ 179′′ 61′′ 165′′ 541′′

(h=8) (h=5) (h=4) (h=2)

Table 4: Average time required for computing the kernel matrix for the
p-random walk, the Graphlet, the Fast Subtree, the Neighborhood Sub-
graph Pairwise Distance, the ODDSTh , the ODDTANH

STh
, the ODDST+ and the

ODDTANH
ST+

kernels on CAS, AIDS, NCI1 and GDD datasets with the optimal
kernel parameters (reported between brackets).

is classified as active (positive class) or inactive (negative class) if the activ-
ity score is, respectively, above or below a specified threshold. The dataset
is composed by 40,952 examples. NCI AIDS6 is an anti-HIV database that
contains 42,682 molecules, experimentally detected to protect (confirmed ac-
tive), moderately protect (confirmed moderate) or not protect (inactive) the
CEM cells from HIV-1 infection. From these classes we derived a binary
classification problem, i.e. distinguishing inactive from confirmed and mod-
erately protective molecules.

Since these two datasets are unbalanced, for this set of experiments we
adopted the Area Under the Receiver Operating Characteristic curve (AU-
ROC or AUC) as performance measure, since it is suited for unbalanced
datasets. The experimental setup in this case is different w.r.t. the one pre-

6http://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

23

Kernel NCI123 NCI AIDS

Graphlet 54.93* (7) 67.74* (7)
±0.24 ±0.15

FS 61.08* (6) 83.73* (5)
±0.34 ±0.17

NSPDK 62.45 (3) 83.80* (3)
±0.39 ±0.23

ODDSTh 62.11 (4) 83.77* (4)
±0.30 ±0.22

ODDTANH
STh

62.76 (2) 85.56 (2)
±0.21 ±0.23

ODDST+
61.70* (5) 83.36* (6)

±0.36 ±0.30

ODDTANH
ST+

63.20 (1) 85.64 (1)
±0.29 ±0.15

Table 5: Average AUC results ± standard deviation in nested 10-fold
cross validation for the Graphlet, the Fast Subtree, the Neighborhood Sub-
graph Pairwise Distance, the ODDSTh , the ODDST+, the ODDTANH

STh
and the

ODDTANH
ST+

kernels obtained on NCI123 and NCI AIDS datasets. The rank
of the kernel is reported between brackets. The symbol * denotes the ker-
nels whose performance difference with respect to the top-ranked kernel is
statistically significant.

sented in Section 6.1. Indeed, when the number of examples is large, com-
puting the Gram matrix is unfeasible. In this case, for each considered kernel
configuration, we computed the explicit features (memorized in a sparse for-
mat) associated to each example. With this explicit feature representation, it
is possible to train a linear SVM7. Note that the computed solution is equiv-
alent to the one that can be found by a C-SVM applied to the kernel matrix
generated by the graph kernel. However, in this way it is possible to handle
very large datasets in a reasonable amount of time. A 10x10 CV test with
confidence level 95% (and 10 degrees of freedom) has been executed between
each pair of kernels on the two datasets [44]. Table 5 reports the AUC results
obtained, for the two considered datasets, by kernels for which it is possible
to generate the explicit feature space representation of input examples. The

7In our implementation we adopted Liblinear [46].

24

combination of the techniques proposed in the paper, ST+ and tanh, leads
to best performances on both datasets. The performance difference between
ODDST+ e ODDTANH

ST+
is statistically significant on both datasets. The use of

tanh yields statistically significant improved performances for ODDTANH
ST+

on
NCI AIDS with respect to all other kernels except ODDTANH

STh
.

Figure 7 reports the average computational time required to perform the
learning procedure for a fixed kernel, as a function of the h parameter, for
the NCI123 and NCI AIDS datasets. This procedure comprehends the fea-
ture generation step, and the training phase of the linear SVM model. We
decided to report the overall times here because the run-times of linear SVM
depends on the characteristics of the kernel, and thus comparing only the
feature generation part would not be fair. With the considered learning pro-
cedure, the number of non-zero features generated by the kernel influences
the total run-time. Indeed, the FS kernel is the fastest one, being the one that
generates the smallest number of features. The time required by the training
procedure grows almost linearly for ODDSTh , ODDTANH

STh
and ODDST+, while

it grows more than linearly for ODDTANH
ST+ . Note, however, that ODDTANH

ST+ is
still faster than NSPDK. It is interesting to note that NSPDK with d = 1 is
slower than NSPDK with d = 7 on NCI123, even if the latter has a larger
feature space. In this case, probably the former kernel is less discriminative
and thus the corresponding optimization problem that the linear SVM must
solve is more difficult.

Table 6 reports the computational time required to compute the different
kernels with the optimal parameters obtained by a 10-fold cross validation.
Note that higher computational times generally corresponds to higher values
for the optimal h parameter.

On the considered datasets, higher AUC corresponds to higher computa-
tional times for the respective kernel. It is interesting to analyze the relation-
ship between AUC values and running times for non-optimal parameters, i.e.
to understand which kernel is the most convenient if there is a strict time
constraint to comply to. Figure 8 plots the performances of the different ker-
nels with respect to the time required to perform the training procedure, for
NCI123 and NCI AIDS datasets. In NCI123 dataset, ODDTANH

STh
and ODDTANH

ST+

have the highest points in the plot starting from approximatively a runtime
of 400 seconds. Below that computational time, the NSPDK is the best per-
forming kernel. On the other hand, on NCI AIDS dataset, ODDTANH

STh
and

ODDTANH
ST+ are the better performing kernels for almost every time threshold.

25

Computation of training procedure

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 1 2 3 4 5 6 7 8

T
im

e
(s

ec
)

h

NCI123

ODDST

ODDST
TANH

ODDST+

ODDST+
TANH

FS

NSPDK d=1

NSPDK d=6

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 1 2 3 4 5 6 7 8

h

NCI_AIDS

Figure 7: Time needed to perform all the training procedure, as a function
of h, for all the considered kernels on NCI123 (left) and NCI AIDS (right)
datasets.

7. Conclusions and future works

The contribution of this paper is twofold. First, we propose a novel
instance of the ODD graph kernel based on a novel tree kernel, ST+. This
constitutes an example of how the generality of the framework can potentially
lead to the definition of novel graph kernels that can improve the state-of-
the-art. Second, we define a novel, non-linear, feature weighting scheme for
the ODD kernels, that can in principle be applied to any graph kernel with
an explicit feature space representation. As a future work, we plan to apply
this and other weighting schemes also to other state-of-the-art graph kernels.
The experimental results show that the proposed kernels have state of the art
performances on six benchmark graph datasets from bioinformatics, and on
two graph datasets for image classification. Moreover, experiments on two
large graph datasets show that our approach is able to scale up to real-world
sized datasets.

26

AUC/Times

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 10 100 1000 10000

A
U

C

Time (sec)

NCI123

ODDST

ODDST
TANH

ODDST+

ODDST+
TANH

FS

NSPDK

Graphlet

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 10 100 1000 10000 100000

Time (sec)

NCI_AIDS

Figure 8: Relationship between the AUC (obtaindes in 10-fold cross valida-
tion) and the time needed to perform all the training procedure. A point
is reported for each h and C parameters combination, for all the considered
kernels on NCI123 (left) and NCI AIDS (right) dataset.Note that the x axis
is in log scale.

27

Acknowledgments

This work was supported by the University of Padova under the strategic
project BIOINFOGEN.

References

[1] L. Denoyer, P. Gallinari, Report on the XML mining track at INEX
2005 and INEX 2006: categorization and clustering of XML doc-
uments, SIGIR Forum 41 (1) (2007) 79–90, ISSN 0163-5840, doi:
http://doi.acm.org/10.1145/1273221.1273230.

[2] P. D. Dobson, A. J. Doig, Distinguishing Enzyme Structures from Non-
enzymes Without Alignments, Journal of Molecular Biology 330 (4)
(2003) 771–783, ISSN 0022-2836, doi:10.1016/S0022-2836(03)00628-4.

[3] N. Wale, I. Watson, G. Karypis, Comparison of descriptor spaces for
chemical compound retrieval and classification, Knowledge and Infor-
mation Systems 14 (3) (2008) 347–375, ISSN 0219-1377.

[4] O. S. Weislow, R. Kiser, D. L. Fine, J. Bader, R. H. Shoemaker, M. R.
Boyd, New soluble-formazan assay for HIV-1 cytopathic effects: ap-
plication to high-flux screening of synthetic and natural products for
AIDS-antiviral activity., Journal of the National Cancer Institute 81 (8)
(1989) 577–586, ISSN 0027-8874.

[5] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,
Cambridge University Press, New York, NY, USA, ISBN 0521813972,
2004.

[6] G. Simões, H. Galhardas, D. Matos, A Labeled Graph
Kernel for Relationship Extraction, in: CoRR, URL
http://arxiv.org/abs/1302.4874, 2013.

[7] G. D. Vries, Graph Kernels for Task 1 and 2 of the Linked Data Data-
Mining Challenge 2013, in: DMoLD, 2013.

[8] L. Wang, H. Sahbi, Directed Acyclic Graph Kernels for Action Recog-
nition, 2013 IEEE International Conference on Computer Vision (2013)
3168–3175doi:10.1109/ICCV.2013.393.

28

[9] S. Bleik, M. Mishra, J. Huan, M. Song, Text categorization of biomedical
data sets using graph kernels and a controlled vocabulary., IEEE/ACM
transactions on computational biology and bioinformatics / IEEE, ACM
10 (5) (2013) 1211–7, ISSN 1557-9964, doi:10.1109/TCBB.2013.16.

[10] K. Kundu, F. Costa, R. Backofen, A graph kernel approach for
alignment-free domain-peptide interaction prediction with an applica-
tion to human SH3 domains., Bioinformatics (Oxford, England) 29 (13)
(2013) i335–43, ISSN 1367-4811, doi:10.1093/bioinformatics/btt220.

[11] N. Cesa-Bianchi, A. Conconi, C. Gentile, A Second-Order Perceptron
Algorithm, SIAM Journal on Computing 34 (3) (2005) 640–668.

[12] D. Haussler, Convolution Kernels on Discrete Structures, Tech. Rep.,
Department of Computer Science, University of California at Santa
Cruz, 1999.

[13] M. Collins, N. Duffy, New ranking algorithms for parsing and tagging:
kernels over discrete structures, and the voted perceptron, in: Proceed-
ings of the 40th Annual Meeting on Association for Computational Lin-
guistics, Association for Computational Linguistics, Philadelphia, Penn-
sylvania, 263–270, 2002.

[14] S. V. N. Vishwanathan, A. J. Smola, Fast kernels for string and tree
matching, in: Advances in Neural Information Processing Systems 15,
MIT Press, 569–576, 2003.

[15] A. Moschitti, Efficient Convolution Kernels for Dependency and Con-
stituent Syntactic Trees, in: ECML, vol. 4212 of Lecture Notes in Com-
puter Science, ISBN 3-540-45375-X, 318–329, 2006.

[16] F. Aiolli, G. Da San Martino, A. Sperduti, Route kernels for trees, in:
Proceedings of the 26th Annual International Conference on Machine
Learning - ICML ’09, ACM Press, New York, New York, USA, ISBN
9781605585161, 17–24, doi:10.1145/1553374.1553377, 2009.

[17] F. Aiolli, G. Da San Martino, A. Sperduti, Extending Tree Kernels with
Topological Information, ICANN 6791 (2011) 142–149.

[18] D. Bacciu, A. Micheli, A. Sperduti, A Generative Multiset Kernel for
Structured Data, in: A. E. P. Villa, W. Duch, P. Érdi, F. Masulli,

29

G. Palm (Eds.), ICANN (1), vol. 7552 of Lecture Notes in Computer
Science, Springer, ISBN 978-3-642-33268-5, 57–64, 2012.

[19] T. Gartner, P. Flach, S. Wrobel, T. Gärtner, On Graph Kernels: Hard-
ness Results and Efficient Alternatives, in: B. Schölkopf, M. K. War-
muth (Eds.), Proceedings of the 16th Annual Conference on Computa-
tional Learning Theory and 7th Kernel Workshop, vol. 2777 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, Berlin, Heidel-
berg, ISBN 978-3-540-40720-1, 129–143, doi:10.1007/b12006, 2003.

[20] L. Schietgat, F. Costa, J. Ramon, L. De Raedt, Maximum common sub-
graph mining: a fast and effective approach towards feature generation,
in: 7th International Workshop on Mining and Learning with Graphs,
1–3, 2009.

[21] F. Costa, K. De Grave, Fast neighborhood subgraph pairwise distance
kernel, in: J. F. Joachims, Thorsten (Eds.), Proceedings of the 27th
International Conference on Machine Learning (ICML-10), Omnipress,
255–262, 2010.

[22] F. Suard, a. Rakotomamonjy, a. Bensrhair, Kernel on bag of paths for
measuring similarity of shapes, European Symposium on Artificial Neu-
ral Networks (2007) 1–6.

[23] P. Mahé, J. Vert, Graph kernels based on tree patterns for molecules,
Machine Learning 75 (1) (2009) 3–35.

[24] N. Shervashidze, K. M. Borgwardt, Fast subtree kernels on graphs, in:
NIPS, 1660–1668, 2009.

[25] M. Collins, N. Duffy, Convolution Kernels for Natural Language, in:
T. G. Dietterich, S. Becker, Z. Ghahramani (Eds.), NIPS, MIT Press,
625–632, 2001.

[26] G. Da San Martino, N. Navarin, A. Sperduti, Exploiting the ODD frame-
work to define a novel effective graph kernel., in: proceedings of the 23th
European Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning, 2015.

30

[27] G. Da San Martino, N. Navarin, A. Sperduti, A Tree-Based Kernel for
Graphs, in: Proceedings of the Twelfth SIAM International Conference
on Data Mining, 975–986, 2012.

[28] G. Da San Martino, N. Navarin, A. Sperduti, A memory efficient graph
kernel, in: the 2012 International Joint Conference on Neural Networks
(IJCNN), IEEE, 2012.

[29] P. Yanardag, S. V. N. Vishwanathan, The Structurally Smoothed
Graphlet Kernel, arXiv .

[30] J. Kazius, S. Nijssen, J. Kok, T. Back, A. P. Ijzerman, Substructure
Mining Using Elaborate Chemical Representation, J. Chem. Inf. Model.
46 (2) (2006) 597–605.

[31] B. Bringmann, A. Zimmermann, L. D. Raedt, S. Nijssen, Don’t
Be Afraid of Simpler Patterns, in: J. Fürnkranz, T. Scheffer,
M. Spiliopoulou (Eds.), PKDD, vol. 4213 of Lecture Notes in Computer
Science, Springer, ISBN 3-540-45374-1, 55–66, 2006.

[32] C. Helma, T. Cramer, S. Kramer, L. De Raedt, Data mining and ma-
chine learning techniques for the identification of mutagenicity inducing
substructures and structure activity relationships of noncongeneric com-
pounds, Journal of Chemical Information and Computer Sciences 44 (4)
(2004) 1402–1411, ISSN 0095-2338, doi:10.1021/ci034254q.

[33] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, K. Tsuda, gBoost: a
mathematical programming approach to graph classification and regres-
sion., Machine Learning (2009) 69–89.

[34] H. Kashima, K. Tsuda, A. Inokuchi, Marginalized Kernels Between La-
beled Graphs., in: T. Fawcett, N. Mishra (Eds.), ICML, AAAI Press,
ISBN 1-57735-189-4, 321–328, 2003.

[35] P. Mahé, N. Ueda, T. Akutsu, J. Perret, J. Vert, Extensions of marginal-
ized graph kernels, in: Proceedings of the twenty-first international con-
ference on Machine learning, ACM, Banff, Alberta, Canada, 70, 2004.

[36] S. V. N. Vishwanathan, K. M. Borgwardt, N. N. Schraudolph, Fast
Computation of Graph Kernels, in: NIPS, 1449–1456, 2006.

31

[37] K. M. Borgwardt, H.-P. Kriegel, Shortest-Path Kernels on Graphs, in:
Proceedings of the Fifth IEEE International Conference on Data Mining,
IEEE Computer Society, ISBN 0-7695-2278-5, 74–81, 2005.

[38] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn,
K. M. Borgwardt, Weisfeiler-Lehman Graph Kernels, Journal of Ma-
chine Learning Research 12 (2011) 2539–2561.

[39] M. Heinonen, J. Rousu, N. Välimäki, V. Mäkinen, Efficient Path Ker-
nels for Reaction Function Prediction, in: BIOINFORMATICS 2012 -
Proceedings of the International Conference on Bioinformatics Models,
Methods and Algorithms, 202–207, 2012.

[40] N. Shervashidze, K. Mehlhorn, T. H. Petri, S. V. N. Vishwanathan,
K. M. Borgwardt, T. H. Petri, K. Mehlhorn, K. M. Borgwardt, Efficient
graphlet kernels for large graph comparison, in: D. van Dyk, M. Welling
(Eds.), Proceedings of the Twelfth International Conference on Artificial
Intelligence and Statistics (AISTATS), vol. 5 of JMLR: Workshop and
Conference Proceedings, PASCAL EPrints (United Kingdom), CSAIL,
Clearwater Beach, Florida, USA, ISBN 1938-7228, 488–495, 2009.

[41] B. Gaüzère, P.-A. Grenier, L. Brun, D. Villemin, Treelet kernel incorpo-
rating cyclic, stereo and inter pattern information in chemoinformatics,
Pattern Recognition 48 (2) (2015) 356–367, ISSN 0031-3203.

[42] M. Neumann, N. Patricia, R. Garnett, K. Kersting, Efficient Graph
Kernels by Randomization, in: P. A. Flach, T. De Bie, N. Cristianini
(Eds.), ECML PKDD, vol. 7523 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-33459-7,
378–393, 2012.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay,
Scikit-learn: Machine Learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830, ISSN 15324435.

[44] N. Japkowicz, M. Shah, Evaluating Learning Algorithms: A Classifi-
cation Perspective, Cambridge University Press, New York, NY, USA,
ISBN 0521196000, 9780521196000, 2011.

32

[45] K. Kersting, M. Mladenov, R. Garnett, M. Grohe, Power Iterated Color
Refinement, in: 28th AAAI Conference on Artificial Intelligence, 1904–
1910, 2013.

[46] LIBLINEAR: A library for large linear classification, The Journal of
Machine Learning 9 (2008) (2008) 1871–1874.

33

Kernel NCI123 NCI AIDS

Graphlet 698 1772
(C=0.01) (C=0.001)

FS 261 237
(h=4,C=0.1) (h=3,C=0.1)

NSPDK 246 1240
(h=2,d=5,C=1) (h=3,d=6,C=1)

ODDSTh 850 1608
(h=7,C=100) (h=5,C=100)

ODDTANH
STh

692 2219
(h=6,C=1) (h=8,C=1)

ODDST+
924 790

(h=5,C=10) (h=3,C=10)

ODDTANH
ST+

694 7739
(h=4,C=1) (h=8,C=1)

Table 6: Time needed to perform all the training procedure with the optimal
parameter configuration (reported between brackets) for all the considered
kernels on NCI123 and NCI AIDS datasets.

34

