
Aberystwyth University

Region-based saliency estimation for 3D shape analysis and understanding
Zhao, Yitian; Liu, Yonghuai; Wang, Yongjun; Wei, Baogang; Yang, Jian; Zhao, Yifan; Wang, Yongtian

Published in:
Neurocomputing

DOI:
10.1016/j.neucom.2016.01.012

Publication date:
2016

Citation for published version (APA):
Zhao, Y., Liu, Y., Wang, Y., Wei, B., Yang, J., Zhao, Y., & Wang, Y. (2016). Region-based saliency estimation
for 3D shape analysis and understanding. Neurocomputing, 197, 1-13.
https://doi.org/10.1016/j.neucom.2016.01.012

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 26. Apr. 2024

https://doi.org/10.1016/j.neucom.2016.01.012
https://doi.org/10.1016/j.neucom.2016.01.012


Author’s Accepted Manuscript

Region-based saliency estimation for 3D shape
analysis and understanding

Yitian Zhao, Yonghuai Liu, Yongjun Wang,
Baogang Wei, Jian Yang, Yifan Zhao, Yongtian
Wang

PII: S0925-2312(16)00059-X
DOI: http://dx.doi.org/10.1016/j.neucom.2016.01.012
Reference: NEUCOM16635

To appear in: Neurocomputing

Received date: 5 May 2015
Revised date: 12 November 2015
Accepted date: 10 January 2016

Cite this article as: Yitian Zhao, Yonghuai Liu, Yongjun Wang, Baogang Wei,
Jian Yang, Yifan Zhao and Yongtian Wang, Region-based saliency estimation for
3D shape analysis and understanding, Neurocomputing,
http://dx.doi.org/10.1016/j.neucom.2016.01.012

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/neucom

http://www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.01.012
http://dx.doi.org/10.1016/j.neucom.2016.01.012


Region-based Saliency Estimation for 3D Shape

Analysis and Understanding

Yitian Zhaoa1, Yonghuai Liub, Yongjun Wangc, Baogang Weid, Jian Yanga,
Yifan Zhaoe, and Yongtian Wanga

aBeijing Engineering Research Center of Mixed Reality and Advanced Display, School of
Optics and Electronics, Beijing Institute of Technology, China
bDepartment of Computer Science, Aberystwyth University, UK

cSchool of Mathematics and System Sciences, Beihang University, China
dCollege of Computer Science and Technology, Zhejiang University, China

eEPSRC Centre for Innovative Manufacturing in Through-life Engineering Services,
Cranfield University, Cranfield, UK

Abstract

The detection of salient regions is an important pre-processing step for many
3D shape analysis and understanding tasks. This paper proposes a novel
method for saliency detection in 3D free form shapes. Firstly, we smooth the
surface normals by a bilateral filter. Such a method is capable of smoothing
the surfaces and retaining the local details. Secondly, a novel method is pro-
posed for the estimation of the saliency value of each vertex. To this end,
two new features are defined: Retinex-based Importance Feature (RIF) and
Relative Normal Distance (RND). They are based on the human visual per-
ception characteristics and surface geometry respectively. Since the vertex
based method cannot guarantee that the detected salient regions are seman-
tically continuous and complete, we propose to refine such values based on
surface patches. The detected saliency is finally used to guide the existing
techniques for mesh simplification, interest point detection, and overlapping
point cloud registration. The comparative studies based on real data from
three publicly accessible databases show that the proposed method usually
outperforms five selected state of the art ones both qualitatively and quan-
titatively for saliency detection and 3D shape analysis and understanding.
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1. Introduction

Visual saliency is a predictor of object regions which attract human at-
tention: it indicates their relative importance and is closely related to how
we perceive and process visual stimuli. It is under investigation by multiple
disciplines, including cognitive psychology [36, 38], neurobiology [7, 26], and
computer vision [17, 1]. In computer vision tasks, finding salient regions in
the visual field is essential, because it allows computer vision systems to pro-
cess a flood of visual information and allocate limited resources to relatively
small but interesting regions, or to a few interesting objects. Most approaches
focus on the extraction of surface regions that are significantly different from
their surroundings. The detected salient regions facilitate the understanding
of the structure and the search for the regions/components that are partic-
ularly important to some applications. For example, the saliency values of
vertices are used to determine in a mesh simplification algorithm the order
in which they are decimated.

The salient features of a surface typically characterize the surface well
and form a basis for a non-global similarity measure among sub-parts of
shapes [10]. However, most existing techniques employ purely geometric
measures - such as local curvature - or require user input to indicate impor-
tant areas. For example, Lee et al. [22] defined a mesh saliency by using the
Gaussian-weighted mean curvatures. Intuitively, the salient regions are not
always those with specific curvature profiles. In other words, strictly geomet-
ric measures, such as curvature maxima or minima, do not always correlate
with perceptual importance.

1.1. Related Work

Most of the existing saliency detection and estimation works are inspired
by corresponding work on 2D images [17, 14, 15, 13, 5, 31, 32, 3]. In this
section, we will review the most related work that operate 3D data directly.

One of the earliest saliency estimations on 3D surfaces was proposed by
Lee et al. [22]: it was inspired by earlier work on saliency detection in 2D
images [17]. The authors introduced a novel approach: mesh saliency. For
each vertex, it defines a function of the differences of Gaussian-weighted
mean curvatures at successive scales. The final mesh saliency is computed
by adding together the saliency maps at these scales, after applying a non-
linear normalization of suppression. Howlett et al. [16] introduced a method
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for saliency prediction in simplified polygonal models by using eye-tracking
devices. The location of a participant when fixating while viewing a par-
ticular model was captured by a high-speed eye-tracking system. In Gal et
al. [10], the salient geometric features were constructed by clustering together
a set of descriptors that are sufficiently interesting, in the sense that they
have a high curvature relative to their surroundings, and a high variance
of curvature values. Shilane and Funkhouser [33] proposed a shape-based
descriptor for the representation of each region of a given object and used
it as a query into a database for the analysis of distinctive regions. The
distinctiveness of the descriptor is computed by evaluating a retrieval perfor-
mance metric: discounted cumulative gain (DCG). Feixas et al. [9] presented
a unified framework for viewpoint selection via view-based mesh saliency.
The view-based mesh saliency is based on the idea how the polygons are
perceived from a set of viewpoints. The saliency of a polygon is estimated
as Jensen-Shannon (JS) divergence between its visibility probability distri-
bution and those of its neighbors. Leifman et al. [23] proposed a viewpoint
selection method based on vertex distinctness. They introduced a diffusion
distance-based dissimilarity measure, which models the difference between
two spin images as a temperature field, and considers the diffusion process
on the field. Wu et al. [39] proposed a method to detect the mesh saliency
based on the observation that salient regions are both locally prominent and
globally rare. The saliency is obtained by the linear combination of the local
contrast and the global rarity.

The methods proposed in [5, 33] require per-category training with an
extremely large dataset. In this case, the detected salient regions undesirably
change with training data. A single-saliency map is usually generated [27,
22, 33, 5] for information fusion by simply computing the sum or the average
of all multi-scale saliency maps, and then uses threshold-based methods to
determine whether a point is salient or not. While these methods are fast,
they do not make good use of the information embedded in the multi-scale
saliency maps [35]. On the other hand, a large number of methods, such
as [22, 10, 4], rely heavily on the curvature alone. Their performance may
degrade catastrophically due to the high sensitivity of curvature to imaging
noise.

Saliency is a relative concept, judged not just against local neighbours,
but also global overall shape. Local details are such geometric properties of
an object defined by local and neighboring points. Global geometry is such
geometric properties of an object that are defined by all the points/segments
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in the dataset for its description. It is interchangeably used throughout
this paper with global shape and global information without any ambiguity.
The limitations of existing methods can be summarized as: (i) they mainly
consider immediately neighboring points, overlooking global geometry; and
(ii) they confuse the global overall shape with local details.

1.2. Our Work

The proposed saliency estimation method consists of three main steps: bi-
lateral normal filtering, vertex-based saliency estimation (VBS), and region-
based saliency estimation (RBS). This is a modified, improved, and extended
version of our work [40]. The original idea of the VBS method was proposed
in [40], and it has been improved in this paper in the sense that a bilateral
filter has been proposed to smooth surface normals and suppress imaging
noise, the mean curvature feature has been replaced by the Relative Normal
Distance (RND) and it has been validated more extensively using experi-
ments based on real data. Since the VBS method does not always detect
complete and meaningful regions, a region-based saliency estimation method
is proposed in this paper in order to refine the vertex-based saliency, through
considering the votes of different surface regions for estimating their relative
contrast and saliency values instead. The final vertex-based saliency is es-
timated as a ratio between the region-based saliency and the vertex based
saliency. In this case, the finally estimated saliency of points considers both
local details and also the global geometry.

To validate the proposed method, real range scans and models of various
objects of interest from three publicly accessible databases are used. Due
to either lack or subjective nature of ground truth, the detected saliency
is mainly presented for visual inspection. The usefulness of the detected
saliency is then used to guide the existing techniques for such 3D shape anal-
ysis and understanding tasks as mesh simplification, interest point detection,
and overlapping point cloud registration. Both the qualitative and quanti-
tative experimental results show that the proposed method is more powerful
and effective for saliency detection and 3D shape analysis and understanding
than the five selected state of the art ones.

The main contributions of this paper are fourfold:

• A bilateral filter has been proposed to smooth the surface normals of
faces. Since this filter prevents those with a large difference in the
normal vectors from that of the face of interest for participation and
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is based on the statistics of the Euclidean distance between normals of
neighboring faces, it is more robust to imaging noise and the variation
of imaging resolution and scale. The smoothed normals are then used to
estimate the surface properties of interest. Experimental results based
on real data show that the estimated features are more expressive of
the geometry and details in a surface.

• Two new features: Retinex-based Importance Feature (RIF) and Rel-
ative Normal Distance (RND) have been proposed in this paper. The
RIF simulates the characteristics of human visual systems, and can
capture the overall geometry of a shape. The RND is defined by neigh-
boring points and can thus capture the local details of the surface.
The experimental results based on real data show that the two features
are supplementary and powerful in describing different aspects of the
structure in a shape and in detecting salient regions.

• A region-based saliency (RBS) estimation method has been proposed.
The RBS method takes all the surface regions into account and each
of them contributes to the estimation of the saliency of another, the
RBS method is more robust to imaging noise and variation in imaging
resolution and scale for the detection of semantically continuous and
meaningful salient regions. Experimental results based on real data
show that the proposed RBS method is successful in combining both
the global shape and local details and outperforms qualitatively three
selected state of the art ones for the detection of salient regions in the
shapes with varied geometry and imaging noise.

• The detected saliency by the proposed method has been applied to
guide the existing techniques for such 3D shape analysis and under-
standing tasks as surface simplification, interest point detection, and
overlapping point cloud registration. Experimental results based on
real data demonstrate that the RBS method is quantitatively more
powerful and effective for 3D surface analysis and understanding than
three selected state of the art ones.

The remainder of this paper is organized as follows. Our three-step
saliency estimation approach is described in detail in Sections 2, 3, and 4
respectively. Then we experimentally demonstrate its robustness, effective-
ness, and efficiency for saliency estimation in Section 5. The application of
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the detected saliency to guide the existing techniques for different tasks is
demonstrated in Section 6. Finally, we draw conclusions and indicate future
work in Section 7.

2. Bilateral Normal Filter

In this section, a novel bilateral filter is proposed to smooth surface nor-
mals and suppress the imaging noise with minimal damage to the geometric
features of the object. Bilateral filter [37] is a non-linear filter, where the
weight considers two components in the spatial domain as well as in the
intensity domain. The larger the distance in the spatial domain and the
difference in the intensity domain, the less impact a neighbouring pixel will
impose on the pixel of interest. The weight of each component is computed
using a Gaussian function. It has been extended to filter the meshes in [8]
due to its nonlinear, feature-preserving characteristics. Recently, the bilat-
eral filter was extended in [22, 41] to smooth the normals of faces of meshes.

Let ni be a unit normal of a triangular face i, and ci be its centroid, the
bilateral normal filter is usually defined as:

ni =

∑
j∈Fi

Wc(‖ci − cj‖)Ws(‖ni − nj‖)nj∑
j∈Fi

Wc(‖ci − cj‖)Ws(‖ni − nj‖)
(1)

where Fi is the 1-ring neighboring faces of i, the spatial weight function:

Wc = exp{−‖ci−cj‖
2

2σ2
c
}, and the feature preserving weight function σs: Ws = exp{−‖ni−nj‖2

2σ2
s
}

are the standard Gaussian function in terms of the geometric distances be-
tween the centroids and the unit normals of two faces, with the standard
deviations σc and σs respectively. Since the absolute distance between nor-
mal vectors tends to capture the coarse and large variation and ignore the
fine and small variation in the surface normal, a new bilateral normal filtering
method is proposed in this section.

Given a face with a unit normal ni and a centroid ci, the bilateral filtered
normal ni of the face is defined as:

ni =

∑
j∈Fi

Wc(‖ci − cj‖)Ws(ni,nj)nj∑
j∈Fi

Wc(‖ci − cj‖)Ws(ni,nj)
(2)

where Ws is defined as the standard Gaussian function in terms of the relative
normal distance RND(ni,nj) instead:
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(a) (b) (c)

Figure 1: The effect of smoothing by the proposed method on the scan buddha. (a) Noise
corrupted scan with Gaussian white noise, standard deviation=0.2; (b) Original scan;
(c) Smoothed version of (a). The regions in the red rectangle are also illustrated in the
snapshots, showing that two surface features: surface normal (top), and mean curvature
(bottom) are stable.

Ws(ni,nj) =

 0 if (ni − nj) · ni ≥ RND(ni,nj)
1√
4π

exp{−RND(ni,nj)
2

2
} otherwise.

(3)

The relative normal distance RND(ni,nj) between ni and nj is defined as:

RND(ni,nj) =
‖ni − nj‖

avek⊂Fi
(‖ni − nk‖)

(4)

where avek⊂Fi
(‖ni − nk‖) is the average Euclidean distance between ni and

other neighboring normals nk.
The relative distance is used in case the distribution of the data is not

uniform. For two sets of points with a similar neighboring relationship but
different densities, the Euclidean distances between corresponding points dif-
fer dramatically from each other, but the relative distances are in general sim-
ilar. This is an advantage of the relative distance over the absolute distance
in resisting the change of imaging resolution, occlusion, and viewpoint. We
truncate the normal vectors if their differences are greater than the relative
average distance of the normal vectors. Thus, large noisy normal vectors are
excluded by this filter, leading the proposed relative normal distance based
filter to be less sensitive to high levels of noise. After the face normals have
been smoothed, the normal vector of a vertex is estimated as the weighted
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average of the normals of the triangles sharing it with weights defined as the
areas of these triangles, leading such properties as mean curvature and shape
index to be accurately and reliably estimated.

Figure 1 shows the smoothing results for the scan buddha that was cor-
rupted by Gaussian white noise. The quality of the smoothing is illustrated
by different surface features in the snapshots of Figure 1: both the surface
normal and mean curvature show that the proposed method is not only ca-
pable to preserve such local details as eyebrows, but also has the ability to
smooth such flat regions as cheeks.

3. Vertex-based Saliency Estimation

The original vertex-based saliency was proposed in [40], we refer this
method as OVBS in this paper. The OVBS diffuses the shape index with
the surface curvatures, and builds a center surround operator for saliency
detection. However, the combination of the shape index and surface curva-
tures as the individual feature channels have a drawback: they may contain
a great deal of redundant information and thus may not be expressive to
characterize saliency, since each of these channels is based on the principal
curvatures. In order to address the drawbacks of the OVBS method, in this
section, we thus improve it mainly based on two novel features: Relative
Normal Distance proposed in the last section, and Retinex-based Importance
Feature to be described below in this section.

3.1. Retinex-based Importance Feature

Land and McCann [20] first proposed the Retinex theory in 1986. Since
then it has been influential in the field of computer vision, especially in the
sense that is adapted to remove unfavourable illumination effects from im-
ages to improve their quality and contrast. We refer the reader to [20, 18]
for more details. When the Retinex theory is applied to 2D images, it fo-
cuses on reflectance and illumination. It is our argument in this paper that
the equivalence of reflectance can be used to enhance 3D shape information:
global shape and local geometrical details, and the output of such enhance-
ment is called Retinex-based Importance Feature (RIF). After the generation
of RIF, the 3D shape, component or surface can be represented more faith-
fully to the original. The important details or regions in which the geometry
or topology differs significantly from their neighbors will be highlighted, in
order to improve their saliency for subsequent processing.
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Our work was inspired by the Retinex theory and is based on a bilateral
filter for the enhancement and optimization of the shape index [19]. The
shape index of a point u is defined as:

K =
2

π
arctan

k2 + k1
k2 − k1

(5)

where k1 and k2 are the maximum and minimum curvatures of point u and
K ∈ [−1, 1]. Unlike the mean curvature and the Gaussian curvature, the
shape index is invariant to scalings of the shape.

The bilateral filter in our case is written as:

L(u) = N−1(u)
∫
M
K(`)g(`, u)s(`, u)d`, (6)

where M is the 2-ring neighboring vertices of u: ` ∈ M , N(u) is a normal-
ization factor: N(u) =

∫
Mg(`, u)s(`, u)d`, where the geometric measurement

g and similarity function s are Gaussian functions of the Euclidean distance
between their arguments:

g(`, u) = exp{−1

2
(
d(`, u)

σd
)2}, (7)

s(`, u) = exp{−1

2
(
d(K(`), K(u))

σr
)2}, (8)

where σd and σr control how distant vertices and dissimilar features will
impact the filtering of the shape index of the current vertex. The larger
the parameters σd and σr, the more contribution they make. Both σd and
σr are empirically chosen as 0.3 in our work. d(`, u) denotes the Euclidean
distance between ` and u: d(`, u) = ‖`− u‖, and d(K(`), K(u)) measures
the absolute difference between two shape index values K(`) and K(u):
d(K(`), K(u)) = |K(`)−K(u)|.

The bilateral filtering replaces the shape index value at vertex u with an
average of similar and nearby shape index values. In the smooth regions,
shape index values in a small neighborhood are similar to each other, and
the filtered shape index will not change significantly. Therefore, the bilateral
filtering averages away small, weakly correlated differences of shape index.
The normalization term N ensures that the weights add up to one for all
shape index values. As a result, the filter replaces the large shape index at
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Figure 2: Example RIF of 3D models. It is easier to identify the local details of the given
shapes due to clear representation of planar, convex and concave regions. From left to
right: buddha, lobster , bunny, and david.

the centre by an average of the large shape index value in its vicinity, and
vice versa.

Let K be the shape index values for the given 3D surface and let u be one
of its vertices. By taking the difference between the logarithms of the input
K(u) and the bilateral-filtered shape index L(u), the RIF is defined as:

RIF(u) = log(K(u) + 1)− log(L(u) + 1). (9)

From the definition, it can be seen that RIF is a relative measure and thus is
expected to resist to the change in imaging resolution, noise and viewpoint.
In line with the assumptions of the Retinex theory, the reflectance RIF is
restricted to be in the range RIF ∈ [0, 1]. Thus, we normalized it into the
range [0, 1].

Figure 2 illustrates the RIF maps of different 3D models. Overall, the
results demonstrate that the global shape and local details have been more
clearly represented. Areas such as the nose, mouth and eyes of the buddha
and david, the bumpy area of the lobster, and the hair texture of the bunny
can be easily recognized.

3.2. Vertex-based Saliency Estimation

Denote u and v as two vertices of a given mesh, whose coordinates are
u = (xu, yu, zu) and v = (xv, yv, zv). The saliency value of u due to v in
the RIF and RND channels are defined by the function A(RIF, u, v) and
A(RND, u, v) respectively, where,
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A(F, u, v) =
‖Fu − Fv‖√

(xu − xv)2 + (yu − yv)2 + (zu − zv)2
(10)

where F is either of the geometric features, RIF and RND, of a point. The
numerator calculates the feature difference of points, while the denominator
calculates their Euclidean distance. In this case, the more similar the ge-
ometric features of and the larger the Euclidean distance between points u
and v, the less salient the point u is relative to the point v.

After all the saliency values of a point have been determined using differ-
ent features, they are fused [40] together as a total and final saliency value
SaliencyVBS(u, v):

SaliencyVBS(u, v) =
√
A(RIF, u, v)2 + A(RND, u, v)2. (11)

As a feature, RND describes the relative change in surface orientation, and
is invariant to the relative change in the density of points and the scale of
the objects. RIF simulates the characteristics of human visual perception
of shapes, and enables different features and the global structure more dis-
criminative. Thus, the proposed vertex-based method is expected to produce
good results for detection of saliency on 3D shapes.

The proposed VBS method has a computational complexity of O(n) in the
estimation of shape index and relative normal distance of each vertex, O(n)
in bilateral filtering, and O(n) in the estimation of vertex saliency. Thus,
it has an overall linear computational complexity, O(n), in the number n of
vertices in the mesh.

4. Region-based Saliency Estimation

Although the VBS method described in the last section is able to capture
the regions in which the most important features or components lie, the
experiments still revealed that the method has a drawback: the detected
salient regions in some cases are not continuous - in other words, it is hard to
identify the meaningful regions completely. To overcome this drawback, in
this section we propose a region based method to refine the estimated vertex
saliency values. This method treats patches or regions instead as units for
saliency estimation through considering how similar different patches are and
letting them vote to each other for the determination of their relative contrast
and saliency.
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In this work, the mesh segmentation technique is embedded into the
framework of the proposed region-based saliency (RBS) estimation method.
For a recent review and comparison of the existing mesh segmentation tech-
niques, we refer the reader to [2] and [30] for details. The method in [21]
is employed here to segment a given surface into a number of regions accord-
ing to the detected vertex based saliency values. The main reason for the
selection of this method in [21] is that its code is freely available to down-
load online. More importantly, this algorithm has a region merging process
for the avoidance of over-segmentation, which is a non-trivial adaptation of
an image processing method, taking into account common perimeters of the
regions.

After the 3D surface has been segmented into several regions, we estimate
the saliency value of each region. The saliency value of a region rk considers
not only its average vertex-based saliency value, but also how the vertex-
based saliency values distribute in each region and how such distributions
from different regions are similar:

SaliencyRBS(rk) =
∑
rk 6=ri

w(ri)Dr(rk, ri) (12)

where w(ri) is the weight of region ri. Here we use the mean of the saliency
values of vertices in segment ri as w(ri). Dr(rk, ri) is the similarity of the
vertex-based saliency values between two regions rk and ri:

Dr(rk, ri) =
nk∑
j=1

ni∑
l=1

f(cj,k)f(cl,i)D(cj,k, cl,i) (13)

where nk denotes the number of vertex-based saliency values in region rk, cj,k
indicates the jth saliency value among all nk relative saliency values in the
region rk, D(cj,k, cl,i)=|cj,k − cl,i|, and f(cj,k) is the frequency of the saliency
value cj,k, estimated by building a histogram over all cj,k values of vertices
in the selected segment rk. The number of bins in the histogram was set as
20 in this paper.

We further incorporate spatial information by applying a spatial weight-
ing term into Equation 12 to increase the impacts of closer regions and de-
crease those of more distant regions. Specifically, for any region rk, the
spatially weighted region-based saliency is defined as:

SaliencyRBS(rk) =
∑
rk 6=ri

exp(
−Ds(rk, ri)

σ2
s

)w(ri)Dr(rk, ri) (14)
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where Ds(rk, ri) is the spatial distance between segments rk and ri, defined
as the Euclidean distance between their centroids. σs controls the strength
of the spatial weighting. Larger values of σs increase the spatial weighting of
the distant segments and vice versa. In our implementation, we set σ2

s = 0.4
empirically.

It can be seen that each segment (region) has only one saliency value,
leading to mosaic-like results. For more accurate saliency estimation, we
propose to combine the saliency values at a region and any point inside
respectively. The final saliency value S(u) of a point u is therefore estimated

as: S(u) = SaliencyRBS(r)
SaliencyVBS(u)

, where SaliencyVBS(u) is the saliency value at point

u and SaliencyRBS(r) is the saliency value of segment r in which point u
lies. The saliency values are finally normalized into the range of [0, 1] for the
convenience of further saliency-guided applications.

The proposed RBS method has a computational complexity of O(n) in
segmentation, O(N2) in the estimation of region based saliency, and O(n) in
the estimation of vertex saliency, where N is the number of regions segmented
in the mesh. Since N is usually significantly smaller than n, the proposed
RBS method still has an overall linear complexity, O(n), in the number n of
vertices in the mesh.

5. Experimental Results and Analysis

In this section, we validate the proposed RBS method for the detection of
saliency in 3D shapes using three publicly accessible databases: Ohio State
University Range Image Database (OSURID)2, the Stuttgart Range Image
Database (SRID) 3, and the Stanford 3D Scanning Repository (S3DSR) 4.
While the bunny and david datasets were from S3DSR, the dragon dataset
was from SRID, and all the remaining datasets were from OSURID. For the
sake of comparative studies, three state-of-the-art methods were selected:
the original VBS (OVBS) method [40], Mesh Saliency (MESA) [22], and
Distinctive Region (DIRE) [33]. All the experiments described in this paper
were implemented on a PC with 3.1Ghz Intel core i5 system with 8GB RAM.
Since the ground truth is usually either missing or limited and subjective,
the detected saliency results are presented mainly for visual comparison. To

2http://sampl.eng.ohio-state.edu/~sampl/database.htm
3http://range.informatik.uni-stuttgart.de/htdocs/html/
4http://graphics.stanford.edu/data/3scanrep/
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Figure 3: Salient regions detected by different methods in different real range scans. From
top to bottom: the original, MESA, DIRE, OVBS, and RBS. From left to right: scans
lobster, buddha, duck, rick-face, valve, frame, pat-face, and frog.

investigate whether the proposed method is robust to noise, we also add
Gaussian white noise and compare the saliency detected before and after
noise corruption. The details are presented in the following two subsections.

5.1. Saliency detection

Figure 3 shows saliency detected by different methods in 8 real range
scans. The MESA method captured the visually salient features and detected
the large curvature regions of the lobster, buddha, duck and frog surfaces as
salient, but failed to describe such salient and important regions as the face
and pipe orifices in the rick-face, valve, frame and pat-face scans. This is
because the original models have a low resolution of 200 by 200 and contain
significant noise, and the definition of saliency as a function of the mean
curvature is sensitive to such low resolution and heavy imaging noise.

The DIRE method produced relatively better results than the MESA
method. However, for some cases, such as the scan rick-face, it over-detected
the salient regions: not only the eyes, nose and mouth, but also the forehead
and some parts of the cheek. The hair region in the buddha scan was not
completely detected, while such high curvature areas as the openings of the
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pipe orifices of the valve and frame and such boundaries as the feet of the frog
were detected as salient regions as well. This is because it is difficult for the
DIRE method to represent surface regions and the definition of the distinctive
regions varies with the database for their performance measurement.

In the case of the OVBS method, the salient regions are distributed usu-
ally in the geometrically complicated area, but the located salient regions are
not always continuous. For instance, it detected the nose and eyes incom-
pletely in the buddha scan. It hardly detected the nose, eyes and mouth areas
as semantically meaningful and complete parts of the scan pat-face: because
the shape index and the mean curvature used by this method are redundant
as all the function of the same principal curvatures and thus less expressive of
saliency and the centre-surround operator is not powerful enough to capture
all the global shape information.

The last row of Figure 3 shows the results of the RBS method. This
method addresses the drawbacks of all of the above methods: salient regions
are falsely or partially detected, or missed; and over-sensitive to noise or
boundaries. The detected salient regions are expanded, and usually corre-
spond to the components of the object of interest. The “warm color” covers
the most important regions (visually and geometrically) of the surfaces. This
is because both the RIF and RND are expressive features for representing
saliency and the region based voting is powerful for capturing the global ge-
ometry. The proposed RBS method strikes an appropriate balance between
describing both local details and global geometry.

5.2. Effects of Noise

To demonstrate the robustness of our method, random Gaussian white
noise with a standard deviation of σ = 0.3 was added to the original real
range scans, and then both the RBS and OVBS methods were run again.
The results of the detected saliency are shown in Figure 4. It can be seen
that both the RBS and OVBS methods can still distinguish salient and non-
salient regions in the presence of a considerable amount of noise. While
the detected salient regions by the OBVS method scatter over the whole
noise corrupted scans, as expected, those by the RBS method remain at the
similar regions. These remarkable results show that the voting from different
segments in the proposed RBS method is robust to imaging noise, and is
powerful and stable in detecting salient regions from surfaces with varied
complexities of geometry and magnitudes of imaging noise.
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Figure 4: Saliency detected by the OVBS and RBS methods, with data corrupted by
random Gaussian white noise with a standard deviation of σ = 0.3. From left to right: the
original surface; OVBS; RBS; the noise corrupted surface; OVBS over the noise-corrupted
surface; RBS over the noise-corrupted surface.

6. Saliency-guided 3D shape analysis and understanding

The detected saliency of 3D shapes is of broad interest since it can poten-
tially improve the existing techniques for 3D shape analysis and understand-
ing. In this section, the detected saliency by our method is applied to guide
three tasks: interest point detection, surface simplification, and overlapping
point cloud registration as detailed below.

6.1. Surface Simplification

To incorporate saliency information into surface simplification, in this
section, we weight the quadric errors of edges [11] by the saliency values
estimated by the proposed RBS method. The quality of a surface simpli-
fication method is measured by the Root Mean Square Error (RMSE) and
Metro error [6] between the original and the simplified mesh. For the sake
of comparative study, three existing state of the art techniques were selected
again: the OBVS method [40], Mesh Saliency (MESA) [22], and Distinctive
Region (DIRE) [33].

16



(a) (b) (c) (d)

Figure 5: Examples of simplification results guided by different methods on model dragon
with a simplification rate of 95%. The snapshots illustrate the local details after simpli-
fication. The original model has 28730 vertices, and the simplified model contains 1436
vertices. (a) MESA; (b) DIRE; (c) OVBS; (d) RBS.

Figures 5 and 6 illustrate the detected saliency and saliency-guided sur-
face simplification results, where the simplification rate was 95% for all the
methods. It can be seen that both the MESA and DIRE methods smooth
the teeth and mouth corners of the model dragon and the cylinder shapes of
the pipe orifices of the model valve significantly. In contrast, both the OBVS
and RBS methods achieved visually more pleasing results, not only retaining
the model’s global shape, but also preserving such significant local features
as the teeth, mouth corners and the spine of the dragon and the pipe orifices
of the valve.

The outstanding performances of the proposed method have been veri-
fied in Figure 7. All the surfaces were tested using three different simplifi-
cation rates: 50%, 80% and 95%. As the simplification rate increases, the
RMSE and Metro errors increase for all the methods, as expected. On care-
ful scrutiny of all the cases, it can be seen that the RBS method always
achieves the best simplification results than the alternatives, decreasing the
RMSE and Metro errors of the existing methods by as much as 41% and
38% respectively. These remarkable results show that the simplified surfaces
guided by our RBS method are better approximations of the original surfaces
than those guided by the other methods, even though the imaging noise, the
simplification rates and the geometry of the models vary significantly.
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Figure 6: Examples of simplification results guided by different methods on model valve
with a simplification rate of 95% . The snapshots illustrate the local details after sim-
plification. The original model has 12787 vertices, and the simplified model contains 640
vertices. (a) MESA; (b) DIRE; (c) OVBS; (d) RBS.

6.2. Interest Point Detection

In this section, we demonstrate the usefulness of the estimated saliency
for the detection of interest points on 3D surfaces. In order to select in-
terest points from the detected salient points with fairly even distribution,
so that they describe not just salient features but also the overall geometry
of salient regions, the voxelization is employed in our method. Voxelization
is concerned with partitioning salient points into a set of voxels. Let the
salient points be enclosed by a bounding box, and it can be divided into
grids. Normally, the size of each block and the dimensions of the grid need
to be specified by the user. In this paper, we need a high enough resolution
to make sure that important details are not lost. In this case, as we only
aim to detect the interest points from salient points rather than from the
whole model, only such salient regions whose saliency values are larger than
the average of the saliency values of all the points in the shape need to be
voxelized. We defined the size of the voxel as 4mm × 4mm × 4mm in the
experiments described below.

The larger the variation of the saliency values of the salient points inside
a voxel, the larger the entropy, the more details the voxel contains. Thus
the entropy can be used to guide the point sampling. The entropy of each
voxel is estimated from a histogram with 20 bins of the finally estimated
saliency values of salient points inside. The interest point selection criterion
is as follows: let Nvox be the number of voxels after voxelization of the
salient points, and let all the voxels be divided into two categories with equal
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Figure 7: RMSE and Metro errors of the mesh simplification guided by different methods
over models with simplification rates of 50%, 80%, and 95% respectively. (a) dragon; (b)
valve.

number of voxels by their entropy values: E1 and E2, where E1 indicates the
half of voxels with lower entropy values and E2 indicates the half of voxels
with higher entropy values. Preq denotes the total number of points to be
sampled: then the numbers NE1 and NE2 of points to be selected from each
voxel in the E1 and E2 sets, respectively, are:

NE1 =
0.5Preq
Nvox

, NE2 =
1.5Preq
Nvox

. (15)

Clearly, more points are selected from the voxel with higher entropy (E2)
than the voxel with lower entropy (E1). In our experiments described below,
the ratio of NE1 and NE2 is set as 1:3, which provides the best performance
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during the repeatability evaluation of the detected interest points.
For a comparative study, the saliency detected by the OVBS and RBS

methods was used again to guide the interest point detection, and two state-
of-the-art 3D interest point detectors, 3D-Harris [34] and 3D-SIFT [12], were
also selected. 1% of points were sampled from the original shape as interest
points, in order to make a fair comparison. The experimental results are pre-
sented in Figure 8. Green circles depict the interest points detected from the
reference scans, and the red stars depict the points selected from the partially
overlapping scans with the reference ones after some transformations. They
show that each of the methods has the capability to detect interest points
from the areas with a high density of local details. The interest points guided
by the OVBS and RBS methods remain consistently detected, such as the
mouth and eyes region of the buddha, the handle areas of the bottle, and the
face of the dinosaur. However, 3D-Harris and 3D-SIFT failed to detect a
large set of repeatable points as shown in Figure 8 (c) and (d) respectively.

To validate the robustness of our saliency-guided interest point detec-
tion method, and make a comparison to the competitors, the repeatability
rate [29, 24] was used for quantitative evaluation. Figure 9 shows the repeata-
bility rates of the interest points detected in different 3D scans subject to
varied underlying transformations. Most detectors show excellent tolerance
with small rotations of the underlying transformations, such as 20◦. For the
scan buddha, RBS achieves a repeatability rate of around 0.90 in Figure 9(a),
it increases that of the OVBS, 3D-SIFT and 3D-Harris methods by as much
as 6%, 20% and 29% respectively. As expected, with the rotation angle of
the underlying transformation increasing, the repeatability rate falls, since
the larger the rotation angle of the underlying transformation, the smaller
the number of the overlapping points.

With the change of the rotation angle of the underlying transformation
from 108◦ to 72◦, the repeatability rates of the detected interest points drop
dramatically by 32% and 19% over the scans of the bottle for the 3D-Harris
and 3D-SIFT methods respectively. This is because it is difficult for 3D-
Harris to select such parameters as the number of rings around each vertex,
and for it to estimate corner response. As a result, the rate at which the
detected interest points were false-positive increases. 3D-SIFT sometimes
detects interest points in insignificant regions. Moreover, while it seeks to
avoid detecting interest points from the boundaries and edges, this strategy
did not help to identify the interest points, as in our test datasets, some
salient points are located at boundaries and edges. While the proposed RBS
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Figure 8: The interest points detected on the overlapping scans buddha0-20, bottle144-180,
and dinosaur36-72. All the detected interest points by different methods are represented
over the first scans for convenient comparison. Green circles depict the interest points
detected from the scans of buddha0, bottle144, and dinosaur36. Red stars depict the
interest points detected from the scans of buddha20, bottle180, and dinosaur72. (a) RBS;
(b) OVBS; (c) 3D-Harris; (d) 3D-SIFT.

method achieves relatively stable performances on the data captured from
different viewpoints, it increases the repeatability rate of the OVBS method
by as much as 9%. This is because it includes such ingredients that are
supplementary and powerful: relative normal distance is expressive in de-
scribing local details, RIF is capable of distinguishing different local features
and global geometry, and region based voting takes into account the global
shape information. Consequently, they balance well the description of the
interest points on the scale of not only the local details, but also the overall
global geometry.

Computationally, our RBS and previously proposed OVBS-guided inter-
est point detectors are much more computationally efficient than the 3D-
Harris and 3D-SIFT methods. While the former took usually less than 30
seconds on average per scan from the OSURID database, the latter took
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Figure 9: Repeatability rate of the interest points guided by different methods in different
scans/models. From left to right: buddha, bottle and dinosaur.

usually more than 1 minute, due to such time intensive operations as local
surface patch fitting and corner response estimation in the 3D-Harris method
and the computation of the difference of Gaussian (DOG) at multiple scales
and detection of extremal responses of DOG in both the spatial and scale
spaces in the 3D-SIFT method.

6.3. Overlapping Point Cloud Registration

In this section, the usefulness of our detected interest points is further
demonstrated by their application as proxy for the overlapping point cloud
registration. The interest points detected by 3D-SIFT and 3D-Harris were
also used for the same purpose for a comparative study, so that we can have a
better idea whether the detected interest points can well pose the registration
problem and which method can detect the most repeatable points for that
purpose.

The registration algorithm, fractional iterative closest point (FICP) [28],
was selected for the registration of the detected interest points due to its
easy implementation and high accuracy. The performance of the registra-
tion algorithm was measured by the rotation angle of the finally estimated
underlying transformation, average and standard deviation of errors in mil-
limeters of reciprocal correspondences (RCs) [25] and the computational time
in seconds. All the overlapping point clouds were subject to relatively small
transformations, so that their underlying transformations can be uniformly
initialized with the pure translational transformations defined by the differ-
ence of centroids of the detected interest points from the two overlapping
point clouds. Since the same algorithm was used for registration, the dif-
ference in registration results will come uniquely from the detected interest
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points: the more accurate the registration results, the more repeatable and
informative the detected interest points.

Figure 10: Registration results using the FICP algorithm of the interest points detected
from different scans using different algorithms. Columns, left to right: RBS, OVBS, 3D-
SIFT, and 3D-Harris. Rows, top to bottom: valve0-10, bottle144-180, buddha0-20, and
dinosaur36-72.

The complete sets of points in the original point clouds were also ap-
plied for registration by FICP and it was referred to as R-FICP in this
section. It provides a performance baseline, allowing evaluation of the extent
to which the selected interest points accelerate registration and affect its ac-
curacy. To this end, the overlapping valve0-10, bottle144-180, buddha0-20
and dinosaur36-72 point clouds were selected from the OSURID database for
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the experiments.
The experimental results are presented in Figure 10 and Table 1. For

better visualization, the estimated underlying transformation was applied
to the first point cloud, so that the transformed point cloud in yellow can
be compared with the second reference point cloud in green. The interest
points detected by 3D-Harris failed to pose the problem for the registration
of the overlapping value0-10 point clouds, those detected by either 3D-SIFT
or 3D-Harris also failed to act as proxy for the registration of the overlapping
buddha0-20 and dinosaur36-72 point clouds, since the estimated underlying
transformations failed to bring the scans valve0, buddha0, and dinosaur36
into the best possible alignment with the reference scans valve10, buddha20,
and dinosaur72 respectively in 3D space. In sharp contrast, the proposed
RBS method successfully identified repeatable interest points, yielding ac-
curate estimations of the underlying transformations that bring all the four
pairs of overlapping point clouds into accurate alignment with a large amount
of interpenetration between each other.

These superior results have been verified by Table 1. The interest points
detected by either the OVBS or RBS method largely overlap after transfor-
mation and the resulting estimated rotation angles of the underlying trans-
formations are close to the ground truth. In contrast, those detected by either
3D-SIFT or 3D-Harris are largely displaced, leading the estimated rotation
angles of the underlying transformations to have a relative error as large as
83%. While the proposed RBS and VBS methods increase the average error
of the R-FICP algorithm slightly by 6% and 10% due to point sampling, both
the 3D-SIFT and 3D-Harris methods increase it significantly by as much as
42% and 77% respectively. These results are consistent with those described
in the last section. Both 3D-SIFT and 3D-Harris are sensitive to imaging
noise and detected less repeatable and useful interest points.

Computationally, all the methods required similar time for the registra-
tion of the detected interest points using the FICP algorithm, since the same
number of interest points were detected from different scans or models. The
detected interest points guided by the saliency estimated by the proposed
RBS method has been shown to be more useful in the context of efficient
registration of overlapping 3D free form shapes. While it did not sacrifice
registration accuracy, it enabled the registration task to be up to 10 times
faster than using unsampled complete points.
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Table 1: The average eµ and standard deviation eδ of registration errors in millimeters

of RCs, expected and estimated rotation angles θ and θ̂ in degrees of the underlying
transformation, and the time T in seconds used for the registration of the detected interest
points using the FICP algorithm.

Point clouds Algorithm eµ(mm) eδ(mm) θ(◦) θ̂(◦) T (s)

R-FICP 0.39 0.21 10 10.11 45
RBS 0.42 0.23 10.41 4

valve0-10 OVBS 0.44 0.26 10.61 4
3D-SIFT 0.45 0.28 11.22 5
3D-Harris 1.13 0.92 18.35 5
R-FICP 0.47 0.38 36 35.68 32
RBS 0.52 0.41 35.19 3

bottle144-180 OVBS 0.56 0.44 35.08 3
3D-SIFT 0.89 0.64 30.96 3
3D-Harris 0.91 0.66 28.81 3
R-FICP 0.81 0.50 20 19.93 63
RBS 0.84 0.55 19.45 4

buddha0-20 OVBS 0.86 0.57 19.21 4
3D-SIFT 0.92 0.60 26.78 5
3D-Harris 0.91 0.61 9.64 5
R-FICP 0.63 0.85 36 34.14 34
RBS 0.66 0.89 34.61 3

dinosaur36-72 OVBS 0.68 0.90 34.79 3
3D-SIFT 1.01 0.90 25.76 3
3D-Harris 1.12 0.97 26.17 3
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(a) Helicopter (b) RBS

Figure 11: Limitation of the proposed method: some high level saliency was not captured.

7. Conclusion

This paper has proposed a novel technique for detecting the salient regions
from different 3D scans or surfaces by combining surface smoothing, defini-
tion of expressive features, feature enhancement, and segments based voting.
It also demonstrated how the detected saliency can both visually and quanti-
tatively improve the results of several 3D surface analysis and understanding
tasks, such as the simplification of surfaces, detection of interest points and
registration of overlapping point clouds. Experimental results based on real
range scans and models from three publicly accessible databases show that
our proposed RBS method could be a more useful tool both qualitatively
and quantitatively for the processing and understanding of 3D shapes than
five selected state of the art ones.

The limitation of the current work is that it sometimes fails to detect the
regions that are relatively similar to their neighbors, but salient to human
perception, such as the propeller of the helicopter in Figure 11. The propeller
is an important and informative clue to help human to recognize whether the
machine is an airborne craft or vessel. Therefore, our future work will focus
on how to incorporate such high level semantic cues into saliency detection.

It is worth noting that this paper focuses on the saliency analysis from
objects subject to rigid transformations. In this case, the scale is not an issue
since the interpoint distances in the objects will not be affected by such trans-
formations. Future research will investigate the effect of the neighbourhood
size on the interest point detection, and the usage of the detected saliency
for other real-world applications such as 3D shape matching and retrieval.
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