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Abstract

Cerebral perfusion x-ray computed tomography (PCT) is an important functional imaging 

modality for evaluating cerebrovascular diseases and has been widely used in clinics over the past 

decades. However, due to the protocol of PCT imaging with repeated dynamic sequential scans, 

the associative radiation dose unavoidably increases as compared with that used in conventional 

CT examinations. Minimizing the radiation exposure in PCT examination is a major task in the CT 

field. In this paper, considering the rich similarity redundancy information among enhanced 

sequential PCT images, we propose a low-dose PCT image restoration model by incorporating the 

low-rank and sparse matrix characteristic of sequential PCT images. Specifically, the sequential 

PCT images were first stacked into a matrix (i.e., low-rank matrix), and then a non-convex spectral 

norm/regularization and a spatio-temporal total variation norm/regularization were then built on 

the low-rank matrix to describe the low rank and sparsity of the sequential PCT images, 

respectively. Subsequently, an improved split Bregman method was adopted to minimize the 

associative objective function with a reasonable convergence rate. Both qualitative and quantitative 

studies were conducted using a digital phantom and clinical cerebral PCT datasets to evaluate the 

present method. Experimental results show that the presented method can achieve images with 

several noticeable advantages over the existing methods in terms of noise reduction and universal 

quality index. More importantly, the present method can produce more accurate kinetic enhanced 

details and diagnostic hemodynamic parameter maps.
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 1. Introduction

Acute stroke is a leading cause of morbidity and mortality worldwide. Cerebral perfusion 

computed tomography (PCT) is an effective diagnostic tool for evaluating acute ischemic 

stroke by calculating several perfusion parameters, such as mean transmit time (MTT), 

cerebral blood volume (CBV), and cerebral blood flow (CBF) [1, 2]. In acute stroke 

examination with a standard PCT scanning protocol, the dynamic acquisition of sequential 

CT sections in cine mode should be performed for approximately 1 min [3, 4]. Hence, its 

associative excessive radiation exposure radiation remarkably exceeds that used in 

conventional CT examination, which has raised significant concern from patients. 

Minimizing x-ray exposure in cerebral PCT examinations has been one of the major 

endeavors in CT fields [5, 6, 7, 8, 9].

To date, various techniques that optimize cerebral PCT scanning protocol for dose reduction 

has been explored, including low-mAs and/or kVp exposure control [7, 9, 10, 11, 12] or 

decreasing the image acquisition frequency in enhanced scans [13, 14]. Notably, low-mAs 

exposure control is a straightforward and cost-effective means to reduce radiation dose in 

clinic. However, excessive quantum noise in low-mAs projection data acquisition would 

unavoidably lead to degraded images and hemodynamic parameter maps. To address this ill-

posed problem, many approaches have been reported, including projection and image 

filtering techniques [5, 15, 16, 17], sequential-images iterative reconstruction [6], and 

parameter maps estimation by an iterative scheme with a strong regularization [18, 19, 20]. 

For example, Ma et al. presented an iterative image reconstruction method based on 

maximum a posterior with an pre-contrast scan induced edge-preserving prior [6]. Fang et 

al. presented a robust low-dose CT perfusion deconvolution method via tensor total-variation 

regularization [19]. Meanwhile, a major drawback of sequential-image or parameter map 

iterative reconstruction methods is the computational load caused by multiple re- and back-

projection operations in image or parameter map domains. Although most projection 

filtering techniques can suppress noise and streak artifacts with less computational burden, 

they usually sacrifice structural details without considering accurate noise modeling over all 

projections. In addition, noise distribution of low-dose CT images is usually non-stationary 

and unknown. As a result, it is a difficult task to design an advanced structure preserving 

image filter in practice. In general, a successful CT image iterative reconstruction approach 

needs incorporating specific prior information of desired image. A typical example is the 

sparsity prior of image in a transform domain including the discrete gradient transform and 

wavelets transform, which has been studied in perfusion CT [14], cone-beam CT [21] and 

spectral CT [22].

Recently, instead of simple sparsity of vectors, researchers have paid attention to explore the 

low-rank characteristic of matrices. The related techniques have demonstrated impressive 

performance in video restoration [23, 24], and medical imaging including four-dimensional 

CT [25], spectral CT [26], and dynamic magnetic resonance imaging (MRI) [27]. In this 

paper, with the facts that the rich similarity redundancy information exists among enhanced 

sequential PCT images, we propose a low-dose PCT image restoration model by 

incorporating the low-rank and sparse matrix characteristic of sequential PCT images. More 
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specifically, the sequential PCT images were first stacked into a matrix (i.e., low-rank 

matrix), and then a non-convex spectral norm/regularization and a spatio-temporal total 

variation (TV) norm/regularization were built on the low-rank matrix to describe the low-

rank and sparsity of the sequence PCT images, respectively. An improved split Bregman 

algorithm was developed to minimize the present objective function. Qualitative and 

quantitative evaluations were carried out on both the digital phantom and clinical cerebral 

PCT datasets in terms of several evaluation metrics.

The remaining parts of the paper are organized as follows. Section 2 describes the process of 

dynamic PCT imaging, the low-rank matrix recovery model, the present PCT image 

restoration model, and the associative optimization algorithm. The experimental setup and 

evaluation metrics are also presented in this section. Evaluation results are presented in 

Section 3. Finally, the discussion and conclusion are given in Sections 4 and 5, respectively.

 2. Methods and Materials

 2.1. Brief review of dynamic PCT imaging

In clinic, PCT examination of brain regions is performed as follows: first, the pre-contrast 

unenhanced CT scan of the whole brain is performed. Then, following an intravenous 

injection of iodinated contrast agent, continuous enhanced dynamic scan of the selected 

slices of brain in a cine mode is performed. The obtained dynamic measurement can be 

viewed as a temporal sequence of 2D spatial images. Finally, several nondeconvolution and 

deconvolution methods [28] can be used to process the obtained sequential PCT images for 

obtaining quantitative hemodynamic information, such as MTT, CBV, and CBF.

 2.2. Overview of the low-rank and sparsity modeling for sequential PCT image 
restoration

 2.2.1. Low-rank matrix recovery—Low-rank matrix recovery is currently a hot topic 

in image processing which can be regarded as a rank regularized minimization problem [29] 

from the given observation matrix M corrupted by errors E, i.e.,

(1)

where rank(X) represents the rank of the desired objective matrix X;  denotes the 

Frobenious norm; and λ is a hyper-parameter to balance the first (i.e., fidelity term) and the 

second (i.e., penalty term) terms. Due to the form of rank penalty, directly minimizing the 

objective function in Eq. (1) is a difficult task. To address this issue, similar to [27], the rank 

penalty can be relaxed to be a nuclear norm representation with , where σi are 

the singular values of X. Through this relaxation, the recovery of the low-rank matrix X can 

be simplified as follows:

(2)
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Recht et al. has shown that this approach perfectly recovers the matrix X with a high 

probability, if the random measurement ensemble is used and the number of measurements 

exceeds a constant times the number of degrees of freedom [29].

 2.2.2. LR-TV model for PCT image restoration—In PCT imaging, rich similarity 

redundancy information existing among the enhanced sequential PCT images leads to the 

low-rank matrix characteristic of the stacked sequential images. Specifically, the sequential 

PCT images can be represented as a matrix that has linearly dependent rows, i.e., low-rank. 

An illustration of the low-rank characteristic of the sequential PCT images is shown in Fig. 

1. Moreover, the sparsity of the sequential PCT images, which corresponds to the enhanced 

perfusion information, can also be exploited along with the low-rank matrix characteristic to 

further improve image quality. Hence, we pose the PCT image restoration problem as a 

regularized matrix recovery problem with low-rank and TV (sparsity) constrains, which is 

referred to as “LR-TV” for simplicity. Mathematically, the LR-TV model for PCT image 

restoration can be formulated as:

(3)

where M is the noisy PCT sequence, X = [x1, ⋯ , xj, ⋯ , xNt], xj denotes the column vector 

corresponding to the sorted spatial pixels in the jth frame image Xj with size of Nx × Ny, Nt 

denotes the number of temporal frames, | · | denotes the absolute value of each element, K1 

and K2 are positive integers. Φ0 = Dx, Ψ0 = I, Φ1 = Dy, Ψ1 = I, Φ2 = I, Ψ2 = Dt, , and I is the 

identity matrix; Dx, Dy, and Dt are finite difference matrices (discrete gradient transforms) 

along x, y, and t, respectively. Note that  and  denote the sparsifying transform of 

the row-space; XDt denotes the sparsifying transform of the column-space.

To effectively optimize the cost function in (3), we rewrite the above constrained 

optimization problem using Lagrange’s multipliers method and relaxing the penalties as 

follows [30]

(4)

where λ1 , λ2 > 0 are two regularization parameters. ϕ(X) is the relaxed low-rank 

regularization with the definition of , which is used to 

penalize the small singular values associated with serious artifacts. In the implementation, p 

was set to 0.5 for all the experiments according to [31]. In this paper, the ℓ0 norm is relaxed 

to be a convex ℓ1 norm representation with , which denotes 

the spatio-temporal TV norm about the gradient of the entire volume. Compressive sensing 

theory has guaranteed that an image can be accurately reconstructed from sparse samples of 

its discrete gradient transform [32].
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 2.3. Optimization approach

Due to the nonsmooth spectral and TV regularization, Eq. (4) can not be solved directly by 

the conventional gradient descent methods. In this work, we pose the regularized matrix 

recovery problem in (4) as a constrained minimization using variable splitting technique [33]

(5)

where E and Si (i = 0, 1, 2) are auxiliary variables which are also determined during the 

optimization process.

In this study, we adopt an accurate, efficient, and convergent algorithm for solving (namely 

the split Bregman method which is essentially equivalent to the augmented Lagrangian 

method [34]; however it was independently developed from a different perspective to 

improve the conventional total variation model [33]. Mathematically, it can be well solved 

sufficiently through the following iterative scheme:

(6)

(7)

(8)

(9)

(10)

(11)

where β1, β2 > 0 are two regularization parameters, L, Vi(i = 0, 1, 2), and Z are auxiliary 

variables.
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 2.3.1. Minimization with respect to X—The Eq. (6) corresponds to one iteration step 

in a typical differentiable quadratic minimization, and the solution can be directly derived 

from its optimal condition. In implementation, the conventional nonlinear conjugate gradient 

(NCG) algorithm [35] with a few iterations is used.

 2.3.2. Minimization with respect to E—Eq. (7) has a form similar to standard 

nuclear norm minimization problems. The iterative singular value thresholding (SVT) 

algorithm [36] for nuclear norm minimization can be generalized to deal with this case with 

spectral penalty. Thus, Eq. (7) can be exactly solved by

(12)

where ui, vi and σi are the singular vectors and values of Xk+1 + Lk respectively [27]. Note 

that when p = 1 Eq. (12) reduces to the SVT algorithm used for nuclear norm minimization 

problem.

 2.3.3. Minimization with respect to Si—The solution of (8) is given by

(13)

 2.3.4. Implementation—In summary, the implementation of the present LR-TV 

method for PCT image restoration can be described as follows:

1: Initialization: X0 = Z0 = E0 = L0 = 0, and , i = 0, 1, 2;

2: Initialization: λ1, λ2, β1, β2, and k:=0;

3: While stop criterion is not met;

4: Obtian Xk+1 from (6) by appling the NCG algorithm;

5: Compute Ek+1 using (12);

6: Compute  using (13), i =i0, 1, 2;

7: Lk+1 = Lk + Xk+1 − Ek+1;

8: ;

9: Zk+1 = Zk + Xk+1 − M;

10: End if stop criterion is satisfied.

In this study, an initial estimate of the to-be restored image in line 1 was set to be uniform 

with value of zero. In line 2, four parameters, i.e., λ1, λ2, β1 and β2 are initialized before the 

iteration. The related parameter selections are discussed in Section 2.4. According to the 
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convergence of the split Bregman algorithm, the sequence generated by the LR-TV 

algorithm converges to the solution of Eq. (4) when p = 1, but the theoretical guarantees on 

the convergence are not valid for the nonconvex spectral regularization when p < 1 [33]. The 

convergence of LR-TV method for nonconvex case is much more difficult to prove, and is 

considered beyond the scope of this paper. However, our experimental studies to be reported 

below seem suggesting the convergence of our LR-TV method.

 2.4. Parameter selections

 2.4.1. Selection of λ1 and λ2—Two penalty parameters λ1 and λ2 control the trade-

off between a good fit of M and the present non-convex regularization. In practice, 

optimizing them is a difficult task in CT image restoration/reconstruction [5, 37, 38]. In the 

implementation, they are empirically selected by matching the noise level of the processed 

low-dose PCT images with the corresponding normal-dose ones. In this study, the 

parameters are recommended according to the previous work in [23]:

(14)

where n1 (n2) is the number of rows (columns) of the image matrix X. λ1 as a single 

parameter in the present method controls the smoothing strength of the restored image and is 

empirically selected based on the noise level of processed data in our studies.

 2.4.2. Selection of the stop criterion—In our studies, to find a stable convergent 

solution, the stop criterion of the present LR-TV algorithm is designed as || Xk+1 − Xk ||F/|| 

Xk ||F≤10−6 which has been widely used in the optimization.

 2.5. Experimental data acquisitions

A digital brain perfusion phantom and clinical cerebral PCT images were used to evaluate 

the performance of the present LR-TV method for enhanced PCT image restoration.

 2.5.1. Digital brain perfusion phantom—The realistic digital brain phantom (Fig. 2) 

in [39] was used in this study, which has a complex structure similar to a real human brain. 

In the simulation, we chose a geometry that was representative for a mono-energetic fan-

beam CT scanner setup. The imaging parameters of the CT scanner are as follows: (1) each 

rotation included 1160 projection views evenly spaced on a circular orbit; (2) the number of 

channels per view is 672; (3) the distance from the detector arrays to the x-ray source is 

1040 mm; and (4) the distance from the rotation center to the x-ray source is 570 mm. All 

images are composed of 256 × 256 square pixels. Each projection datum along an x-ray 

through the sectional image was calculated based on the known densities and intersection 

areas of the ray with the geometric shapes of the objects in the sectional image.

Similar to previous study in [40], after calculating the noise-free sinogram data , the noisy 

measurement I was generated according to the statistical model of the pre-logarithm 

projection data, as follows:
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(15)

where I0 is the incident x-ray intensity and  is the background electronic noise variance. In 

the simulation, the x-ray exposure level I0 was set to 2.5 × 105 and  was set to 10. The 

noisy sinogram y was calculated by performing the logarithm transformation on 

transmission data I. Finally, the noisy measurement was reconstructed by the filtered 

backprojection (FBP) algorithm [41] to obtain the low-dose PCT images.

 2.5.2. Clinical cerebral PCT data—The clinical cerebral PCT images of a patient 

with an old infarction were acquired using a clinical CT scanner without table movement. 

First, a pre-contrast unenhanced scan of the whole brain was performed with a tube current 

of 240 mA and tube voltage of 80 kVp. Approximately 50 ml of Iopromide 370 (Ultravist, 

Schering, Germany) was then injected at a rate of 5.0 ml per second. The continuous 

enhanced normal-dose scan was performed by the following protocol: 200 mA, 80 kVp, 

slick thickness 8 mm, 1 s per rotation for duration of 39 s, and reconstruction kernel of 

H30s. The associate parameters of scanning geometry are as follows: (1) each rotation 

included 1160 projection views that are evenly spaced on a circular orbit; (2) the number of 

channels per view is 672; (3) the distance from the detector arrays to the x-ray source is 

1040 mm; and (4) the distance from the rotation center to the x-ray source is 570 mm. All 

the images are composed of 512 × 512 array size.

We simulated the low-dose cerebral perfusion enhanced CT images using the simulation 

method described in Section 2.5.1 from the acquired normal-dose enhanced images 

according to the above described CT imaging geometry, rather than scanning the patient 

twice, to alleviate radiation dose. The CT dose index (CTDIvol) for the normal-dose 

enhanced scan is 380.80 mGy. The CTDIvol for the simulated low-dose enhanced PCT scan 

is approximately one-seventh of that of the normal-dose scan.

 2.6. Performance evaluation

 2.6.1. Noise reduction measure—The relative root mean square error (rRMSE) 

metric was used to evaluate the noise reduction for quantitative comparison:

(16)

where X and Xxtrue represent the matrix composed of the restored and true attenuation 

coefficients, respectively. A small rRMSE value indicates a small difference value between 

two matrixes and vice versa.

 2.6.2. Time density curve measure—Hemodynamic functional parameters are 

calculated by measuring the temporal evolution of the concentration of contrast agent at each 

pixel position in the region of interest (ROI). The associated temporal evaluation can be 
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represented by the time density curve (TDC). To make the evaluation more intuitive, the 

rough TDC values were directly calculated from the restored sequential PCT images.

 2.6.3. Hemodynamic parameter maps measure—The main goal of PCT imaging 

is to obtain the functional hemodynamic parameter maps, which offers benefits over 

qualitative assessment of brain blood flow, including the MTT, CBV, and CBF maps.

According to the perfusion model proposed in [42], the temporal signal Cv of the average 

contrast-agent in a volume element v is obtained by convolving the arterial input function 

(AIF) Ca with the residue function Rv, i.e.,

(17)

where ρv is the brain tissue density in v, CBFv is the regional blood flow in v, and Rv 

represents the fraction of contrast agent still present in the capillaries in v. The CBFv · Rv is 

estimated by deconvolving its observation Cv for each voxel v in a volume of interest. In this 

study, the truncated singular value decomposition (TSVD) [28], was used to quantify the 

perfusion parameters CBFv in PCT, and we can compute the MTT and CBV using the 

central volume theorem[43]:

(18)

 2.6.4. Image similarity measure—To explore the performance of the various methods 

at the local detail level, the universal quality index (UQI) in [44] was used in (ROI)-based 

analysis, which was performed by evaluating the similarity between the hemodynamic 

parameters of estimated images and true phantom. Given a selected ROI at the 

corresponding locations in the two maps, the mean, variance and covariance of intensities in 

the ROI can be respectively calculated as follows:

(19)

(20)
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(21)

where f(m) denotes the pixel value of the estimated hemodynamic parameter map, fxtrue(m) 

denotes the pixel value of the ideal hemodynamic parameter map in the ROI, and Q is the 

total number of voxels in the ROI. The UQI can be calculated as follows:

(22)

UQI measures the similarity between two images, and its value ranges from zero to one. A 

UQI value closer to one suggests great similarity to the ideal hemodynamic parameter map.

 2.6.5. Comparison methods—To validate and evaluate the performance of the 

proposed LR-TV method, spectral and TV regularization were also carried out for 

comparison and were referred to as the LR and TV methods, respectively. The cost function 

of LR method (only low-rank regularization with λ2 = 0 in (4)) for PCT image restoration 

can be written as follows:

(23)

where γ1 is a positive parameter used to balance the fidelity (the first term in (23)) and the 

spectral regularization term. Moreover, the cost function of TV method (only TV 

regularization with λ1 = 0 in (4)) for PCT image restoration can be expressed as follows:

(24)

where γ2 is a positive parameter used to balance the fidelity (the first term in (24)) and the 

TV regularization term.

 3. Results

 3.1. Digital brain perfusion phantom study

 3.1.1. Convergence analysis—Fig. 3 shows the value of cost function and rRMSE 

from the present LR-TV method decrease monotonically with respect to the number of 

iteration. These curves showed that the proposed LR-TV method can converge to a steady 

solution with enough iteration in terms of value of cost function and rRMSE measure.
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 3.1.2. Visualization-based evaluation—Fig. 4 shows the results restored by four 

different methods from low-dose PCT data at frame #5, #15, #25, and #35. The first row 

represents the ground truth; the second row shows the results from the direct FBP 

reconstruction; the third, fourth, and fifth row show the results from the FBP images restored 

by the LR, TV, and LR-TV method, respectively. It can be seen that the present LR-TV 

method can yield remarkable advantages over both the LR and TV methods in terms of noise 

suppression and structure preservation. Furthermore, we note that LR-TV method 

outperforms other methods in the area of stroke core and penumbra.

 3.1.3. Noise suppression—To further quantitatively evaluate the present LR-TV 

method, the rRMSE was used for measuring noise suppression. Fig. 5 shows the measures of 

rRMSE from different methods at different frames, respectively. The results demonstrated 

that the present LR-TV method can achieve noticeable gains over the other methods in terms 

of noise suppression with quantitative measures.

 3.1.4. TDC measurement—Fig. 6 depicts the TDC accuracy of the vessel, stroke core 

and penumbra tissue of the dynamic PCT images from the three methods. The TDC values 

of the large vessel matched well with the ones from the true phantom (Fig. 6(a)) because the 

contrast agent flow in the enhanced CT value was sufficiently higher than that in the stoke 

core and penumbra tissue. Meanwhile, the TDC values from the restored images by the LR-

TV method for the other regions are closer with the true phantom than those from the 

images derived from the other methods.

To quantitatively measure the consistency between the TDC values from the true phantom 

and the simulated low-dose images restored by the LR, TV and LR-TV method, Table 1 lists 

Lin’s concordance correlation (CC) coefficients [45] of four 3 × 3 ROIs indicated by the 

blue squares shown in Fig. 2. The results demonstrate that good consistency between the 

TDCs from the restored low-dose PCT images and the normal-dose PCT images can be 

found in vessel region with Lin’s CC coefficients higher than 0.999. However, in stroke core, 

Lin’s CC coefficients from the restored

PCT images by the LR and TV methods are below 0.5 while the corresponding Lin’s CC 

coefficient from the restored images by the LR-TV method is higher than 0.85, even in cases 

where all lower bounds of the 95% confidence interval of the CC coefficients are higher than 

0.8. In other words, the results indicate a significant agreement between the TDCs from the 

PCT images restored by the LR-TV method and the normal-dose PCT images.

The results suggest that the LR-TV method can achieve better profiles than the LR and TV 

methods in terms of the Lin’s CC coefficient measure.

 3.1.5. Hemodynamic parameter maps measurement—Fig.7 shows the perfusion 

parameter maps calculated from the true phantom images and simulated low-dose images 

restored using different methods. The MTT maps (column one) calculated from the LR-TV 

method achieved better matching results with that from the true phantom than the other 

methods. Furthermore, Fig.8 shows the zoomed details of the two ROIs in the perfusion 

parameter maps, indicating that the LR-TV method can achieve significant advantages over 
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the other methods in terms of resolution preservation. Moreover, the corresponding UQI 

scores are shown in Fig.9. We can see that the LR-TV method yields higher UQI scores than 

the other methods.

 3.2. Clinical study

 3.2.1. Visualization-based evaluation—Fig.10 (a) shows the normal-dose enhanced 

image used as a golden standard for comparison. Fig.10 (b) shows the simulated low-dose 

enhanced image reconstructed using the FBP method, in which serious noise-induced 

artifacts that obscure enhancement information can be observed. Fig. 10 (c) shows the low-

dose enhanced image restored using the LR method. Fig. 10 (d) shows the low-dose 

enhanced image restored using the TV method. Fig. 10 (e) shows the low-dose enhanced 

image restored using the LR-TV method. It can be observed that the noise level from the 

PCT images restored from LR-TV method is lower than that from the other methods.

To further visualize the differences between the three different methods, the horizontal 

profiles of the resulting images were drawn across the 288th row; that is, from the 100th 

column to the 320th column, and shown in Fig.11. The LR-TV method can produce an 

image that more closely match the normal-dose PCT scan compared with the other methods.

 3.2.2. TDC measurement—Fig. 12 depicts the TDC accuracy of the arterial input 

function (AIF), venous output function (VOF), and tissue perfusion of the dynamic images 

restored using the low-dose PCT data. The TDCs from the restored images by the LR-TV 

methods are closer to the normal-dose images than the other methods. To quantitatively 

measure the consistency between the TDC values from normal-dose FBP images and those 

from the simulated low-dose images restored using the LR, TV, and LR-TV methods, Table 

2 lists Lin’s CC coefficients of four 3×3 ROIs, which are indicated by read squares in Fig. 

10 (a). The results further suggest that the LR-TV method can achieve closer profiles using 

normal-dose FBP images than the other methods.

 3.2.3. Hemodynamic parameter maps’ measurement—The hemodynamic 

parameter maps calculated from the sequential PCT images can be used as a valuable 

indicator to predict hemorrhagic transformation in patients with cerebrovascular disease 

such as acute stroke and vasospasm after subarachnoid hemorrhage. Fig. 13 shows the 

perfusion parameter maps calculated from the original normal-dose images and simulated 

low-dose images restored by different methods. It can be observed that the MTT maps 

(column one) derived from the LR-TV method achieves the best matching results with that 

of the normal-dose images. To further show the performance of the present LR-TV method, 

the zoomed ROIs of the MTT, CBV, and CBF maps are shown in Fig. 14. The results clearly 

demonstrate that the LR-TV method gets more gains than the FBP, LR and TV methods with 

higher fidelity to the normal-dose images and more accurate details for clinical diagnosis.

To demonstrate the merits of the present LR-TV method quantitatively, we manually 

selected 20 specific ROIs in Fig. 10 (a) which exclude the areas that contain major blood 

vessel branches and suspected abnormal signals. The ROIs were located at both hemispheres 

in gray matter, white matter and basal ganglia. Fig. 15 illustrates the correlation coefficients, 

regression results, and the corresponding Bland-Altman plots of the MTT values in different 
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conditions. We can observe that the correlation coefficient (left column) derived from 

normal-dose and the low-dose images restored by the LR-TV method is higher than that 

from the low-dose images of other methods, whereas the difference in the ordinate axis on 

the Bland-Altman plot is smaller. The mean of the difference with the normal-dose 

measurement of the LR method is smaller compared with LR-TV method, however, the 

correlation coecient of LR method is smaller than LR-TV method. Because MTT value 

tends to be very sensitive to the changes of the tube current and is very useful for the 

evaluation of the extent of the cerebral perfusion reserve impairment, we may make a 

conjecture that the LR-TV method outperforms LR and TV methods in this perfusion study. 

Figs. 16 and 17 provide similar results for the CBV and CBF maps. These figures 

demonstrate that the present LR-TV method can achieve noticeable performance in low-dose 

PCT imaging while maintaining the accuracy of quantitative CT measurements for 

evaluating regional cerebral function.

 4. Discussion

Low-rank based approaches have achieved great success in image restoration, video 

restoration, MRI, four-dimensional and spectral CT. However, to the best of our knowledge, 

the low-rank matrix modeling has not been considered in low-dose perfusion CT imaging 

before. In fact, PCT imaging is particularly well-suited for low-rank matrix modeling by 

exploiting temporal and spatial correlations among PCT images. In this study, given the rich 

similarity redundancy information among the sequential PCT images, a low-dose PCT 

image restoration model was proposed by incorporating the low-rank matrix characteristic of 

sequential PCT images. The present method can achieve significant advantages over other 

existing methods in terms of high-quality low-dose PCT image restoration by suppressing 

the singular vectors that correspond to aliasing artifacts, as demonstrated in the results 

section.

As indicated by studies on the digital cerebral perfusion phantom, the present LR-TV 

method can monotonically converge to a steady solution with optimal parameter selections 

in terms of rRMSE measure. However, accurately determining all the parameters in 

optimization is always challenging in the general topic of regularized CT image restoration 

[5, 46] or reconstruction problems [37, 47]. Similar to other regularized methods, the 

regularization parameter is very important. A simple and effective way is to select it 

empirically based on heuristic guidelines. In the implementation of the present LR-TV 

method, β1, β2, and λ2 were determined according to the scheme introduced in [33], 

whereas λ1 was determined using a broader range of parameter values in terms of rRMSE 

and eye-appealing visualization compared the noise level of processed low-dose PCT images 

with the corresponding normal-dose PCT images. The used parameter determination scheme 

is a trial and error process. In practice, more theoretical insights and other automatic 

methods in optimizing the parameters should be performed, which is an interesting topic for 

further research.

In this paper, hemodynamic parameter maps were calculated using the TSVD deconvolution 

algorithm. However, the TSVD method does not exploit the spatio-temporal nature of the 

data, which tends to introduce unwanted oscillations and results in overestimation of 
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hemodynamic parameters [48]. The oscillatory nature of the TSVD method initiated studies 

that incorporated different regularization methods to stabilize the deconvolution operation. 

Enforcing both temporal and spatial regularization on the residue function can further yield 

more noticeable advantages. Hence, the present LR-TV model can be applied in robust 

hemodynamic parameter maps estimation by enforcing low-rank and sparse regularization, 

which would be an interesting topic for further research.

 5. Conclusion

To reduce the radiation dose in cerebral PCT examination, a low-dose PCT image 

restoration model was introduced by incorporating the low-rank matrix characteristic of 

sequential PCT images, given the rich redundancy information existing among enhanced 

sequential PCT images. The proposed LR-TV method exploits the correlation in enhanced 

sequential PCT images by modeling the data to have a low-rank and sparse representation. 

Quantitative and qualitative comparisons on digital brain perfusion phantoms and clinical 

cerebral PCT datasets clearly demonstrated a significant improvement in performance over 

FBP, LR and TV methods. Therefore, the proposed LR-TV method has powerful potential 

for radiation dose reduction in cerebral PCT examination.
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Figure 1. 
Justification of the low-rank characteristic of the sequential PCT images with Nt = 40. It can 

be seen that the matrix is low-rank because only a few singular values are not close to zero.
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Figure 2. 
Digital brain perfusion phantom composed of white matter, gray matter, penumbra artd 

stroke core.
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Figure 3. 
The value of cost function and rRMSE measures from the present LR-TV method with 

respect to the number of iteration in the study of the digital brain perfusion phantom: (a) the 

value of cost function versus the number of iteration; and (b) rRMSE versus the number of 

iteration.
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Figure 4. 
The ground truth and images restored by different methods at frames #5, #15, #25 and #35.
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Figure 5. 
The value of the rRMSE measures from the present LR-TV method with respect to the 

different time frames.
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Figure 6. 
TDC accuracy of the vessel, stroke core and penumbra tissue of dynamic PCT images: (a) 

TDC values of the vessel (the 3 × 3 ROI indicated by a ‘vessel’ in Fig. 2; (b) TDC values of 

the penumbra 1 (the 3 × 3 ROI indicated by a ‘penumbra 1’ in Fig. 2); (c) TDC values of the 

penumbra 2 (the 3 × 3 ROI indicated by a ‘penumbra 2’ in Fig. 2); and (d) TDC values of 

the stroke core (the 3 × 3 ROI indicated by a ‘stroke core’ in Fig. 2).
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Figure 7. 
The MTT (column one), CBV (column two) and CBF (column three) maps calculated from 

the different digital brain perfusion images. The first row was calculated from the true 

phantom; the second row was calculated from the low-dose FBP image; the third, fourth and 

fifth rows were calculated from the simulated low-dose images restored by the FBP, LR, TV 

and LR-TV methods, respectively.
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Figure 8. 
Zoomed details of the two ROIs in the perfusion parameter maps: (a) ROI A; (b) ROI B.
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Figure 9. 
UQI measures on the two ROIs in Fig. 8: (a) ROI A; (b) ROI B.

Niu et al. Page 25

Neurocomputing. Author manuscript; available in PMC 2016 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Cerebra1 PCT image restorations by different methods: (a) the image reconstructed by the 

FBP method from the norma1-dose scan; (b) the image reconstructed by the FBP method 

from the simulated low-dose data; (c) the image restored by the LR method from the low-

dose FBP image;(d) the image restored by the TV method from the low-dose FBP image; 

and (e) the image restored by the LR-TV method form the low-dose FBP image.

Niu et al. Page 26

Neurocomputing. Author manuscript; available in PMC 2016 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Horizontal profiles (288th row, 100th column to the 320th column) of the images shown in 

Fig.10: (a) is the result from the LR method;(b) is the result from the TV method; and (c) is 

the result from the LR-TV method.
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Figure 12. 
TDC accuracy of the AIF, VOF and tissue perfusion of dynamic PCT images: (a) TDCs of 

the AIF (the 3 × 3 ROI indicated by a ‘AIF’ in Fig. 11(a)); (b) TDCs of the VOF (the 3 × 3 

ROI indicated by a ‘VOF’ in Fig. 11(a)); (c) TDCs of the tissue 1 (the 3 × 3 ROI indicated 

by a ‘Tissue 1’ in Fig. 11(a)); and (d) TDCs of the stroke core (the 3 × 3 ROI indicated by a 

‘Tissue 2’ in Fig. 11(a)).
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Figure 13. 
The MTT (column one), CBV (column two) and CBF (column three) maps calculated from 

the different brain PCT images. The first row was calculated from the normal-dose images; 

the second row was calculated from the low-dose FBP image; the third, fourth and fifth rows 

were calculated from the simulated low-dose images restored by the FBP, LR, TV and LR-

TV methods, respectively.
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Figure 14. 
Zoomed ROIs of the MTT (column one), CBV (column two) and CBF (column three) maps 

in Fig. 13.
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Figure 15. 
The correlation (left column) and Bland-Altman plot (right column) between the MTT map 

pixel values computed from the normal-dose images and the low-dose images restored by 

different methods. Plots (a) and (b) represent the results obtained from the normal- and low-

dose FBP restorations. Plots (c) and (d) represent the corresponding results obtained from 

the normal-dose and the low-dose LR restorations. Plots (e) and (f) represent the 

corresponding results obtained from the normal-dose and the low-dose TV restorations. 
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Plots (g) and (h) represent the corresponding results obtained from the normal-dose and the 

low-dose LR-TV restorations.
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Figure 16. 
The correlation (left column) and Bland-Altman plot (right column) between the CBV map 

pixel values computed from the normal-dose images and the low-dose images restored by 

different methods. Plots (a) and (b) represent the results obtained from the normal- and low-

dose FBP restorations. Plots (c) and (d) represent the corresponding results obtained from 

the normal-dose and the low-dose LR restorations. Plots (e) and (f) represent the 

corresponding results obtained from the normal-dose and the low-dose TV restorations. Plot 
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(g) and (h) represent the corresponding results obtained from the normal-dose and the low-

dose LR-TV restorations.
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Figure 17. 
The correlation (left column) and Bland-Altman plot (right column) between the CBV map 

pixel values computed from the normal-dose images and the low-dose images restored by 

different methods. Plots (a) and (b) represent the results obtained from the normal- and low-

dose FBP restorations. Plots (c) and (d) represent the corresponding results obtained from 

the normal-dose and the low-dose LR restorations. Plots (e) and (f) represent the 

corresponding results obtained from the normal-dose and the low-dose TV restorations. Plot 
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(g) and (h) represent the corresponding results obtained from the normal-dose and the low-

dose LR-TV restorations.
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Table 1

Lin’s concordance correlation (CC) coefficient between the TDC values from the true phantom and the 

simulated low-dose images restored by the LR, TV and LR-TV methods. The size of each ROI is 3 × 3 pixels.

ROIs Methods Sample size Lin’s CC coefficient 95% confidence interval p-value

Vessel

LR 40 0.9996 (0.9994 0.9997) p < 0.0001

TV 40 0.9998 (0.9998 0.9999) p < 0.0001

LR-TV 40 0.9999 (0.9979 0.9999) p < 0.0001

Penumbra 1

LR 40 0.8785 (0.7823 0.9338) p < 0.0001

TV 40 0.9571 (0.9223 0.9765) p < 0.0001

LR-TV 40 0.9740 (0.9590 0.9836) p < 0.0001

Penumbra 2

LR 40 0.9207 (0.8585 0.9562) p < 0.0001

TV 40 0.9773 (0.9580 0.9878) p < 0.0001

LR-TV 40 0.9889 (0.9824 0.9930) p < 0.0001

Strok core

LR 40 0.3883 (0.2166 0.5368) p < 0.0001

TV 40 0.4776 (0.2274 0.6687) p < 0.0001

LR-TV 40 0.8825 (0.8ω2 0.9288) p < 0.0001
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Table 2

Lin’s concordance correlation (CC) coefficient between the TDC values from the normal-dose image and the 

simulated low-dose images restored by the LR, TV and LR-TV methods. The size of each ROI is 3×3 pixels.

ROIs Methods Sample size Lin’s CC coefficient 95% confidence interval p-value

AIF

LR 39 0.9650 (0.9498, 0.9756) p< 0.0001

TV 39 0.9922 (0.9852, 0.9959) p< 0.0001

LR-TV 39 0.9934 (0.9878, 0.9964) p< 0.0001

VOF

LR 39 0.9817 (0.9762, 0.9860) p< 0.0001

TV 39 0.9993 (0.9987, 0.9996) p< 0.0001

LR-TV 39 0.9995 (0.9992, 0.9997) p< 0.0001

Tissue 1

LR 39 0.8673 (0.7680, 0.9258) p< 0.0001

TV 39 0.8661 (0.7768, 0.9212) p< 0.0001

LR-TV 39 0.9114 (0.8386, 0.9523) p< 0.0001

Tissue 2

LR 39 0.9012 (0.8321, 0.9428) p< 0.0001

TV 39 0.9252 (0.862, 0.9599) p< 0.0001

LR-TV 39 0.9568 (0.9202, 0.9768) p< 0.0001
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