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Abstract—We consider a variant of the multi-armed bandit
model, which we call multi-armed bandit problem with known
trend, where the gambler knows the shape of the reward function
of each arm but not its distribution. This new problem is
motivated by different on-line problems like active learning, music
and interface recommendation applications, where when an arm
is sampled by the model the received reward change according
to a known trend. By adapting the standard multi-armed bandit
algorithm UCB1 to take advantage of this setting, we propose
the new algorithm named Adjusted Upper Confidence Bound (A-
UCB) that assumes a stochastic model. We provide upper bounds
of the regret which compare favourably with the ones of UCB1.
We also confirm that experimentally with different simulations.

Keywords—Multi-armed Bandit; Online learning; Recom-
mender systems.

I. INTRODUCTION

The basic formulation of the Multi-Armed Bandit (MAB)
problem can be described as follows: there are K arms,
each having a fixed, unknown and independent probability-
distribution of reward. At each step, a player chooses an
arm and receives a reward. This reward is drawn according
to the selected arm’s distribution and it is independent of
previous actions. Under this assumption, many policies have
been proposed to optimize the long-term accumulated reward.

A challenging variant of the MAB problem is the non-
stationary bandit problem where the player must decide which
arm to play while facing the possibility of a changing environ-
ment. We study here a special case of this model where the
rewards of each arm of the bandit follow a known function. In
this setting, is it possible to adapt standard bandit algorithms
to take advantage of this new setting?

The answer of this question is interesting by itself: it
could open new doors from a theoretical point of view. But
the real motivation is operational: knowing the shape of the
reward function assumption is realistic for several real-world
problems like on-line active learning, A/B testing and music
recommendation. For instance, in [1], the analysis of the active
learning problem led the authors to model the active learning
problem as a MAB problem. They cluster at first the input
space: each cluster is considered as an arm. In this setting the
authors find that the more an area is sampled by the model
the less is the received reward. In [2], the authors study the
recommendation of music where they observe that the interest
of a user to a music follows the inverse of an exponential
function called forgetting curve, where the more a music is
heard the lesser it is interesting. Another model that follows a
reward with known function was studied in [3]. The authors

observe that when they propose a new interface to a user, at
the beginning, the user dislikes it, but after using it several
times, the user begin to like it, which means that if we model
this problem as a bandit where the interface is an arm, we can
say that the reward of the arm start to be bad at the beginning
and it increases by time.

From the three above examples, we can say that all these
problems can be modeled as new bandit problem called “Multi-
armed Bandit Problem with Known Trend” where each arm
follow a known trend reward function. For instance, in the first
two examples the rewards follow a decreasing function and the
third one follows a sigmoid function. In this setting we propose
to study this new model derived from this problem, by adapting
the existing algorithm to the new setting and analysing their
regret. Finally, we evaluate the proposed algorithms through
different simulations.

The remaining of the paper is organized as follows. Section
II reviews related works. Section III describes the setting MAB
model with known trend reward function and the proposed
algorithm A-UCB. Then we proof its regret in Section III-B.
The experimental evaluation through different simulations is
illustrated in Section IV. The last section concludes the paper
and points out possible directions for future works.

II. RELATED WORK

This section provides an overview on the MAB problem
related to our work. In the bandit problem, each arm delivers
rewards that are independently drawn from an unknown distri-
bution. An efficient solution based on optimism in the face of
uncertainty principle has been proposed proposed by Lai and
Robbins [4] compute an index for each arm and they choose
the arm with the highest index.

Our work is an adaptation of these classes of policies for
MAB Problem with known trend reward function. Our work
is most related to the study of dynamic versions of the MAB
where either the set of arms or their expected reward may
change over time. There are several applications, including
active learning, music and interface recommendation, where
the rewards are far from being stationary random sequences.
A solution to cope with non-stationary is to drop the stochastic
reward assumption and assume the reward sequences to be cho-
sen by an adversary. Even with this adversarial formulation of
the MAB problem, a randomized strategy like EXP3 provides
the guarantee of a minimal regret [5], [6].

Another work done in [7] considers the situation where
the distributions of rewards remain constant over epochs and
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change at unknown time instants. They analyze two algo-
rithms: the discounted UCB and the sliding-window UCB and
they establish for these two algorithms an upper-bound for
the expected regret by upper-bounding the expectation of the
number of times a suboptimal arm is played. They establish
a lower-bound for the regret in presence of abrupt changes in
the arms reward distributions.

Similar to [7], authors in [8] propose a Thompson Sampling
strategy equipped with a Bayesian change point mechanism to
tackle this problem. They develop algorithms for a variety of
cases with constant switching rate: when switching occurs all
arms change (Global Switching), switching occurs indepen-
dently for each arm (Per-Arm Switching), when the switching
rate is known and when it must be inferred from data.

Motivated by task scheduling, the author in [9] proposed
a policy where only the state of the arm currently selected
can change in a given step, and proved its optimality for time
discounting. This result gave rise to a rich line of work. For
example, [10], [11] studied the restless bandits, where the
states of all arms can change in each step according to an
arbitrary stochastic transition function.

To deal with the partial information nature of the bandit
problem, in Adapt-Eve [12] the mean reward of the estimated
best arm is monitored. The drawback of this approach is that
it does not tackle the case of a suboptimal arm becoming the
best arm.

In [13] author study specific classes of drifting restless ban-
dits selected for their relevance to modelling an online website
optimization process. The contribution was a feasible weighted
least squares technique capable of utilizing contextual arm
parameters while considering the parameter space drifting non-
stationary within reasonable bounds.

Another line of work studies the non-stationary reward of
arms by considering that each arm has a finite lifetime. In
this mortal bandits setting, each disappearing arm changes the
set of available arms. Several algorithms were proposed and
analyzed in [14] for mortal bandits under stochastic reward
assumptions. In sleeping bandits problem [15], the set of
strategies is fixed but only a subset of them available in
each step. In their model they study the mixture-of-experts
paradigm, where a set of experts is specified in each time
period. The goal of the algorithm is to choose one expert in
each time period to minimize regret against the best mixture
of experts.

Our new model can be considered an extension of the work
done in [14], [15], the main difference is in the fact that, in our
case the reward function of each arm can follow any function
not specially a decreasing function. Our model can also be a
specification of the general model of restless bandits with a
known shape of the reward function.

III. PROBLEM STATEMENT

In this section, we present the algorithm and the main
theorem that bounds its regret. Before that, we first provide
the setting of our problem. In the MAB setting, to maximize
his gain the player has to find the best arm as soon as possible,
and then exploit it. In our setting, the rewards follow a known
function. When the player has found the best arm, he knows

that this arm will be the best just for a certain period of time.
The player needs to re-explore at each time to find the next
best arm. In the following, we define our setting.

Let ri(1), ...., ri(n) be a sequence of independent draws of
the random variable ri ∈ [0, 1] with n the number of trials
and let µi = E[ri] be its mean reward. At each time t, the
player chooses an arm i ∈ {1, ...,K} to play according to a
(deterministic or random) policy φ based on sequence of plays
and reward, and obtains a non-stationary reward z(t) where
z(t) = rit(t) · D(nit(t)), where D(nit(t)) is a trend reward
function assumed to be known, nit(t) is the number of times
i is played and rit(t) is the stationary reward for arm i at time
t.

A dynamic policy can be defined as function such that
(φ : t 7→ n1(t), ..., nK(t)) or φ : Ht−1 7→ K,

where Ht−1 is the history of rewards known at time t.

By applying a policy φ, at time t a sequence of choices is
obtained (1, 2, ..., t) ∈ [K]t.

At time t, the gain of the policy φ is:

Gφ(t) =
∑
t

z(t) =
∑
t

rit(t)D(nit(t))

The performance of a policy φ is measured in terms of regret
in the first T plays, which is defined as the expected difference
between the total rewards collected by the optimal policy φ∗

(playing at each time instant the arm i∗ with the highest
expected reward) and the total rewards collected by the policy
φ.

The objective is to minimize the regret R(T ) at time T ,
where T is the time horizon.

Definition 1. The expected regret after T plays may be
expressed as:

E[R(T )] = E[G∗(T )]− E[G(T )]

where E[G∗(T )] =
∑k
i=1 µi

∑n∗i (T )
s=1 D(s), is the optimal gain

expectation, and E[G(T )] =
∑k
i=1 µiE[

∑ni(T )
s=1 D(s)], the

expected gain got by the policy φ. Note that we distribute
the expectation because ri(t) and ni(t) are independent.

Definition 2. The optimal policy in any time φ∗ consists in
always playing the arm i∗ ∈ {1, ...,K} with largest expected
reward:

i∗ = argmaxi[µi ·D(ni(t))]

where µi is the expectation of the reward ri(t).

Definition 3. F is the cumulative function of D(s) and is
expressed as follows: F (ni(T )) =

∑ni(T )
s=1 D(s), notice that

in the demonstration of the theorem 1, F is assumed to be
Lipschitz.

A. Upper Confident Bound with Known Trend

To adapt the UCB algorithm for the news setting. The
proposed A-UCB algorithm computes at each trial t an index
I(i) = (µ̂i + c(i)).D(ni(t)) for each arm i, where c(i) is the
corresponding confidence interval, so that:

c(i) =

√
2× log(t)

ni(t)



The UCB index is multiplied by D(ni(t)) to stop playing
the supposed optimal arm when its rewards become subopti-
mal.

Algorithm 1 The A-UCB algorithm
Require: Arm i ∈ I .
Foreach t = 1, 2, . . . ,T do
Select arm it = argmaxi(µ̂i + c(i)).D(ni(t))
Observe reward ri(t)
End

Theorem 1. For the bandit problem with known trend, the
accumulated expected regret R of A-UCB policy is bounded
by

E[R(T )] ≤ maxiµiDmax

∑
i:n∗i (T )>ni(T )

8lnT

∆
′2
i

+K
π2

3

where ∆′i = Dmin

Dmax
µi∗t − µit with Dmin and Dmax two

lipschitz constants.

B. Proof of Theorem 1

To prove the theorem 1, we start by upper bounding
E[R(T )] by maxiµiDmax∑

i:ni(T )>n∗i (T ) |E[ni(T )] − n∗i (T )| in lemma 1 and after
that we bound∑

i:ni(T )>n∗i (T ) |E[ni(T )]− n∗i (T )| in lemma 2.

We start by introducing some fact.

Fact 1. (Chernoff-Hoeffding bound) Let Xi ∈ [0, 1] an
independent random variables with µ = E[Xi].

Pr(
1

ni(t)

ni(t)∑
i=1

Xi − µ ≥ ε) ≤ e−2ni(t)ε
2

, and

Pr(
1

ni(t)

ni(t)∑
i=1

Xi − µ ≤ −ε) ≤ e−2ni(t)ε
2

Fact 2. (L-lipschitz) Let M a part from R, f : M −→ R a
function and L a real positive.

∀(x, y) ∈M2, |f(x)− f(y)| ≤ L|x− y|

Lemma 1.

E[R(T )] ≤ maxiµiDmax

∑
i:ni(T )>n∗i (T )

|E[ni(T )]− n∗i (T )|

Proof:

We know that E[R(T )] = E[G∗(T )]− E[G(T )]

⇒ E[R(T )] =

k∑
i=1

µi

n∗i (T )∑
s=1

D(s)−
k∑
i=1

µiE[

ni(T )∑
s=1

D(s)]

⇒ E[R(T )] =

k∑
i=1

µi[F (n∗i (T ))− E[F (ni(T ))]]

F is monotonous.

⇒ E[R(T )] ≤
k∑
i=1

µi[F (n∗i (T ))− F (E[ni(T )])]

⇒ E[R(T )] =
∑

i:n∗i (T )>ni(T )

µi[F (n∗i (T ))− F (E[ni(T )])]

+
∑

i:n∗i (T )≤ni(T )

µi[F (n∗i (T ))− F (E[ni(T )])]

F is an increasing function.

⇒ E[R(T )] ≤
∑

i:n∗i (T )>ni(T )

µi|F (n∗i (T ))− F (E[ni(T )])|

+
∑

i:n∗i (T )≤ni(T )

µi|F (n∗i (T ))− F (E[ni(T )])|

∑
i:n∗i (T )>ni(T )

µi|F (n∗i (T ))− F (E[ni(T )])| = 0,

because there is no regret when ni(T ) ≤ n∗i (T )

E[R(T )] ≤
∑

i:n∗i (T )≤ni(T )

µi|F (n∗i (T ))− F (E[ni(T )])|

When F is Dmax − Lipschitz we have,

E[R(T )] ≤
∑

i:ni(T )>n∗i (T )

µi ·Dmax · |n∗i (T )− E[ni(T )]|

where Dmax = maxsD(s) and s ∈ [1, T ]

⇒ E[R(T )] ≤ maxiµiDmax

.
∑

i:ni(T )>n∗i (T )

|n∗i (T )− E[ni(T )]|

⇒ E[R(T )] ≤ maxiµiDmax

.
∑

i:ni(T )>n∗i (T )

|E[ni(T )]− n∗i (T )|

In lemma 2 we are going to bound the E[ni(T )]− n∗i (T )
which is equal to∑T

t=1 Pr(i(t) = i)1{ni(t) ≥ n∗i (t)}



Lemma 2.
T∑
t=1

Pr(i(t) = i)1{ni(t) ≥ n∗i (t)} ≤
8logT

∆
′2
i

+
π2

3

Proof:

Let B(i) =
√

2logt
nit (t) and from hoeffding we know that with

1 ≤ nit(t) ≤ t, we have

Pr(µ̂it +B(i) ≤ µit) ≤ e−4log(t) = t−4 (1)

and
Pr(µ̂it −B(i) ≥ µit) ≤ e−4log(t) = t−4 (2)

Suppose that at the time t the empiric mean of each arm is in
there confidence interval,

D(nit(t)) · (µit −B(i))
(a)

≤ D(nit(t)) · µ̂it (3)

(b)

≤ D(nit(t)) · (µit +B(i))

Let it a suboptimal arm and i∗t an optimal arm. If the arm
it is played at the time t, its means that

D(nit(t)) · (µ̂it +

√
2logt

nit(t)
) ≥D(ni∗t (t)) · (µ̂i∗t +

√
2logt

ni∗t (t)
) ≥

D(ni∗t (t)) · µi∗t

From (3),

D(nit(t)) · (µ̂it +

√
2logt

nit(t)
)+

D(nit(t)) ·

√
2logt

nit(t)
≥ D(ni∗t (t)) · µi∗t

⇒ D(nit(t)) · (µit + 2

√
2logt

nit(t)
) ≥ D(ni∗t (t)) · µi∗t

⇒ 2

√
2logt

nit(t)
D(nit(t)) ≥ D(ni∗t (t)) · µi∗t −D(nit(t)) · µit

⇒ 2

√
2logt

nit(t)
≥
D(ni∗t (t))

D(nit(t))
· µi∗t − µit

with Dmin ≤ D(nit(t)) ≤ Dmax and

∆′i =
Dmin

Dmax
µi∗t − µit

we have,

2

√
2logt

nit(t)
≥ ∆i

, which means that

nit(t) ≤
8logt

∆
′2
i

For all integer u, we have:

nit(t) ≤ u+

T∑
t=u+1

1{It = it;nit(t) > u} ≤ u

+

T∑
t=u+1

1{∃nit(t) : u < nit(t) ≤ t,

∃ni∗t (t) : 1 ≤ ni∗t (t) ≤ t,
Bt,nit (t)(it) ≥ Bt,ni∗t

(t)(i
∗
t )}

(4)

Now, from (4) we can say that (3) ⇒ nit(t) <
8logt
∆2it

or the
inequality (a) or (b) in (3) is not satisfied. Then by choosing
u = 8logt

∆2
i

, we infer that (a) or (b) is not satisfied. But from (1),
the inequality (a) is not satisfied with a probability ≤ t−4, end
from (2) the inequality (b) is not satisfied with a probability
≤ t−4. By taking the arithmetic mean in both sides of (4),

E[nit(t)] ≤
8logt

∆
′2
i

+

T∑
t=u+1

t∑
s=u+1

t−4
t∑

s=1

t−4

⇒ E[nit(t)] ≤
8logt

∆
′2
i

+
π2

3

⇒
T∑
t=1

Pr(i(t) = i)1{ni(t) ≥ n∗i (t)} ≤
8logt

∆
′2
i

+
π2

3

Following Lemma 2:

∑
i:n∗i (T )>ni(T )

T∑
t=1

Pr(i(t) = i)1{ni(t) ≥ n∗i (t)} ≤

∑
i:n∗i (T )>ni(T )

8lnT

∆
′2
i

+K
π2

3
,

where k = |i| : n∗i (T ) > ni(T ).

with

∑
i:n∗i (T )>ni(T )

T∑
t=1

Pr(i(t) = i)1{ni(t) ≥ n∗i (t)} =

∑
i:n∗i (T )>ni(T )

|n∗i (T )− E[ni(T )]|

⇒ E[R(T )] ≤ maxiµiDmax

∑
i:n∗i (T )>ni(T )

8lnT

∆
′2
i

+K
π2

3



IV. EXPERIMENTATION

In order to illustrate the strengths and weaknesses of A-
UCB in comparison to the state-of-the-art, three synthetic
known trend bandit problems are formulated with three reward
functions, decreasing reward function (Figure 1), sigmoid re-
ward function (Figure 2) and Gaussian reward function (Figure
3).

In these three problems, we have generated a non-stationary
arms based on a known shape of the reward function using 8
arms and we have fixed their mean reward as follows: µ1 =
0.6, µ2 = 0.4, µ3 = 0.3, µ4 = 0.3, µ5 = 0.15, µ6 = 0.1, µ7 =
0.05, µ8 = 0.05, where n ∈ [0, 4000], D(n) = −6.65ln(n) +
9.57 for Figure 1, for Figure 2 and D(n) = 0.037exp(1.15n)
for Figure 3 D(n) = exp(−(n − 20)2/40). Notice that these
three simulations with the number of arms and the functions
shapes are reflecting our corporate problems.

In this simulation, at each round, if the algorithm chooses
the right arm the reward is 1 or else 0. The accumulated
rewards are computed each 1000 iteration. The plot of the
curves (Figure 1, 2, 3) are produced by averaging 20 runs of
each algorithm. We run the simulation for 32000 iterations.

The first problem (Figure 1), shows a decreasing reward
function, this kind of model can be seen in different real world
problem of recommendation system like music or ads rec-
ommendation. On this problem, A-UCB quickly outperforms
the other algorithms, which is due to the fact that at each
iteration the algorithm is aware about the reward function
of each arm, this allows it to find the optimal arms at the
optimal time. We also observe that an adversarial strategy like
EXP3 and switching strategy bandit like SW-UCB are better
than a stationary one (UCB), which confirms that the bandits
based on a stationary assumption can not solve a non-stationary
problem: they perform near the same as a random choice of
actions. Another observation is that the higher is the slope
of D(n), the smaller is the gap between the A-UCB and the
switching bandit algorithm like D-UCB and SW-UCB. Which
means that the higher is the slope of D(n) the lower is the
convergence of the A-UCB.

In the second problem (Figure 2), sigmoid reward function,
this kind of model can be seen in different real world problem
of recommendation system like interface recommendation. On
this problem, A-UCB still outperforms other algorithms and
this performance is explained by the rapidity of the A-UCB to
find the greatest trade-off between arms. We observe also that
UCB outperforms EXP3, SW-UCB and D-UCB after 11000
iterations where the rewards become more stationers.

In the third problem (Figure 3), the Gaussian reward
function can model the reward function of games or clothes
recommendation. In this model we observe that at the in-
creasing part of the rewards function from 0 to 20000 UCB
outperform EXP3 but after the EXP3 take over, and that
explained by the difficulty of UCB to change his confidence
in an arm.

As we can also see in Figure (1, 2 and 3), that D-UCB
performs almost as well as SW-UCB. Both of them waste
less time than EXP3 and UCB to detect the breakpoints, and
concentrate their pulls on the optimal action.

V. CONCLUSION

We have introduced a new formulation of the MAB prob-
lem motivated by the real world problem of active learning,
music and interface recommendation. In this setting the set of
strategies available to a MAB algorithm changes rapidly over
time. We provided an extension that allows UCB algorithm
to be used in the case of MAB problem with known trend.
Further, we provided an upper bound of regret of the proposed
algorithm. Simulations on multiple payoff distributions shows
the performance of the proposed algorithm.
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Fig. 1. Decreasing reward function

Fig. 2. Sigmoid reward function

Fig. 3. Gaussian reward function
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