
PARTIAL LEAST SQUARES

FOR FACE HASHING

CÁSSIO ELIAS SANTOS JÚNIOR

PARTIAL LEAST SQUARES

FOR FACE HASHING

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: William Robson Schwartz

Belo Horizonte

Outubro de 2015

CÁSSIO ELIAS SANTOS JÚNIOR

PARTIAL LEAST SQUARES

FOR FACE HASHING

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal de Minas Gerais in par-
tial fulfillment of the requirements for the
degree of Master in Computer Science.

Advisor: William Robson Schwartz

Belo Horizonte

October 2015

© 2015, Cassio Elias dos Santos Junior
 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx ­ UFMG

Santos Júnior, Cássio Elias.

S237p Partial least square for face hashing / Cássio Elias
 Santos Júnior. — Belo Horizonte, 2015.

 xxviii, 72f. : il. ; 29cm.

 Dissertação (mestrado) ­ Universidade Federal de
 Minas Gerais Departamento de Ciência da
 Computação.

 Orientador: William Robson Schwartz.

 1. Computação ­ Teses. 2. Visão por computador­
 Teses. 3 Indexação de imagens ­ Teses I. Orientador
 II. Título.
 519.6*84(043)

Dedicado à Jéssica e aos meus pais, Francisco e Terezinha.

Dedicado à memória de Celsa e Marli.

ix

Acknowledgments

First, I would like to thank deeply professor William Robson Schwartz for the out-

standing orientation on my undergraduate and graduate studies.

I would also like to thank professors Ewa Kijak, Guillaume Gravier and Silvio

J. F. Guimarães for their intellectual and financial support without which this work

would never be completed.

I thank the members of the examination committee, professors Erickson R. do

Nascimento and Carlos E. Thomaz, for the enrichment that they brought to this work.

I am eternally thankful for all support that my parents gave me, allowing me to

focus on research and studies.

I am very grateful for my beloved Jessica I. C. Souza for all support and love that

she gave me throughout my master.

I am also very grateful for all members of the SSIG team, the NPDI lab and the

Linkmedia team for kindly receiving me in such amiable way and for all my friends in

Brazil: Adriano F. Schiavon, Andrey Bicalho Santos, Antônio A. Nazaré Jr., Artur J.

L. Correia, Bruno do N. Teixeira, Carlos A. Caetano Jr., Carlos A. P. Filho, César A.

M. Ferreira, David Saldana, Elerson R. da S. Santos, Filipe D. M. de Souza, Gabriel R.

Gonçalves, Henrique B. da Silva, Jéssica S. de Souza, Júlia E. E. de Oliveira, Kleber J.

F. de Souza, Lilian C. B. dos Santos, Marcelo de M. Coelho, Marco T. A. Rodrigues,

Ramon F. Pessoa, Raphael F. de C. Prates, Rensso V. H. M. Colque, Ricardo B.

Kloss, Samir M. A. Leão, Samira S. da Silva, Sandra E. F. de Avila, Tiago O. Cunha,

Victor H. C. de Melo, Virginia F. Mota, Waner Miranda; and in France: Ahmet Iscen,

Amélie Royer, Anca-Roxana Simon, Himalaya Jain, Li Weng, Miaojing Shi, Petra

Bosilj, Ronan Sicre, Vedran Vukotic.

I awould like to thank the Brazilian National Research Council – CNPq (Grant

#477457/2013-4), the Minas Gerais Research Foundation – FAPEMIG (Grants APQ-

00567-14 and CEX - APQ-03195-13) and the Coordination for the Improvement

of Higher Education Personnel – CAPES (DeepEyes Project and STIC-AMSUD

001/2013).

xi

“If everything you try works, you are not trying hard enough.”

(Gordon Moore)

xiii

Resumo

Reconhecimento de faces é um importante tópico de pesquisa devido a sua aplicação

em vigilância, peŕıcia e interação humano-computador. Nos últimos anos, uma miŕıade

de métodos para identificação de faces foi proposta na literatura com apenas alguns

destes focando em scalabilidade. Este trabalho propõe um simples porém eficiente

método para identificação de faces escalável baseado em partial least squares (PLS)

e em funções hash aleatórias independentes inspiradas por locality-sensitive hashing

(LSH), resultando na abordagem chamada PLS para indexação (PLSH). Além disto,

a abordagem original do PLSH é estendida utilizando seleção de caracteŕısticas para

reduzir o custo computacional para avaliar as funções hash baseadas em PLS, resul-

tando na abordagem estado-da-arte PLSH estendido (ePLSH). O método proposto é

avaliado nas bases de dados FERET e FRGCv1. Os resultados mostram redução sig-

nificativa do número de indiv́ıduos avaliados na identificação de faces (redução para

0, 3% da galeria), assim provendo speedup médio de até 233 vezes comparado com a

abordagem força bruta (quando se avalia todos os indiv́ıduos da galeria) e de até 58

vezes comparado com trabalhos anteriores na literatura.

xv

Abstract

Face identification is an important research topic due to areas such as its application

to surveillance, forensics and human-computer interaction. In the past few years, a

myriad of methods for face identification has been proposed in the literature, with

just a few among them focusing on scalability. In this work, we propose a simple but

efficient approach for scalable face identification based on partial least squares (PLS)

and random independent hash functions inspired by locality-sensitive hashing (LSH),

resulting in the PLS for hashing (PLSH) approach. The original PLSH approach is

further extended using feature selection to reduce the computational cost to evaluate

the PLS-based hash functions, resulting in the state-of-the-art extended PLSH ap-

proach (ePLSH). The proposed approach is evaluated in the dataset FERET and in

the dataset FRGCv1. The results show significant reduction in the number of subjects

evaluated in the face identification (reduced to 0.3% of the gallery), providing averaged

speedups up to 233 times compared to evaluating all subjects in the face gallery and

58 times compared to previous works in the literature.

xvii

List of Figures

1.1 Common face identification pipeline and the proposed pipeline with the

filtering approach. 2

1.2 LSH idea illustration. (a) Random directions α and β in the original space

(b) and the projected samples. 3

3.1 NIPALS algorithm. 22

3.2 (a) PLS axis in 3-dimensional space and (b) features projected in the first

two dimensions of PLS. (c) PCA axis in 3-dimensional space and (d) features

projected in the first two dimensions of PCA. 23

3.3 Overview of the filtering and the face identification pipeline. 24

3.4 Original algorithm of the PLS face identification as described

by Schwartz et al. [2012] with the (left) train and (right) test steps. 25

3.5 Overview of PLS for face hashing (PLSH) with (left) train and (right) test

algorithms. 26

3.6 Overview of PLS for face hashing and feature selection (ePLSH) with (left)

train and (right) test algorithms. 30

3.7 Loading weights distribution for a 120, 059-dimensional feature vector (small

plot) and ranked in decreasing order (big plot). 32

3.8 (a) VIP measure and (b) Regression coefficient distribution for a 120, 059-

dimensional feature vector (small plot) and ranked in decreasing order (big

plot). 34

4.1 An example of the plots regarding the MARR evaluation metric for two

sample curves. 37

4.2 Number of dimensions in PLS hash models and time spent to train 150 hash

models. 38

4.3 (a) Single features when 1% of the candidate list is provided for identifica-

tion and (b) best four single features compared to their combination. . . . 43

xix

4.4 Number of hash models as a function of the MARR for different percentages

of subjects in the candidate list. 44

4.5 Contrast between binary counting sequence and random partition used in

the PLSH bit assignment. 45

4.6 Evaluation of the parameter p used for partitioning subjects in the gallery.

The theoretical optimal value for p is 0.5. 46

4.7 Evaluation of the partition number. 47

4.8 Comparison between score combination using product and sum. 48

4.9 Comparison of vote values in (a) projection based on the standard multi-

variate normal distribution (N (0, I)) and (b) PLSH. N (0, I) is employed in

LSH methods to approximate l2 distances. 49

4.10 Average MARR and standard deviation for 10 PLSH runs considering 1%

of subjects in the candidate list. 50

4.11 Average MARR and standard deviation for 10 ePLSH runs considering 1%

of subjects in the candidate list. 51

4.12 Evaluation of loading weights, variable importance on projection (VIP) and

regression coefficients for feature selection. 52

4.13 MARR with different numbers of hash models and the feature selected in

ePLSH. 53

4.14 Number of hash models necessary to provide at least 0.95 MARR with

different gallery sizes and 1% of subjects in the candidate list. 54

4.15 Results on the FERET dataset. (a) PLSH MARR curves, (b) PLSH rank-1

recognition rate, (c) ePLSH MARR curves and (d) ePLSH rank-1 recogni-

tion rate. 55

A.1 PLS sample code in R language used to discriminate Virginica from others

flowers in the IRIS dataset. This code was used to generate Figure 3.2. . . 72

xx

List of Tables

4.1 Comparison between the proposed approach and other approaches in the

literature. 58

xxi

List of Algorithms

1 NIPALS(Xn×d, Yn, p) . 22

2 FaceIDlearn(Xn×d, In) . 25

3 FaceIDtest(x1×d) . 25

4 PLSHlearn(Xn,d, In, H) . 26

5 PLSHtest(x1×d) . 26

6 ePLSHlearn(Xn×d, In, H, k) . 30

7 ePLSHtest(x1×d) . 30

xxiii

List of Acronyms

CCA canonical correlation analysis

BRIEF binary robust independent elementary features

BRISK binary robust invariant scalable keypoints

CLBP circular local binary patterns

ePLSH extended PLS for face hashing

FAST features from accelerated segment test

FERET facial recognition technology

FREAK fast retina keypoint

FRGC face recognition grand challenge

HOG histogram of oriented gradients

ITQ iterative quantization

LBP local binary patterns

LDA linear discriminant analysis

LDE linear discriminant embedding

LFW labeled faces in the wild

LLE locally linear embedding

LSH locality sensitive hashing

MARR maximum achievable recognition rate

NIPALS nonlinear iterative PLS

xxv

NN nearest neighbors

ORB oriented FAST and rotated BRIEF

PCA principal component analysis

PLEB point location in equal balls

PLS partial least squares

PLSH PLS for face hashing

POEM patterns of oriented edge magnitudes

PQ product quantization

SIFT scale invariant feature transform

SRC sparse representation-based classification

SSH similarity sensitive hashing

SURF speeded-up robust features

SVM support vector machine

VIP variable importance on projection

VLAD vector of locally aggregated descriptors

xxvi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

List of algorithms xxiii

List of Acronyms xxv

1 Introduction 1

2 Literature Review 7

2.1 Face Identification . 7

2.1.1 Fast Face Identification . 9

2.2 Large-Scale Image Retrieval . 10

2.2.1 Tree-Based Approaches . 11

2.2.2 Locality-Sensitive Hashing . 13

2.2.3 Hamming-based Approaches . 15

3 Methodology 21

3.1 Partial Least Squares Regression . 21

3.2 Face Identification Based on Partial Least Squares 24

3.3 Partial Least Squares for Face Hashing (PLSH) 26

3.3.1 Consistency . 27

3.3.2 Hamming Embedding . 28

xxvii

3.3.3 Computational Requirements 28

3.3.4 Alternative Implementations . 29

3.4 Feature Selection for Face Hashing (ePLSH) 29

3.4.1 Loading Weights . 32

3.4.2 Variable Importance on Projection 33

3.4.3 Regression Coefficients . 33

3.5 Early-Stop Search Heuristic . 34

4 Experimental Results 35

4.1 Experimental Setup . 35

4.1.1 FERET Dataset . 36

4.1.2 FRGC Dataset . 36

4.1.3 Evaluation Metric (MARR) . 36

4.1.4 Number of Dimensions in the PLS models 37

4.1.5 Feature Descriptors . 38

4.2 PLSH Parameter Validation . 42

4.2.1 Combination of Different Feature Descriptors 42

4.2.2 Number of Hash Models . 43

4.2.3 Balanced Partitions and Code Distribution 44

4.2.4 Number of Random Partitions 46

4.2.5 Voting Scheme . 47

4.2.6 Characterization of the Vote-List 48

4.2.7 Stability of the Results . 49

4.3 ePLSH Parameter Validation . 50

4.3.1 Stability of the Results . 50

4.3.2 Feature Selection . 51

4.3.3 Number of Hash Models and Selected Features 51

4.3.4 Number of Hash Models and Gallery Size 53

4.4 Results on the FERET Dataset . 55

4.5 Results on the FRGC Dataset . 56

5 Conclusions and Future Works 59

Bibliography 61

A Partial Least Squares Example in R 71

xxviii

Chapter 1

Introduction

According to Chellappa et al. [2010], there are three tasks in face recognition depending

on which scenario it will be applied: verification, identification and watch-list. In

the verification task (1 : 1 matching problem), two face images are provided and

the goal is to determine whether these images belong to the same subject. In the

identification task (1 : N matching problem), the goal is to determine the identity of a

face image considering identities of subjects enrolled in a face gallery. The watch-list

task (1 : N matching problem), which may also be considered as an open-set recognition

task [Wechsler, 2009], consists in determining the identity of a face image, similar to

the identification task, but the subject may not be enrolled in the face gallery. In

this case, the face recognition method may return an identity in the face gallery or a

not-enrolled response for any given test sample.

In this dissertation, we focus on the face identification task. Specifically, the

main goal is to provide a face identification approach scalable to galleries consisting of

numerous subjects and on which common face identification approaches would probably

fail on responding in low computational time. There are several applications for a

scalable face identification method:

• In a surveillance scenario consisting of numerous cameras spread throughout a

large area and with hundreds of people passing every minute, such as in a large

city, airport or sport events, the face identification should be able to return iden-

tities from a potential large number of suspects fast enough such that authorities

have a chance to respond in an emergency case.

• In human-interaction, such as in video game consoles, marketing or interaction

support for users with impairments and special needs, a face identification method

1

2 Chapter 1. Introduction

Generic Face Identification
Face Representation

is not subject A/
is subject A

is not subject B/
is subject B

is not subject C/
is subject C

Feature
vector

Face
description

Classification

Subject A
model

Subject B
model

Subject C
model

Proposed Approach
Face Representation

is not subject A/
is subject A

is not subject B/
is subject B

is not subject C/
is subject C

Feature
vector

Face
description

Classification

Subject A
model

Subject B
model

Subject C
model

Filtering

Filtering
Approach

Subject is A or B

Figure 1.1: Common face identification pipeline and the proposed pipeline with the
filtering approach which is used to reduce the number of evaluations in the classification
step with low computational cost. The filtering approach is the main contribution in
this work and it is tailored considering recent advances in large-scale image retrieval
and face identification based on PLS.

could be used in an online system to store profiles and preferences for world-wide

users and for fast identifying them and loading their data anyplace in the world.

• In social media, such as tagging people faces automatically in images, the face

identification must be able to respond fast since slow websites tend to reduce the

number of visitors [Brutlag, 2009].

The few aforementioned applications show the importance of performing face

identification fastly and, in fact, several works in the literature have been developed in

the past years motivated by these same types of applications (surveillance, forensics,

human-computer interaction, and social media). However, most of the works focus on

developing fast methods to evaluate one test face and a single subject enrolled in the

gallery. These methods usually develop low computational cost feature descriptors for

face images that are discriminative and with low memory footprint enough to process

several images per second. Note that these methods still depend on evaluating all

subjects in the face gallery. Therefore, if the number of subjects in the gallery increases

significantly, these methods will not be able to respond fastly and new methods shall

be developed to scale the face identification to this larger gallery.

Face identification methods usually consist of a face representation or description

in the feature vector where mathematical models can be applied to determine the face

identity. In this case, it is used one model to determine each identity in the face

gallery, therefore, being necessary a number of models equal to the gallery size. Note

that the parameters in each model are learned using samples for each subject in the face

gallery and every model must be evaluated to correctly identify a test sample. In this

dissertation, we propose a method to reduce the number of models evaluated in the face

3

QQQQQQQQ

AAAAAAAA

BBBBBBBB

CCCCCCCC

DDDDDDDD

EEEEEEEE
FFFFFFFF

GGGGGGGG

αααααααα

ββββββββ

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

(a)

QQQQQQQQ

AAAAAAAA

BBBBBBBB

CCCCCCCC

DDDDDDDD

EEEEEEEE

FFFFFFFF

GGGGGGGG

-1

0

1

-1.0 -0.5 0.0 0.5 1.0
α

β

(b)

Figure 1.2: LSH idea illustration. (a) Random directions α and β in the original space
(b) and the projected samples. The goal is to find the enrolled samples D and C from
the query sample Q, which can be accomplished considering the projections α and β.

identification by eliminating identities that are somewhat clearly not the identity in the

test sample. Figure 1.2a illustrates the common face identification pipeline employed

in practice and the main component tackled in this dissertation.

There is an extensive literature of works regarding large-scale image retrieval that

could be employed in face identification. However, most of these works focus on re-

turning a list containing images from the dataset that are similar to the test image.

Although reasonable to recover images in large datasets, such approaches are not suit-

able to apply directly to the face identification task. The models from subjects in the

face gallery should optimally be described regarding the discriminative features related

to each subject identity, which might consume less memory, specially if several sam-

ples per subject are available, and less computational time, since only discriminative

features are evaluated to determine the face identity.

Note that we do not claim to solve all of the aforementioned problems, but we

hope to provide in this work some details for the future development of scalable face

identification and a practical -but not optimal- alternative for the methods presented in

the literature. The proposed approach is inspired by the family of methods regarded as

locality-sensitive hashing (LSH), which are the most popular large-scale image retrieval

method in the literature, and the partial least squares (PLS), which has been explored

intensively in our research group in several past works regarding face recognition [Guo

et al., 2011; Schwartz et al., 2012; de Paulo Carlos et al., 2015; Santos Jr and Schwartz,

2014] and numerous other tasks. We call the proposed approach PLS for hashing,

abbreviated to PLSH and ePLSH in its extension.

4 Chapter 1. Introduction

The main goal in LSH is to approximate the representation of samples in the

high dimensional space using a small binary representation where the search can be

implemented efficiently, employing a hash structure to approximate near-identical bi-

nary representations. The idea in LSH is to generate random hash functions to map

the feature descriptor in the high dimensional representation to bits in the binary

representation.

As an example of LSH, suppose that we have a two dimensional query sample Q

and samples A to G enrolled in the gallery (see illustration in Figure 1.2a). The goal is

to find the closest samples to Q using the l2 distance metric (Euclidian distance), which

are C and D. In LSH, the search for the nearest neighbors considering the l2 distance

metric is approximated by generating random projection vectors in which each element

is drawn from a standard normal distribution. The idea is that, if two samples are close

in the high dimensional space (similar vectors), they will almost surely be projected

to similar values using the random projection vector. For instance, in Figure 1.2a, we

select the orientation of a projection line α from a standard normal distribution and

present the projected samples in the horizontal axis of Figure 1.2b. However, this is

not always the case as some distant samples will also be projected to the same value as

close samples. The random projection α in Figure 1.2 does not separate the sample B

from Q, which are far apart in the original space. In this case, it is necessary a second

projection β along with α to separate B from Q.

In the PLSH approach, the random projection in the aforementioned example

is replaced by PLS regression, which provides discriminability among subjects in the

face gallery and allow us to employ a combination of different feature descriptors to

generate a robust description of the face image. PLSH is able to provide significant

improvement over the brute-force approach (evaluating all subjects in the gallery) and

compared to other approaches in the literature. Furthermore, since the evaluation of

hash functions in PLSH requires a dot product between the feature and regression

vectors, additional speedup can be achieved by employing feature selection methods,

resulting on the extended version of PLSH (ePLSH). The following contributions are

presented in this work.

• A fast approach for face identification that support a combination of several

feature descriptors and high dimensional feature vectors.

• The proposed approach presents at least comparable performance with other

methods in the literature and up to 58 times faster when enough samples per

subject are available for train.

5

• Extensive discussion and experimentation regarding alternative implementations

that may guide future development in scalable face identification methods.

• The proposed approach is easy to implement and to deploy in practice since only

two trade-off parameters need to be estimated.

The remaining of this work is organized as follows. In Chapter 2, we review works

related to face identification, fast face identification and large-scale image retrieval. In

Chapter 3, we describe PLS for regression, face identification and face hashing, which

are the main components for the proposed face identification pipeline. Experiments

and discussions regarding the proposed approach are discussed in Chapters 4. The

main parameters needed to employ the proposed approach in practice are discussed in

Sections 4.1.3 and 4.2.2, for PLSH, and in 4.3.3, for ePLSH. Finally, we conclude this

work with final remarks and author suggestions for future directions in Chapter 5.

Chapter 2

Literature Review

This chapter reviews works related to face identification (Section 2.1) and large-scale

image retrieval (Section 2.2). The goal of this chapter is to provide a background

necessary to understand the development of the proposed approach and not a com-

prehensive literature review of face identification and large-scale image retrieval. The

reader may find more information regarding face identification in the book titled Hand-

book of face recognition [Li and Jain, 2011]. For large-scale image retrieval, we re-

fer the reader to the work [Wang et al., 2014a], regarding locality-sensitive hashing,

and [Muja and Lowe, 2014], about search trees.

2.1 Face Identification

Face identification methods consist generally of two components: classifier and face

representation. The classifier is responsible for receiving the face representation and

returning an identity in the gallery, more specifically, it evaluates whether a face rep-

resentation from a test image refers to a subject in the face gallery.

The face representation consists of feature descriptors, which are usually employed

instead of pixel values for three reasons [Shakhnarovich and Moghaddam, 2011]. First,

the space spammed by pixel values of face images is high dimensional. For example, a

small image with 128 pixels height and width presents more than 49 thousand intensity

values. Second, aspects such as changes in illumination, pose of the face, and aging,

induce a large variation of pixel values, which scatter samples from the same subject in

the feature space. For classification purposes, it is desirable a compact representation

of samples from the same subject (low intra-class variation), while keeping samples

from different subjects apart (high inter-class distances). Finally, pixel values, espe-

cially among neighbor pixels, are highly correlated, which may impose difficulties to

classifiers. For instance, a large number of levels might be necessary in axis-oriented

decision trees to discriminate samples from different subjects.

7

8 Chapter 2. Literature Review

Early works on face identification focused on subspace representation to

tackle issues related to high dimensionality, correlation among pixels and

noise [Sirovich and Kirby, 1987; Belhumeur et al., 1997]. In this case, the subspace

is calculated considering compact description of samples for the same subject using

principal component analysis (PCA) and maximum distance between samples from

different subjects using linear discriminant analysis (LDA). Basri and Jacobs [2004]

showed that lightning conditions in face images can be represented in less than 10

dimensions in a PCA-like subspace of gray-scale images. However, the aforementioned

linear transformations to subspaces are not enough to capture all possible variations of

faces. For this reason, image feature descriptors are considered in face identification.

Feature descriptors provide a robust manner to represent face images

invariant to misalignment, illumination and pose of the face. Regard-

ing feature descriptors considered in face identification, the most commons

are local binary patterns (LBP) [Xie et al., 2012; Klare and Jain, 2013], Gabor

filters [Gu et al., 2012; Oh et al., 2013] and descriptors based on gradient im-

ages [Vu et al., 2012; Liao et al., 2013]. These feature descriptors capture mainly

texture and shape of the face image, which are relevant for face identifica-

tion [Schwartz et al., 2012]. There are two manners to represent the face im-

age [Kämäräinen et al., 2011]: appearance-based (holistic), where the whole face image

is represented in a feature descriptor vector; and feature-based (local), where fiducial

points of the face image, such as nose tip or corners, eyes and mouth, are represented

instead of the whole image.

The advantage of the holistic representation is the rich and easy encoding of the

overall appearance of the face image. Since every pixel value contributes somehow

to the final feature descriptor, more information is available to distinguish between

samples from different subjects. However, preprocessing is usually necessary to cor-

rect misalignment, illumination and pose. Feature descriptors commonly employed

in holistic methods are the local binary patterns (LBP) [Xie et al., 2012], Gabor fil-

ters [Gu et al., 2012], combination of both [Salah et al., 2013], and large feature sets

coupled with dimension reduction techniques [Schwartz et al., 2012].

The advantage of the local representation is its robustness to differences in pose,

partial occlusion and shadowing. If some fiducial points are shadowed or occluded

due to pose, for instance, other points may still be used to recognize the face image.

However, the resulting feature vector is often ambiguous and imposes difficulties to

identify the face image due to the reduced amount of data present in the small patch

around the fiducial point. Common feature descriptors employed in local methods

include LBP [Klare and Jain, 2013] and Gabor filter [Oh et al., 2013].

2.1. Face Identification 9

Fiducial points can be detected considering salient regions in the face image,

which include corners and textured regions in the face. These salient regions, opposed

to homogeneous regions such as cheek and forehead, tend to be stable among face

images in different poses and lightning conditions. However, a method to match the

detected salient regions among face images is necessary to compare feature descriptors.

Liao et al. [2013] employ the popular SIFT [Lowe, 2004] to detect and match salient

regions among face images. Another option is to learn common detectors for fiducial

points (eye corner, nose tip, among others) such that the match of fiducial points

among face images is no longer necessary since feature descriptors from a common

type of fiducial point can be directly compared [Valstar and Pantic, 2012].

In the past few years, a different approach based on sparse representation-

based classification (SRC) has been providing high accuracy in face identification

datasets [Wright et al., 2009]. SRC consists in representing a test face image as a

linear combination of a dictionary of images, which is learned using samples in the face

gallery. Although the original proposal of SRC requires a fair number of controlled

samples per subject for training, Deng et al. [2013] extended SRC to cope with few

uncontrolled samples in the face gallery.

2.1.1 Fast Face Identification

Fast face identification is not a largely explored research topic and there are few works

in the literature about it [Barkan et al., 2013; Deng et al., 2012; He et al., 2014; Yuan

et al., 2005; Schwartz et al., 2012]. In [Barkan et al., 2013], compact descriptors based

on local binary patterns are used to compare fastly the candidates in the face gallery.

In [Deng et al., 2012] and [He et al., 2014], a fast optimization algorithm is considered

for SRC to reduce the computational cost when calculating the linear combination be-

tween the test and the samples in the dictionary. Although the aforementioned methods

provide significant improvement on the test-subject comparison, poor performance is

observed when there are numerous subjects in the face gallery since these approaches

still present linear asymptotic complexity with the gallery size.

To approach face identification in large galleries, a cascade of classifiers to dis-

card a considerable number of candidates in early initial stages with low computa-

tion cost classifiers was proposed by Yuan et al. [2005]. To keep high accuracy, the

final stages of the cascade consists in more accurate and time-consuming classifiers.

In [Schwartz et al., 2012], a binary tree structure was used to reduce the number of

subjects tested in the face gallery, resulting in a reduced computational complexity con-

sidering the number of subjects in the face gallery when compared to the brute-force

approach.

10 Chapter 2. Literature Review

The approach proposed in this dissertation is an extension of the work

[Schwartz et al., 2012] and the main difference is the employment of hashing instead

of search trees. PLS is also considered with a combination of feature descriptors as

in Schwartz et al. [2012], which improves the face identification recognition rate com-

pared to single feature descriptors. In this case, the contribution of the proposed

approach lies in the distinct manner in which PLS is employed for hashing and the

considerable improvement in speedup compared to the aforementioned scalable face

identification approaches.

2.2 Large-Scale Image Retrieval

The goal in the image retrieval task is to return a sorted list of “relevant” images

enrolled in the gallery considering their similarity to a test sample. The common as-

sociated task, referred to as k-NN, consists in calculating distances between test and

gallery samples and returning the first k closest samples. The brute-force k-NN ap-

proach consists in calculating all the distances between the test and gallery samples and

sorting them, which is unfeasible for large galleries. In this case, efficient sub-linear al-

gorithms to solve the k-NN task are employed. An example is kd-tree [Gan et al., 2007],

which consists in splitting recursively the space in subregions and organizing them in

a hierarchical structure that provides averaged asymptotic complexity O(log(n)) for

a given gallery size n. Although kd-tree considers only the l2 distance metric, it is

possible to extend the idea to other distance metrics [Uhlmann, 1991].

The main reason of the poor performance related to distance-based approaches in

high dimensional data is the small difference among distance values, which hampers the

analyses of which samples are similar or dissimilar (both will present almost the same

values). Furthermore, axis-oriented splits employed in kd-trees are not sufficient to ap-

proximate nearest neighbor search in the high dimensional space [Chávez et al., 2001].

In this case, the solution is embedding feature descriptors in a low dimensional space

where conventional distance metrics return relevant values.

In practice, it is hard to embed feature descriptors in a low dimensional space

without losing information. Therefore, some approaches consider a relaxed restriction

version of k-NN, regarded as approximated nearest neighbors or ε-nearest neighbors

(ε-NN), which consists in returning samples p with minimum distance from the test

sample q, where the distance is at most (1 + ε)d(p, q), for ε > 0. The performance of ε-

NN methods is usually measured as a function of ε, which represents the approximation

error of the distance metric d(p, q) in the high dimensional space.

2.2. Large-Scale Image Retrieval 11

There exists a decision problem related to k-NN, regarded as r-nearest neighbors

(r-NN), which is more tractable and efficiently approached than k-NN. The r-NN task

can be reduced to k-NN using a binary-search approach [Har-Peled, 2001] and consists

in returning all samples in the gallery that are within a fixed radius distance r from

the test sample. The approximated version of r-NN, regarded as (r, c)-NN, consists

in returning all samples within a distance at most rc from the test sample. In this

case, the parameter c is important to delimiter regions in the feature space where it is

possible to determine the worst case scenario for retrieving samples within r.

There are several approaches for large-scale image retrieval in the literature. How-

ever, a complete review and description of all types of approaches is out-of-scope in

this work. Instead, we focus on past works that have been successfully applied to face

identification. In this context, tree-based approaches are described in Section 2.2.1,

locality-sensitive hashing in Section 2.2.2, and Hamming embedding-based approaches

in Section 2.2.3.

2.2.1 Tree-Based Approaches

Large-scale image retrieval based on search trees consists in partitioning recursively

the samples and organizing them in the partitions using a tree structure. In this way,

the organization of samples is hierarchical, with the higher level (root node of the tree)

representing the full sample set and lower levels (leafs) representing subsets of samples.

The number of levels in the tree (l) depends on the number of samples (n), the number

of partitions in each level (p), and whether the number of samples in each partition

is the same (balanced partitions), in which case l = dlogp(n)e. Unbalanced partitions

lead to l = n, in the worst case. Controlling l is important since the computational

cost to traverse the tree from the root node to a leaf has asymptotic complexity O(l).

Partitioning is the main component of the search tree and it determines the

effectiveness of the tree approach to balance partitions (reduce l) and to guide the

search towards most likely nearest neighbors (reduce traversals). However, it is rarely

possible to split real data in balanced partitions based on common features among

samples within each partition. For instance, gender, ethnicity and age are hardly

balanced among subjects in a specific group (engineer students, politicians, travelers,

among others). Nevertheless, balanced partitions can be forced using random split

of samples at the cost of traversing the tree a few times to find the nearest neigh-

bors [Schwartz et al., 2012].

Feature transformations, such as PCA [Sproull, 1991], may be considered before

12 Chapter 2. Literature Review

each partitioning to reduce, or eliminate, the influence of redundant, irrelevant and

noisy features. Another option is to employ partitioning approaches based on robust

classifiers, such as SVM [Pang et al., 2005] and PLS [Schwartz et al., 2012], which pro-

vide good performance even with noisy and redundant features. The disadvantage of

these approaches is the higher computational cost to traverse each node in the tree

(O(d), where d is the dimensionality of the data) compared to axis oriented partition-

ing (O(1)) [Wang et al., 2014b].

The following approaches employ partitioning considering maximum vari-

ance directions in the feature space based on the work of Sproull [1991].

Silpa-Anan and Hartley [2008] employ a similar approach, but considering multiple kd -

trees and a shared priority queue, which determines the order to evaluate samples for

nearest neighbors candidates. An improvement of computational cost is achieved con-

sidering a feature subset, since a kd-tree usually considers few features to split samples

and the exact same kd-tree is obtained using only these features. Wang et al. [2014b]

employ hyperplanes considering elements with values 1, 0 and −1 to reduce the com-

putational cost to evaluate nodes in the tree presenting asymptotic complexity O(d)

for hyperplanes in Rd. The approach also employs numerous trees, learned considering

a subset of features selected randomly with probability proportional to its variance in

the training samples.

Random projections are an alternative approach compared to maximum vari-

ance directions and usually provide competitive results as demonstrated in the fol-

lowing approaches. Dasgupta and Freund [2008] employ the median value of the sam-

ples projected in the random direction as threshold, which generates a balanced tree.

Liu et al. [2004] employ the mean value of the most distant values projected in the

random subspace as threshold and allow samples to be shared among node children,

which increase the number of levels in the tree but reduce the number of traversals in

general. In this case, the speedup is obtained since less node evaluations are necessary,

which has the same computational cost of evaluating one sample for nearest neighbor

(asymptotic complexity O(d)).

Other methods to split and traverse nodes include the work of

Nister and Stewenius [2006], which splits samples based on the k-means algo-

rithm and traverses nodes considering the distance from the sample to the closest

cluster center. Pang et al. [2005] also employ a clustering approach to split data called

locally linear embedding (LLE) and maximum margin classifiers (support vector

machines) to traverse nodes. Schwartz et al. [2012] employ random partitioning of

samples and partial least squares (PLS) regression to traverse nodes.

2.2. Large-Scale Image Retrieval 13

2.2.2 Locality-Sensitive Hashing

Locality-sensitive hashing (LSH) refers to a family of embedding approaches (see Sec-

tion 2.2.3 for a brief description of embedding) that aims at mapping similar feature

descriptors to the same hash table bucket with high probability while keeping dissim-

ilar features in different buckets. LSH approaches provide logarithm asymptotic com-

plexity in time and linear complexity in space. Indyk and Motwani [1998] were the

first to introduce the term locality-sensitive hashing in 1998. However, Broder [1997]

was the first to describe a LSH approach (min-hash) in 1997 to cluster and to detect

near-duplicated web pages. Since then, several approaches has been proposed in the

literature to include different domains in the LSH framework. A summary of numerous

LSH approaches can be found in [Wang et al., 2014a].

An approach is regarded as being LSH, with arguments r, c, p1, p2 (p1 > p2),

if the hash function h(x) employed belongs to a family of hash functions H, which

approximates the distance metric d(p, q) of the feature descriptors p and q in the

following manner:

if d(p, q) ≤ r then Pr
(
h(p) = h(q)

)
≥ p1,

if d(p, q) ≥ cr then Pr
(
h(p) = h(q)

)
≤ p2,

where Pr denotes probability and r denotes the maximum distance d(p, q) that maps

p and q to the same bucket with minimum probability p1. The second case ensures

that distant feature descriptors (d(p, q) ≥ cr) has low probability (p2) to be mapped

into the same bucket for a constant c > 1. The LSH considers the (r, c)-NN task and,

in practice, it can be employed directly instead of k-NN by setting r according to the

desired precision and recall of the samples retrieved and maximum approximation error

equal to ε, where c = (1 + ε).

LSH employs K hash functions {h1, ..., hK} selected independently and uniformly

from H. Raising K provides higher precision in practice, but increases the size of the

hash table and reduces recall. For this reason, hash functions are usually grouped in

L groups {g1, ..., gL} of K hash functions (gi = {hi,1, ..., hi,K}), resulting in L hash

tables and LK hash functions in total. Raising L is known to improve recall, but

the values of L and K are bounded by the computational cost of hashing features in

practice. If K is set to log1/p2(n) and L is set to nρ, where ρ = log(1/p1)/log(1/p2), the

LSH framework generates algorithms with asymptotic space complexity O(dn+ n1+ρ),

n and d denote number and dimensionality of the samples, respectively, and time

complexity bounded by O(nρ) similarity calculations and O(nρlog1/p2(n)) hash function

evaluations [Datar et al., 2004].

14 Chapter 2. Literature Review

In practice, given r, c → 1 is desirable, although c too small reduces preci-

sion (p2 increase), which is compensated by generating more hash functions (given

by log1/p2(n)). For example, Datar et al. [2004] calculate ρ = 1/c considering hash

functions sampled from a p-stable distribution to approximate the l1 or l2 distance

metrics, which is close to the lower theoretical limit ρ → 1/2c [Motwani et al., 2007].

The approximation factor can also be calculated using Monte Carlo for complex hash

functions [Terasawa and Tanaka, 2007].

There are two types of hash functions in LSH [Wang et al., 2014a]: data inde-

pendent, where hash functions are defined regardless of the data; and data dependent,

where the parameters of the hash functions are selected according to the training data.

These two types are different from supervised and unsupervised learning of hash func-

tions, in which the difference lies on whether data label is considered. For instance,

data dependent hash functions may not consider the label of the data when learning

hash functions. However, all supervised hash functions are intrinsically data dependent,

since the family of hash functions H will be selected to discriminate labels.

Data independent hash functions are employed in the works of Datar et al. [2004],

based on p-stable distributions; Chum et al. [2008], based on min-hash;

Joly et al. [2004] and Poullot et al. [2007], both works based on space filling

curves. Data independent hash functions are usually employed in heterogeneous

data like in the object recognition task. In this case, the overall distribution of the

data is not modeled easily using data dependent hash functions. For instance, the

distribution of a common object (more samples) may outweigh uncommon objects (few

samples). In this case, unsupervised data dependent functions will be biased toward

representing the sample distribution of the common object. Other advantages of the

data independent hash functions are the fast learning process, which is independent

from the gallery size, and the enrollment of new samples, which does not require

retraining hash functions.

Data dependent hash functions select a family H considering aspects of the data,

such as discriminability among different labels and dimensions with maximum energy.

In this case, hash functions unrelated to the data are discarded, which is not the case

in data independent hash functions. Considering the same number of hash functions

employed in the data independent approach, the number of relevant hash functions

which raise the gap between higher p1 and lower p2 is often higher in data depen-

dent hash functions. Examples of works employing data dependent hash functions

include metric learning [Kulis et al., 2009], k-means [Datar et al., 2004], spectral hash-

ing [Weiss et al., 2009], restricted Boltzmann machine [Salakhutdinov et al., 2007],

maximum margin [Joly and Buisson, 2011] and deep learning [Torralba et al., 2008].

2.2. Large-Scale Image Retrieval 15

There are numerous LSH approaches for different metric spaces. The most

common applications include LSH approaches for lp metric space [Datar et al., 2004]

based on p-stable distributions; random projections [Andoni and Indyk, 2006], which

approximate cosine distances; Jaccard coefficient [Broder, 1997]; and Hamming dis-

tances [Indyk and Motwani, 1998], where the goal is to provide approximated nearest

neighbors as opposed to exact nearest neighbors as presented in Section 2.2.3.

It is important to emphasize that the proposed approach is not included in the

LSH family. We do employ hash functions generated independently from each other

and the proposed approach considers data labels, but there is no associated distance

metric and, therefore, no approximated k-NN solution. We focus on returning correct

identities in a shortlist of candidates rather than approximating nearest neighbors in

a given metric space. The proposed approach also behaves similarly to LSH methods,

where the increase in the number of hash functions provides improved results, but we

cannot prove the approximation limits of the proposed approach in the same way as

in LSH. In our experiments, we notice that the results never exceed the recognition

rate of the brute-force based on PLS, which might indicate that the proposed method

approximates the results from PLS-based approaches.

2.2.3 Hamming-based Approaches

The most common approach in large-scale image retrieval consists in embedding

feature descriptors in a low dimensional space where locality is preserved (simi-

lar feature descriptors have similar representation in the low dimensional space)

and where nearest neighbor search can be implemented efficiently. This section fo-

cuses on embedding feature descriptors in the Hamming space, which is widely used

in the literature and consists in the space spanned by a set of 2S binary strings

with length S. Other options for embedding include linear discriminant embedding

(LDE) [Chen et al., 2005], LDE variation [Hua et al., 2007], or embedding in Huff-

man trees [Chandrasekhar et al., 2009, 2012]. The difference between tree-based search

(Section 2.2.1) and embedding feature descriptors in Huffman trees is the hierarchical

organization of samples in the former compared to sample encoding in the latter.

Most LSH approaches are Hamming embedding since LSH aims at mapping simi-

lar feature descriptors in the same hash bucket. However, there are other types of Ham-

ming embedding approaches and common properties among Hamming-based methods

(like boosting and efficient distance calculation) that are worth to mention. Most of

the works presented in this section have been discussed in Section 2.2.2, however, now

we focus on the Hamming embedding aspects independent from LSH in this section.

16 Chapter 2. Literature Review

The main advantages of Hamming space embedding are the low memory require-

ment (one binary string for each sample) and the efficient implementation of Hamming

distance using bitwise operations (xor operation between two strings followed by a

small code to count number of bits equal to one). Given the importance of operations

in the Hamming space, specially in cryptography and error detection, CPU manufac-

tures included an instruction to compute efficiently the number of bits equal to one

in the instruction set (POPCNTSSE4.2). For the purpose of completeness and clear

understanding of this work, the same notation of the Hamming distance employed by

Bronstein et al. [2011] is considered. In this case, Hamming distance is defined as

d(X, Y)H =
S

2
− 1

2

S∑
i=1

sgn(xiyi),

in the space HS = {−1,+1}S, which is equivalent to the number of different elements

in the strings X = {x1, ..., xS} and Y = {y1, ..., yS}. The function sgn(a) returns +1

if a is positive and −1, otherwise.

There are two tasks to retrieve nearest neighbors in the Hamming

space [Norouzi et al., 2012]. One task, referred to as k-nearest neighbors (k-NN), con-

sists in retrieving a fixed number of samples k with minimum distance to the test sam-

ple. The other task, referred to as approximate query or point location in equal balls

(PLEB) [Indyk and Motwani, 1998], consists in retrieving all samples within a fixed

maximum distance r to the test sample. There is no better way to retrieve samples

in the k-NN task than evaluating all distances between the test and gallery samples

and, although k-NN is unfeasible in practice, it is useful to access the recall among

Hamming embedding methods [He et al., 2013; Gong et al., 2013; Wang et al., 2012].

The approximate query approach may be implemented using hash table where

samples are indexed in multiple positions according to r. In this case, the limitations

are the memory necessary to allocate the hash table (viable only for small S) and the

large number of samples retrieved and indexed multiple times, which is proportional

exponentially to r. The number of hash table positions visited is given by

v(r, S) =
r∑
i=0

(
S

i

)
1.

Even a reasonable value for r and S may represent a search for hash table positions

higher than the gallery size. For instance, r = 4 and S = 128 result in v = 11, 017, 633.

Furthermore, the memory necessary to allocate the hash table with 128 bits would be

1S-combination of i distinct elements (S! / k! (S - k)!).

2.2. Large-Scale Image Retrieval 17

at the order of undecillions. In this case, Norouzi et al. [2012] proposed an approach

that approximates the query task by employing indexing of non-overlapping substrings

in multiple hash tables to avoid the aforementioned issues.

Numerous approaches have been proposed in the literature to map feature de-

scriptors in the Hamming space. Most of them are based on optimization such as

minimizing the quantization error. The supervised optimization version consists in

minimizing the distance of same-class feature vectors in the Hamming space while

maximizing the distance of feature descriptors from different classes. In this case,

elements in the Hamming string present different discriminative performances and a

weighted distance version, such as

dw(X, Y)H =
S

2
− 1

2

S∑
i=1

αisgn(xiyi), (2.1)

provide better results. The weights αi can be learned using an adaptive learning

algorithm, as depicted in [Shakhnarovich, 2005].

Regarding unsupervised approaches, Jégou et al. [2012] employ quantization

of feature descriptors considering a random rotation of the PCA transformation

to ensure equal variance among projected features. In the unsupervised version,

Gong et al. [2013] employ a similar approach but considering the minimal quantiza-

tion error of zero-mean samples in a zero-centered binary hypercube. In this case,

an efficient optimization algorithm can be formulated, referred to as iterative quan-

tization (ITQ), which provides better results than the random rotation employed

in [Jégou et al., 2012]. He et al. [2013] show that competitive results can be ob-

tained by employing the minimization of the error in the Hamming embedding in-

stead of squared error in the k-means algorithm used in the product quantization (PQ)

method [Jégou et al., 2012]. Norouzi and Blei [2011] employ maximum-margin opti-

mization between dissimilar quantized feature descriptors, which is carried following

an neural network optimization algorithm according to an upper-bound function.

Regarding supervised or semi-supervised Hamming embedding, approaches based

on metric learning have been the most common in the literature. Most of them

can be formulated following the similarity sensitive hashing (SSH), described in

[Shakhnarovich, 2005] and defined as xi = sgn(wif + bi), where each bit xi in the

Hamming space depends on f , which is a d-dimensional feature descriptor, wi denotes

d-dimensional metric parameters and bi is bias (zero for mean centered data).

In the supervised version, Gong et al. [2013] employ canonical correlation analysis

18 Chapter 2. Literature Review

(CCA) rather than PCA in the ITQ method. Wang et al. [2012] propose to learn

the quantization separately for each bit and incorporate correction of weak quantized

bits when learning new ones. Jain et al. [2008] employ random directions weighted by

Mahalanobis distance. Strecha et al. [2012] employ LDA, which maximizes the inter-

class distance and minimize the intra-class variance. Bronstein et al. [2011] employ an

optimization similar to LDA, but considering an exponential loss function appropriated

to the bag-of-words model. We refer the reader to the work of Wang et al. [2012] for a

summary table of SSH-based approaches.

Approaches other than SSH-based include the work of Liu et al. [2012], which

employs kernel function optimized to consider minimum same and maximum not-same

Hamming distances between classes. Another option is to employ deep learning algo-

rithms, which have been an active research topic in recent years. In this case, the same

principles adopted in Hamming embedding methods are employed in the neural net-

work. For instance, the goal in deep learning based methods is to represent the whole

image in a compact binary string. One of the challenges in considering deep learning

approaches is the high computational cost induced by convolutional layers, which can

be significantly reduced when related regions not related to the object in the image

are discarded (background and homogeneous regions) [Mopuri and Babu, 2015]. Al-

though simple, this approach provide better results than well-known methods such as

the vector of locally aggregated descriptors (VLAD) [Jégou et al., 2012].

The optimization step in the neural network can also be tailored to min-

imize reconstruction loss from the binary string, distribute uniformly the binary

string and provide strings with maximum independence among bits (reduce redun-

dancy) [Erin Liong et al., 2015]. The method can be further extended to consider

labels, in which the probability of samples with different labels receiving the same

binary code is minimized while samples with same labels receiving the same bi-

nary code is maximized Lin et al. [2015]. Similar to the aforementioned works,

Torralba et al. [2008] employ deep learning (four or five layers in the neural network

hidden algorithm depending on the string length) to map same label samples in the

same string.

In conclusion, the Hamming-embedding methods are more suitable for large

datasets since tree-based approaches, for instance, still require a considerable amount

of memory to store the tree structure. Furthermore, Hamming embedding methods are

easy to distribute among nodes in a computer cluster, which is harder to achieve for

search trees. We also noticed that, although numerous deep learning methods has been

proposed in the past few years, they provide little increment in performance considering

the ITQ approach [Erin Liong et al., 2015].

2.2. Large-Scale Image Retrieval 19

The best Hamming-embedding methods, in general, consider four optimization

strategies. First, a balanced set of bits, which tends to distribute Hamming strings

(hash codes) uniformly among samples in the dataset. Second, independency among

bits, which provide shorter Hamming strings. Third, minimization of the quantization

lost, which ensure that locality in the high dimensional representation of the image is

preserved in the Hamming embedding space. Finally, since each bit in the Hamming

string may contribute differently for the image retrieval accuracy, annotated data could

be employed to weight bits according to their retrieval capability.

In the proposed approach, we consider Hamming embedding but without esti-

mating the binary string directly. Instead, we calculate incrementally the similarity of

subjects each time that a bit is estimated for the test sample. As will be explained in

Section 3, this incremental approach is necessary so we can employ a weighted Ham-

ming embedding, where each bit in the binary string is weighted by the likelihood of

that bit, which provides better results than comparing binary strings belonging to pairs

of samples directly.

Chapter 3

Methodology

This chapter describes the methods employed in the proposed approach, namely PLS

for regression (Section 3.1) and PLS for face identification (Section 3.2). The proposed

PLSH is described in Section 3.3 and in Section 3.4, we describe a PLSH extension

(ePLSH), which consists in employing PLS-based feature selection to improve the per-

formance of PLSH.

3.1 Partial Least Squares Regression

PLS is a regression method that combines ordinary least squares applied to a latent

subspace of the feature vectors. Several works have employed PLS for face identi-

fication [Schwartz et al., 2012], face verification [Guo et al., 2011], and open-set face

recognition [Santos Jr and Schwartz, 2014]. These works consider PLS mainly due to

the robustness to combine several feature descriptors, capability to deal with thousands

of dimensions, and robustness to unbalanced classes. In this work, we consider PLS

due to the high accuracy presented when used to retrieve candidates in PLSH and

the low computational cost to test samples since only a single dot product between the

regression coefficients and the feature vector is necessary to estimate the PLS response.

PLS is calculated as follows. The p-dimensional latent subspace is estimated by

decomposing the zero mean matrices Xn×d, with n feature vectors and d dimensions,

and Yn, with response values, in

Xn×d = Tn×pP
T
d×p + En×d,

Yn×1 = Un×pQp×1 + Fn×1,
(3.1)

where Tn×p and Un×p denote latent variables from feature vectors and response values,

21

22 Chapter 3. Methodology

Algorithm 1: NIPALS(Xn×d, Yn, p)

1 for i← 1 to p do
2 start ui randomly or with some column of X
3 repeat
4 wi ← XTui/‖XTui‖; ti ← Xwi
5 qi ← Y T ti/‖Y T ti‖; ui ← Y qi
6 until convergence;
7 bi ← uiti/‖ti‖; pi ← XT ti/‖ti‖
8 X ← X − tipTi ; Y ← Y − bi(tipTi)
9 return T, P, U,Q,W,B

Figure 3.1: NIPALS algorithm. Xn×d and Yn denote feature vectors and target values,
respectively, with n samples and d dimensions. p denotes number of dimensions in the
PLS model.

respectively. The matrix Pd×p and the vector Qp represent loadings and the matrix E

and the vector F are residuals from the transformation. PLS algorithms compute P and

Q such that the covariance between U and T is maximum [Rosipal and Kramer, 2006].

We consider the nonlinear iterative PLS (NIPALS) algorithm [Wold, 1985] (presented

in Figure 3.1) which calculates the maximum covariance between the latent variables

T = {t1, ..., tp} and U = {u1, ..., up} using the matrix Wd×p = {w1, ..., wp}, such that

arg max[cov(ti, ui)]
2 = arg max

|wi|=1

[cov(Xwi, Y)]2.

The regression vector β between T and U is calculated using matrix W according to

β = W (P TW)−1(T TT)−1T TY. (3.2)

The PLS regression response ŷ for a probe feature vector x1×d is calculated according

to ŷ = ȳ + βT (x − x̄), where ȳ and x̄ denote average values of Y and elements of X,

respectively. The PLS model is defined as the variables necessary to estimate ŷ, which

are β, x̄ and ȳ.

Efficient implementations of the NIPALS algorithm using graphical cards exist in

the literature and they can provide speedup of up to 30 times compared to the CPU

version [Srinivasan et al., 2010]. For prototyping, we recommend the PLS package in

the R programming language [Mevik and Wehrens, 2007], which include different PLS

versions and tools to analyze the model learned.

An illustration of PLS latent variables is presented in Figure 3.2. We consider

Fisher’s IRIS dataset [Fisher, 1936], which contains 150 samples of three types of flowers

3.1. Partial Least Squares Regression 23

4

3 2 1 0 -1 -2 -3

3

2
1

0
-1

-2

-2

-1

0

1

2

(a)

-2

-1

0

1

-2 0 2 4
PLS first dimension

P
LS

 s
ec

on
d

di
m

en
si

on

(b)

2 1 0 -1 -2 -3
3

2

1
0

-1
-2

-2

-1

0

1

2

(c)

-1

0

1

2

-2 0 2 4
PCA first dimension

PC
A

se
co

nd
 d

im
en

si
on

(d)

Figure 3.2: (a) PLS axis in 3-dimensional space and (b) features projected in the first
two dimensions of PLS. (c) PCA axis in 3-dimensional space and (d) features projected
in the first two dimensions of PCA. The goal is to separate Virginica flower samples
(blue points) from other flower samples (red points). Note that, although PCA and
PLS employ a similar transformation, the subspace generated by PLS discriminate
better than PCA the two types of samples. Best visualized in color.

(Setosa, Versicolor and Virginica). Three predictors are considered in the illustration

(petal length, sepal length and width). The goal is to separate Virginica samples

(response variable is set to +1) from the others (response variable is set to −1). The

data are presented to Algorithm 3.1 and the projection vectors W are plotted along

with the data in Figures 3.2a and 3.2b, where the horizontal axis is the first PLS

dimension, the one that maximizes the correlation between predictors and responses.

The second PLS dimension (vertical axis in Figure 3.2b) is orthogonal to the first

PLS dimension and presents the second higher correlation between predictions and

responses. In this case, PLS attempts to project all Virginica samples to a single point

in the latent space different from a point in which the remaining samples are projected.

If such projection is not possible, one that minimizes the squared error to a single point

24 Chapter 3. Methodology

Filtering

Large-scale image retrieval

Candidates list

High probability Low probability

Subject
C

Subject
D

Subject
B

Subject
A

[Feat1 ... Featf]

Feature extraction

Evaluate only high probability subjects in
the face identification model

Face identification

Subject
C

Subject
D

Subject
B

Subject
A

Test
3

1 2

5

4

Figure 3.3: Overview of the filtering and the face identification pipeline. (1) Different
feature descriptors are extracted from the test image and concatenated resulting in a
large feature vector more robust to image effects than single feature descriptors. (2) The
feature vector is presented to the filtering approach, which employs a large-scale image
retrieval approach to (3) generate the candidate list sorted by the probability that the
candidate is the subject in the test image. (4) A small percentage of the candidate list
(high probability candidates) is presented to the face identification which will evaluate
only the models relative to these candidates.

will be estimated. Note that if we use PCA (see Figures 3.2c and 3.2d), the subspace

calculated will be different because PCA considers directions that explain most of the

variance in the data. The script used to generate Figures 3.2a and 3.2b is available in

Appendix A.

3.2 Face Identification Based on Partial Least Squares

The proposed approach consists in filtering subjects in the gallery using methods for

large-scale image retrieval. For a given face identification approach, the evaluation of

all subjects in the gallery (without filtering) is regarded as the brute-force approach,

which is undesirable since the asymptotic time complexity is linear with the number of

subjects enrolled in the gallery. The filtering approach consists in providing a shortlist

to the face identification so that it evaluates only subjects presented in that shortlist.

An overview of the filtering and face identification pipeline is presented in Fig-

ure 3.3, which consists of the following steps. Different feature descriptors are extracted

from a probe sample and concatenated in the first step (feature extraction). Then, the

combined feature vector is presented to the filtering step, which employs large-scale

image retrieval methods to generate a list of candidates sorted in decreasing order of

probability that the candidate is the subject in the probe. After that, a small number

of high probability candidates in the list is provided to the face identification method,

3.2. Face Identification Based on Partial Least Squares 25

Algorithm 2: FaceIDlearn(Xn×d, In)

1 X ← (X − µ)/σ
2 M← ∅
3 for each unique id ∈ I do

4 Y ← {yi|yi =

{
+1, if Ii = id

−1, otherwise

5 W,P, T ← NIPALS(X,Y)
6 Calculate βid using Eq. 3.2
7 M∪ {(id, βid)}

Algorithm 3: FaceIDtest(x1×d)

1 x← (x− µ)/σ
2 max← −∞
3 predict← “none”
4 for each (id, βid) ∈M do
5 score← βTidx
6 if score > max then
7 max← score
8 predict← id

9 return predict

Figure 3.4: Original algorithm of the PLS face identification as described
by Schwartz et al. [2012] with the (left) train and (right) test steps. Xn×d denotes
n feature vectors with d dimensions, In denotes labels for each feature vector and x1×d
denotes probe sample.

which evaluates subjects following the order in the candidate list until the face identifi-

cation returns a subject in the face gallery. In this case, speedup is achieved because it

is not necessary to evaluate the remaining subjects in the candidate list once a gallery

match is found, reducing therefore, the computational cost compared to the brute-force

approach. Note that we do not calculate the probability directly but we associate it

with the estimated PLS regression values as will be presented.

There are two types of errors in the filtering and face identification pipeline. The

first type of error is related to the filtering approach and occurs when the subject in the

test sample is enrolled in the gallery, but is not in the candidate list, resulting in a miss

for any face identification approach employed afterwards. The second type of error is

related to the face identification approach and occurs whenever the test sample subject

is within the candidate list but a wrong identity is assigned by the face identification

approach.

To evaluate the filtering and face identification pipeline, we consider the face

identification method described by Schwartz et al. [2012], which consists in employing

a large feature set concatenated to generate a high dimensional feature descriptor.

Then, a PLS model is learned for each subject in the gallery following a one-against-all

classification scheme: samples from the subject are learned with response equal to +1

and samples from other subjects with response equal to −1. Test samples are presented

to each PLS model and associated to the identity related to the model that returns

the maximum score. We consider the evaluation of all PLS models as the brute-force

approach and, in the proposed pipeline, only PLS models that correspond to subjects

in the candidate list are evaluated. The original algorithm for PLS face identification

is presented in Figure 3.4.

26 Chapter 3. Methodology

Repeat H Times

Gallery

Subject C Subject D

Subject BSubject A

Random split

Positive set
|Sub. A|Sub. C|

Negative set
|Sub. B|Sub. D|

Subject indexes

|Sub. A|Sub. C|

PLS Model

Vote-list

Repeat H Times

Subject indexes

|Sub. A|Sub. C|

PLS Model R
Test

So
rt

 a
n

d
 p

re
se

n
t

as

ca
n

d
id

at
e

lis
tSub. A

Sub. D

Sub. C

Sub. B

Te
st

Le
ar

n

Algorithm 4: PLSHlearn(Xn,d, In, H)

1 X ← (X − µ)/σ
2 for h = 1 to H do
3 Y ← [−1, ...,−1]n; Ph ← ∅
4 for each unique id ∈ I do
5 sample r from Bern. (p = 0.5)
6 if r = success then
7 Ph ∪ {id}
8 Y = {yi|yi = 1, if Ii = id}
9 Calculate βh using Eq. 3.2

10 M∪ {(Ph, βh)}

Algorithm 5: PLSHtest(x1×d)

1 x← (x− µ)/σ

2 V ← {(id1, 0), ..., (idn, 0)}
3 for each (Ph, βh) ∈M do

4 score← βT
hX

5 V ← {(i, s)|s = s+ score, if i ∈ Ph}

6 V ← {(i, s)|s > 0}
7 sort (i, s) ∈ V in decreasing order of s

8 return V

Figure 3.5: Overview of PLS for face hashing (PLSH) with (left) train and (right) test
algorithms. Xn,d denotes samples, In are labels, H is number of hash models, x1×d
denotes probe sample and M denotes hash model set (initially empty).

3.3 Partial Least Squares for Face Hashing (PLSH)

The PLSH method is based on two principles: (i) data dependent hash functions

and (ii) hash functions generated independently among each other. Data dependent

hash functions provide better performance in general (see discussion in Section 2.2.2).

Hash functions generated independently are necessary to induce uniform distribution

of binary codes among subjects in the gallery [Joly and Buisson, 2011]. A diagram and

algorithm for PLSH is presented in Figure 3.5.

PLSH consists of two steps: train and test. In the train, we randomly split

subjects in the gallery in two balanced subsets: positive and negative. The split is

performed as follows. For each subject, we sample from a Bernoulli distribution with

parameter p = 0.5 and associate the subject to the positive subset in case of “success”.

PLS regression models are used to determine whether a test sample belongs to the

positive or to the negative subset. In this case, the PLS regression model is learned

considering feature descriptors extracted from samples in the positive set with target

values equal to +1 against samples in the negative set with target values equal to −1.

This process is repeated several times1.We define a PLSH hash model as a PLS model

and the subjects in the positive subset.

1We repeat 150 times on FERET and 10-35 on FRGC datasets.

3.3. Partial Least Squares for Face Hashing (PLSH) 27

In the test, we extract the same feature descriptors employed on the train for the

test sample (probe sample) and presented them to each PLSH hash model to obtain

a regression value r. We define a vote-list of size equal to the number of subjects

in the gallery initially with zeros, then, each position of the vote-list is increased by

r according to the indexes of subjects in the positive subset of the same PLSH hash

model. Note that this scheme allows us to store half of the subject indexes to increment

the vote-list since it will be equivalent to increment subjects in the negative set by |r|
when r is negative (the differences among pairs of votes will be the same). Finally, the

list of subjects is sorted in decreasing order of values and presented as candidates for

the face identification.

In practice, the majority of subjects with low values in the candidate list are

discarded because they rarely corresponds to the test sample. The candidate list only

serves to indicate the evaluation order for the face identification method. In this case,

if an identity is assigned to the probe when evaluating the first candidates in the list,

there is no need to evaluate the remaining candidates.

PLSH is similar to the work of Joly and Buisson [2011], in which SVM classifiers

are employed to determine each bit in the Hamming embedding. The advantage of

employing PLS in this case is the robustness to unbalanced classes and support for high

dimensional feature descriptors [Santos Jr and Schwartz, 2014]. We do not provide

approximation bounds to PLSH as LSH methods because PLSH is based on regression

scores rather than distance metrics, which are not compatible with the LSH framework.

3.3.1 Consistency

The motivations for the steps presented in the PLSH algorithm are the following. In

one hand, if r is approximately equal to +1 in the test, the probe sample is more similar

to the subjects in the positive subset and the positions in the vote-list corresponding

to the subjects in the positive subset will receive more votes. On the other hand, if

r is approximately equal to -1, the votes in the vote-list corresponding to subjects in

the positive subset will be decremented. If r is close to zero then the vote-list will not

change significantly. Assuming that be equal to +1 whenever the correct subject in

the test sample is in the positive subset, even if other subjects in the positive subset

receive the same vote, their respective votes in the vote-list will be decrement whenever

they are not in the same subset as the correct subject. Note that the aforementioned

statement holds for a large number of hash functions since the probability of at least

two subjects being in the same subsets is negligible. A large number of hash functions

also mitigate the problem of a few hash functions not returning r roughly equal to 1

28 Chapter 3. Methodology

even if the correct subject is in the positive subset and the increase in the number of

hash functions is limited only by the computational cost to evaluate them.

3.3.2 Hamming Embedding

We do not estimate the Hamming embedding directly since there is no binary string

associated to any face sample. However, PLSH is equivalent to estimating the Hamming

embedding for a test sample and comparing it with the binary strings generated for

each subject in the gallery. In addition, each bit of the test binary string is weighted by

the absolute value of the PLS regression response. To demonstrate the aforementioned

claims, consider that PLS responses can be only +1 or −1, such that any test sample

can be represented by the sequence X = {+1,−1}H , where H denotes the number of

PLSH hash models. Consider also that each subject s in the face gallery is represented

by the binary string Ys = {1, 0}H , where yi ∈ Ys is set to 1 if the subject s was

associated to the positive subset of the i-th PLSH hash model in the train step, or 0,

otherwise. In this context, the weight ws given by PLSH to each subject in the gallery

is calculated as

ws =
H∑
i=1

xiyi.

Note that the maximum ws is equal to the sum of +1 elements in X, which occurs

when yi = 1, if xi = +1, and yi = 0, otherwise. Similarly, the minimum weight is

equal to the sum of −1 elements in X, which occurs when yi = 1, if xi = −1, and

yi = 0, otherwise. If we transform X onto a binary string X̂ such that x̂i = 1, if the

corresponding xi is +1, and x̂i = 0, otherwise; we can calculate the Hamming distance

between X̂ and Ys. In fact, the exactly same Hamming distance can be calculate using

ws as

d(X, Y)H = wmax − ws, (3.3)

where wmax denotes maximum possible ws. The same analogy can be applied to the

weighted Hamming distance (see Equation 2.1) if we consider xi assuming any real

number. In this case, the weight of each bit αi is the absolute value of r and the

weighted Hamming distance is equivalent to Equation 3.3.

3.3.3 Computational Requirements

The time and space complexities of the PLS algorithm are presented as follows. The

amount of space necessary for the PLS algorithm depends on the number of hash

models H, the dimensionality of the data D and the number of subjects in the gallery

3.4. Feature Selection for Face Hashing (ePLSH) 29

N . Each hash model holds a PLS regression vector in Rd and the indexes of subjects

in the positive subset, given by N/2, therefore, H × D real numbers and (H × N)/2

integer indexes of space are necessary using H hash functions in the PLS algorithm.

Note that it is not necessary to store the feature vectors used to train the PLS models

in the test and they can be safely discarded since the PLS regression vector holds the

necessary information to discriminate among the enrolled subjects.

3.3.4 Alternative Implementations

In principle, some aspects of the PLSH algorithm can be changed such that PLSH

can provide potential performance improvement. For instance, the parameter p of

the Bernoulli distribution used to determine the subsets of subjects may be changed

given that PLS hardly finds common discriminative features among subjects in a large

set Santos Jr and Schwartz [2014]. However, changing p from 0.5 to other value results

in a nonuniform distribution of subjects among subsets (raise hash table collisions),

therefore, reducing the accuracy. As will be demonstrated in the experiments, main-

taining a balanced subset of subjects to learn each hash model (p = 0.5) provide the

best results.

Another possible implementations of PLSH that does not modify much the results

is the product of votes instead of the sum, which is akin to the intersection of subsets

among all hash functions. It is also possible to employ multiple partitions instead of

only two by using a categorical rather than Bernoulli distribution. However, multiple

partitions provide no significant difference in the results and they require twice the

space requirement since the indexes of subjects that were learned with +1 target re-

sponse in the PLS model need to be stored to allow them to receive the votes in the

test. At last but not least, the computational cost to evaluate the hash functions can be

reduced when considering feature selection methods, which consists in calculating the

PLS regression response using few dimensions in the feature vector corresponding to

the most important to discriminate between the subject subsets. As will be presented,

the feature selection include a new parameter in the PLSH algorithm, the number of

features selected, which can be estimated jointly with the number of hash functions to

provide much better results than in PLSH without feature selection.

3.4 Feature Selection for Face Hashing (ePLSH)

The algorithms for PLSH described in Section 3.3 require a dot product between the

PLS regression vector and the feature descriptor to calculate each hash function. This

30 Chapter 3. Methodology

Repeat H Times

Feature
selection

Gallery

Subject C Subject D

Subject BSubject A

Random split

Positive set
|Sub. A|Sub. C|

Negative set
|Sub. B|Sub. D|

k top
PLS features

Vote-list

Repeat H Times

Subject indexes

|Sub. A|Sub. C|

R
Test

So
rt

 a
n

d
 p

re
se

n
t

as

ca
n

d
id

at
e

lis
tSub. A

Sub. D

Sub. C

Sub. B

Te
st

Le
ar

n

Subject indexes

|Sub. A|Sub. C|

PLS Model

Selected features

PLS Model

Selected features

Algorithm 6: ePLSHlearn(Xn×d, In, H, k)

1 X ← (X − µ)/σ
2 for h = 1 to H do
3 Y ← [−1, ...,−1]n; Ph ← ∅
4 for each unique id ∈ I do
5 sample r from Bern. (p = 0.5)
6 if r = success then
7 Ph ∪ {id}
8 Y = {yi|yi = 1, if Ii = id}
9 Fh ← k discriminative features

10 select features Fh from X
11 Calculate βh using Eq. 3.2
12 Me ∪ {(Ph, βh, Fh)}

Algorithm 7: ePLSHtest(x1×d)

1 x← (x− µ)/σ
2 V ← {(id1, 0), ..., (idn, 0)}
3 for each (P, βh, Fh) ∈Me do
4 select features Fh from x

5 score← βT
h x

6 V ← {(i, s)|s = s+ score, if i ∈ P}
7 V ← {(i, s)|s > 0}
8 sort (i, s) ∈ V in decreasing order of s
9 return V

Figure 3.6: Overview of PLS for face hashing and feature selection (ePLSH) with (left)
train and (right) test algorithms (lines different from PLSH algorithm are in blue and
bold). Xn,d denotes samples, In are labels, H is number of hash models, k is the number
of features selected, x1×d denotes probe sample, Me denotes hash model set (initially
empty).

section describes methods to reduce the computational cost to evaluate hash functions.

To discriminate PLSH with the feature selection version and to maintain consistence

with the nomenclature given in our publications, PLSH with feature selection is called

extended PLSH (ePLSH) in the rest of this work. In practice, ePLSH is equivalent to

PLSH when all features are considered to evaluate hash functions. The main advan-

tage of ePLSH is the possibility of employing thousands of additional hash functions,

resulting in considerable increase of the recognition rate while keeping low computa-

tional cost to calculate the hash functions. The common feature setup considered in

the PLSH and in the ePLSH approaches consists in combining four feature descriptors,

which leads to a feature vector with 120,059 dimensions. However, we show in our ex-

periments that, for the feature set considered in this work, about 500 dimensions with

an increased number of hash functions provides better candidate lists than PLSH with

about the same computational cost. A summary of ePLSH is presented in Figure 3.6.

The ePLSH consists of two steps: train and test. In the train, it calculates

the β regression vector following the same procedure of PLSH. Then, the indexes of

the k more discriminative features are stored. Considering that the range of values

3.4. Feature Selection for Face Hashing (ePLSH) 31

in the feature vector is known (zero mean and unit variance in our experiments),

it is possible to calculate an approximated score using only the more discriminative

features. However, if only such features are used to calculate the regression value

without rebuilding the PLS model, the result would not be accurate because of the

large number of remaining features, even though they present a very low contribution

individually. To tackle this issue, we learn a new PLS model to replace the full feature

version in PLSH, which is performed by eliminating the dimensions from the matrix X

that do not correspond to the k select features and recalculate β using Equation 3.2.

We define the ePLSH hash model as the PLS model, the subjects in the positive subset

and the k selected features. Finally, the test step is carried in the same manner as in

PLSH, but with the difference that only features selected in the ePLSH hash model

are considered to calculate the regression score.

The difference between PLSH and ePLSH algorithms is the feature selection step

of lines 9 and 10 in Algorithm 6 and line 4 in Algorithm 7. There are numerous meth-

ods for feature selection and transformation in the literature and, due to performance

reasons, it is preferable to employ feature selection methods so the features can be

directly indexed when calculating the dot product in the test step. If we employ fea-

ture transformation such as PCA, it will be necessary a multiplication between the

PCA projection matrix and the feature vector, which is expensive in terms of compu-

tational time. In early experiments, we considered employing PCA before providing

X to Algorithms 6 and 7. Although slightly difference in accuracy was observed when

keeping 95% of variance explained (roughly 1% of the dimensions in the feature vector),

the computational cost to project the features was not attractive because of the high

dimensional feature vectors. Therefore, we consider feature selection methods.

There are numerous works about PLS-based feature selection in the literature and

they are divided in three categories [Mehmood et al., 2012]: filter, wrapper and embed-

ded. Filter methods are the simplest of the three and work in two steps. First, the PLS

regression model is learned and, then, a relevance measure based on the learned PLS

parameters is employed to select the most relevant features. Wrapper methods con-

sist in an iterative filter approach coupled with a supervised feature selection method.

Finally, embedded methods consist in nesting feature selection approaches in each iter-

ation of the PLS algorithm. We suggest the work presented by Mehmood et al. [2012]

for a comprehensive list and description of PLS feature selection methods.

In this work, we focus on PLS filter methods for feature selection for simplicity

reasons. However, ePLSH is defined without lost of generality such that other PLS

feature selection methods could be considered if necessary. Mehmood et al. [2012]

describe three filter methods called loading weights (W), variable importance on pro-

32 Chapter 3. Methodology

0 2 4 6 8 10 12

Averaged loading weights (10−3)

0

2

4

6

8

10

12

0k 20k 40k 60k 80k 100k 120k
Rank of sorted loading weights

Av
er

ag
ed

 lo
ad

in
g

we
ig

ht
s

(1
0− 3

)

Figure 3.7: Loading weights distribution for a 120, 059-dimensional feature vector
(small plot) and ranked in decreasing order (big plot). The feature vector is a combi-
nation of CLBP, HOG, Gabor and SIFT feature descriptors.

jection (VIP) and regression coefficients (β). These methods are described in Sec-

tions 3.4.1, 3.4.2 and 3.4.3, respectively.

3.4.1 Loading Weights

The idea in the loading weight approach is, for each PLS component, to select the

features associated with higher absolute wi value (alternately features above a thresh-

old [Mehmood et al., 2012]). Recall W being the output of NIPALS algorithm2 used

to calculate latent variables. In this way, the absolute coefficient wf,i ∈ W , for the

f -th PLS component and the i-th feature, is directly associated to the f -th latent

variable. Note that one feature may be relevant to one PLS component and irrelevant

for another, specially because the latent variable basis represented by W is orthonor-

mal. Therefore, the goal is to find the set of features that are relevant to calculate at

least one PLS latent variable. In this context, the loading weight method consists in

selecting features i ∈ [1, N] with highest relevance measure defined as maxf=1:p(wp,i).

The distribution of loading weights is presented in Figure 3.7, where it can be seen

that the distribution of weights among the dimensions is roughly normal, with mean

around 5 × 10−3, and a little skewed toward small values. As will be presented in

the experiments, the 500 dimensions with higher weights (loading weights higher than

about 10−2) are enough to provide good results.

2see Section 3.1 for the PLS description

3.4. Feature Selection for Face Hashing (ePLSH) 33

3.4.2 Variable Importance on Projection

Variable importance on projection (VIP) consists in calculating a measure that sum-

marize the loading weights (W) of all factors for each dimension in the feature vector.

VIP measure is calculated as3

vi =

√√√√n

p∑
f=1

(
b2fw

2
f,i

)
/

p∑
f=1

b2f . (3.4)

In our experiments, the product by n can be ignored since n is constant for all features.

In this case, the VIP measure will not be normalized and the common VIP threshold

described in [Mehmood et al., 2012], which determines that relevant features present

VIP higher than 0.8, cannot be employed directly. Recall bi as proportional to the

covariance between projected features and target values. The sum in the numerator

of Equation 3.4 represents the squared sum of the loading coefficients for a specific

feature weighted by the predictive capacity of each coefficient. In this way, the main

difference between the loading weights and the VIP approaches is the employment of

bi in the latter. The distribution of VIP is presented in Figure 3.8a, which is similar

to the loading weights distribution and resemble a normal distribution skewed toward

lower values.

3.4.3 Regression Coefficients

Regression coefficients for feature selection is the simplest of the three filter methods

and consists in using the regression vector directly to select the most relevant features.

Recall from Section 3.1 the regression vector as β = W (P TW)−1(T TT)−1T TY , where

P and T are loading matrices from features and target values, respectively. Similar

to the loading weights approaches, regression coefficients are also related to predictive

capacity of the latent variables to estimate target values, however, in a more transpar-

ent manner since they are directly employed to estimate the regression values. The

distribution of absolute regression coefficients, presented in Figure 3.8b, is considerable

different from the other approaches distribution. The regression coefficients distribu-

tion resembles a normal distribution with zero mean, which the absolute values results

in the distribution in Figure 3.8b. The main difference from the regression coefficient

and the aforementioned filter approaches is the correlation of the latent variables with

target values embedded in the PLS regression vector, which provides a small improve-

ment over the loading weights and VIP results.

3see Section 3.1 for variable definitions.

34 Chapter 3. Methodology

0 20 40 60 80 100 120 140 160 180 200 220

Averaged VIP (10−3)

0

20

40

60

80

100

120

140

160

180

200

220

0k 20k 40k 60k 80k 100k 120k
Rank of sorted VIP

Av
er

ag
ed

 V
IP

 (
10

− 3
)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Averaged regression coefficients (10−3)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0k 20k 40k 60k 80k 100k 120k
Rank of sorted regression coefficients

Av
er

ag
ed

 re
gr

es
si

on
 c

oe
ffi

ci
en

ts
 (

10
− 3

)

(b)

Figure 3.8: (a) VIP measure and (b) Regression coefficient distribution for a 120, 059-
dimensional feature vector (small plot) and ranked in decreasing order (big plot).

3.5 Early-Stop Search Heuristic

To stop the search for the correct subject in the candidate list, we employ the heuristic

described by Schwartz et al. [2012]. For a short number of initial samples (15), all

subjects in the candidate list are evaluated and the median value of the scores is taken

as threshold for the remaining test samples. Then, subjects in the candidate list are

evaluated until a score equal or higher than the threshold is obtained or the end of the

list is reached.

Note that, in practice, the candidate list size is a percentage of the subjects

enrolled in the gallery and most of the candidates with low weights can be discarded

because they rarely corresponds to the probe sample. In this case, the worst case

scenario consists in evaluating all subjects in the candidate list for every probe sample.

However, the early-stop search heuristic alone is shown to reduce the number of tests in

the face identification up to 63% without degrading the recognition rate so the speedup

achieved is usually higher than the ratio of the gallery size divided by the number of

subjects in the candidate list.

Chapter 4

Experimental Results

In this chapter, we evaluate PLSH and ePLSH in two standard face identification

datasets (FERET and FRGCv1). Section 4.1 contains the common experimental setup,

including datasets, face identification parameters, evaluation metric, description of the

computer used in the experiments, and feature descriptors. The PLSH parameters

are presented in Section 4.2. The parameters for ePLSH are discussed in Section 4.3.

Evaluation on the datasets and comparisons with other methods in the literature are

presented in Section 4.4 (FERET) and in Section 4.5 (FRGCv1).

4.1 Experimental Setup

All experiments regarding parameter validation in Sections 4.2 and 4.3 were performed

on the FERET dataset, since it is the dataset with the largest number of subjects

(1, 196 in total). FERET consists of four test sets and we use dup2 in Sections 4.2

and 4.3, which is considered the hardest of the dataset. The only exception is the

experiment regarding the number of hash models and the gallery size in Section 4.3.4,

where fb test set was employed since it provides more test samples (1, 195) than the

others (194, 722 and 234 in fc, dup1 and dup2, respectively).

All experiments were conducted using an Intel Xeon X5670 CPU with 2.93 GHz

and 72 GB of RAM running Ubuntu 12.04 operating system. All tests were performed

using a single CPU and no more than 8 GB of RAM were necessary.

The FERET and FRGCv1 datasets are described in Sections 4.1.1 and 4.1.2,

respectively. In Section 4.1.3, we describe the evaluation metric. In Section 4.1.4, we

discuss the number of dimensions in PLS regression for the face identification and the

face indexing approaches. Feature descriptor parameters are presented in Section 4.1.5.

35

36 Chapter 4. Experimental Results

4.1.1 FERET Dataset

The FERET dataset [Phillips et al., 2000] consists of 1, 196 images, one per subject

for training, and four test sets designed to evaluate the effects of lightning conditions,

facial expression and aging on face identification methods. The test sets are:

• fb: consisting of 1, 195 images taken with different facial expressions.

• fc: consisting of 194 images taken in different lightning conditions.

• dup1: consisting of 722 images taken between 1 minute and 1, 031 days after the

gallery image.

• dup2: is a subset of dup1 and consists of 234 images taken 18 months after the

gallery image.

In our experiments, all images were cropped in the face region using annotated coor-

dinates of the face, scaled to 128 × 128 pixels and normalized using the self-quotient

image (SQI) method to remove lightning effects [Wang et al., 2004].

4.1.2 FRGC Dataset

The face recognition grand challenge dataset (FRGC) [Phillips et al., 2005] consists of

275 subjects and samples that include 3D models of the face and 2D images taken with

different illumination conditions and facial expressions. We follow the same protocol

described by Yuan et al. [2005], which considers only 2D images and consists in ran-

domly selecting different percentages of samples from each subject to compose the face

gallery and using the remaining samples to test. The process is repeated five times and

the mean and standard deviation of the rank-1 recognition rate and speedup (consid-

ering the brute-force approach) are reported. The samples were cropped in the facial

region, resulting in size 138× 160 pixels, and scaled to 128× 128 pixels.

4.1.3 Evaluation Metric (MARR)

Recall from the face identification pipeline presented in Section 3.2 that the candidate

list calculated in the filter approach (PLSH and ePLSH) is employed to reduce the

number of PLS models evaluated in the face identification. In this context, the error

rate of the pipeline results from errors induced by the filter approach (fail to return

identity of test sample in the candidate list) and by the face identification approach

(fail to identify correctly the subject in the candidate list). Therefore, to assess the

4.1. Experimental Setup 37

Best recognition rate possible is 1.0 using
 only 1% of subjects in the candidate list

Max. recognition rate possible is 0.6 using
 4% of subjects in the candidate list

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Percentage of subjects in the candidate list (C)

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

AR
R

)

Examples
Best curve
Sample curve

Figure 4.1: An example of the plots regarding the MARR evaluation metric for two
sample curves. The MARR metric (vertical axis) considers that the candidate list is
presented to an ideal face identification method, therefore, providing the upper bound
of the recognition rate achievable when considering a given filtering method such as
PLSH and ePLSH. The horizontal axis presents different percentages of the candidate
list that are presented to the face identification approach. The best curve presents
MARR equal to one for any percentage of subjects in the candidate list.

performance of the filter approach alone, we provide results considering the maximum

achievable recognition rate (MARR), which is calculated considering that a perfect face

identification method is employed for different percentages of candidates visited in the

list.

Note that the MARR value is the upper bound for the recognition rate achieved

by the filter and face identification pipeline. Figure 4.1 illustrates the MARR evalu-

ation metric where better results present MARR close to one and low percentage of

candidates visited (curves close to the upper left corner of the plots).

4.1.4 Number of Dimensions in the PLS models

PLS-based face identification requires only one parameter, which is the number of

dimensions in the PLS latent space (p). Schwartz et al. [2012] evaluated p by varying

it from 13 to 21 without noticing large variation in the results. Therefore, we set p to

20 for the face identification method in our experiments.

We conducted experiments in PLSH by varying p between 4 and 19, in steps

of 3, and the results are presented in Figure 4.2 along with the time spent to train

150 hash models. Although p equal to 7 provides the best MARR and lowest time to

38 Chapter 4. Experimental Results

#Dim.

4
7

10
13
16
19

MARR

0.66
0.77
0.75
0.75
0.74
0.76

Time to train
(minutes)

9
17
22
30
35
420.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

4 7 10 13 16 19
Dimensions used in PLS hash models

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

AR
R

)

Figure 4.2: Number of dimensions in PLS hash models and time spent to train 150
hash models.

train, we noticed that the MARR tends to vary between 0.74 and 0.79 because of the

nondeterministic nature of the PLSH algorithm. In this way, MARR for p between 7

and 19 may be seen as roughly the same and we consider p equal to 10 in the PLSH

and ePLSH experiments.

4.1.5 Feature Descriptors

In this section, we describe the common feature descriptors employed in this work.

In total, we evaluate 12 feature descriptors, namely BRISK, CLBP, color histogram,

FREAK, Gabor filters, HOG, mean intensity values, LBP, ORB, POEM, SIFT and

SURF. Employing the combination of all 12 feature descriptors is intractable consider-

ing the computational time spent to calculate the features and the memory necessary to

store the hash model, which depends on the dimensionality of the data. Therefore, only

the best four feature descriptors (CLBP, Gabor filters, HOG and SIFT) are considered

in all experiments. The 12 feature descriptors are considered only in Section 4.2.1 to

evaluate their individual performance to define the four best.

4.1.5.1 BRISK

Proposed by Leutenegger et al. [2011], binary robust invariant scalable keypoints

(BRISK) has been mainly used for object detection and recognition based on points

of interest. BRISK is fast to calculate and to compare since the description is in the

4.1. Experimental Setup 39

Hamming space. In our experiments, the neighborhood size of the BRISK parame-

ter is set to 512 and we consider the concatenation of 169 binary descriptors sampled

equally in the face image. The resulting feature descriptor has 10, 816 variables with

average calculation time of 34 milliseconds. We use the implementation available in

the OpenCV programming language library [Bradski, 2000].

4.1.5.2 CLBP

Local binary patterns with circular neighborhood (CLBP) mainly capture information

regarding texture in the face image. CLBP is an extension of the original LBP and

includes a parameter to control the radius around the central pixel by which neighbors

are compared [Ahonen et al., 2006]. We set the radius parameter to 5, which is the

common parameter employed in face recognition tasks. CLBP histograms are calcu-

lated in a sliding window approach with size equal to 16 pixels and stride equal to

8 pixels. We also consider accumulating all normal codes (codes with more than 2

transitions between bits) in the same histogram bin to reduce the dimensionality. The

final descriptor is the concatenation of all histograms in the face image, resulting in

9, 971 dimensions and taking 118 milliseconds, on average, to calculate.

4.1.5.3 LBP

Local binary patterns is equivalent to CLBP (see Section 4.1.5.2) with radius parameter

equal to one. However, in this case, we are evaluating only the resulting image after

applying the LBP operator in the face image, i.e., without calculating LBP histograms.

The final feature descriptor has 49, 980 dimensions and average time to calculate equal

to 570 milliseconds per face image.

4.1.5.4 Color Histogram

Color histogram is a simple global descriptor that accumulates pixel values in a his-

togram. We calculate the histograms using sliding window with size equal to 16 pixels

and stride equal to 8 pixels. The color space considered was the HSV and only the hue

and the saturation channels were considered. The number of bins is set to 20, in the

hue channel, and 32, in the saturation channel. The final descriptor is the concatena-

tion of all histograms in the face image, resulting in 31, 360 dimensions with average

calculation time of 13 milliseconds.

40 Chapter 4. Experimental Results

4.1.5.5 FREAK

Fast retina keypoint (FREAK), proposed by Alahi et al. [2012], is a SIFT-like feature

descriptor that focuses on fast computation based on human eye saccadic search. As

in BRISK, we set the number of bits in the descriptor equal to 512 and concatenate

the descriptors calculated in 121 keypoints sampled equally in the face image. The

final feature descriptor has size 7, 744 with average time to calculate equal to 670

milliseconds per face image. We use the implementation available in the OpenCV

programming language library [Bradski, 2000].

4.1.5.6 Gabor filters

Gabor filters mainly capture texture information and is commonly employed in face

recognition tasks [Randen and Husoy, 1999]. The main disadvantages of Gabor filters

is the high computational cost to calculate and store. To compute Gabor filters, we

convolve the face image with filters of size 16× 16 pixels, 8 scales, equally distributed

between [0, π
2
], and 5 orientations, equally distributed between [0, π], which results in

40 convolved images. The images were downscaled by a factor of 4 and concatenated to

assemble the final feature descriptor, resulting in 40, 960 dimensions and taking 1, 475

milliseconds to calculate per face image, on average.

4.1.5.7 HOG

Histograms of oriented gradients (HOG) was first employed for pedestrian detection and

captures mainly information regarding shape in the face image [Dalal and Triggs, 2005].

Two feature setups are considered for HOG. The first setup consists in block size equal

to 16 × 16 pixels, stride equal to 4 pixels and cell size equal to 4 × 4 pixels. The

second setup consists in block size equal to 32 × 32 pixels, stride equal to 8 pixels

and cell size equal to 8 × 8 pixels. The feature descriptor consists in concatenating

the HOG descriptors from the two setups, resulting in 36, 360 dimensions and taking

81 milliseconds to calculate per face image, on average. The HOG implementation

considered in this work is the one available in the OpenCV programming language

library [Bradski, 2000].

4.1.5.8 Mean Intensity

Mean intensity was used by Schwartz et al. [2012] as a simple feature descriptor to

capture intensity values in the face image. It consists in averaging the intensity values

of a sliding window in the face image. Although simple, it provides fair accuracy

4.1. Experimental Setup 41

and complementarity to descriptors based on shape and texture. We follow the same

parameter setup provided in [Schwartz et al., 2012], with window size equal to 4 pixels

and stride equal to 2 pixels. The descriptor size is 3, 969 with an average time to

calculate equal to 103 milliseconds per face image.

4.1.5.9 ORB

Oriented FAST and rotated BRIEF (ORB), proposed by Rublee et al. [2011], is a

SIFT-like feature descriptor that focuses on fast computation and matching, similarly

to BRISK, FREAK and SURF. ORB consists in rotating the patch to a canonical ori-

entation according to a moment equation and, then, calculating the BRIEF descriptor

in the rotated patch. In our experiments, ORB is extracted in 256 keypoints evenly

spaced in the face image and the number of bits in the BRIEF descriptor is set to 512.

The final descriptor has 2, 592 dimensions and with an average time to calculate equal

to 8 milliseconds per face image. We use the ORB implementation available in the

OpenCV programming language library [Bradski, 2000].

4.1.5.10 POEM

Patterns of oriented edge magnitudes (POEM) was proposed by Vu et al. [2012] and

consists in the CLBP operator applied to magnitude of gradients in different orienta-

tions. The histograms of gradient orientations are calculated in a cell with size of 7

pixels. Each histogram has 3 bins, which accumulate unsigned orientation values be-

tween 0 and π radians. The final feature descriptor has 29, 913 dimensions and present

average calculation time equal to 306 milliseconds per face image.

4.1.5.11 SIFT

Scale-invariant feature transform (SIFT) [Lowe, 2004] is the most popular descriptor

for object detection and recognition in the literature and several other feature descrip-

tors are inspired by it [Rublee et al., 2011; Dalal and Triggs, 2005; Alahi et al., 2012;

Leutenegger et al., 2011]. SIFT consists of two parts: keypoint detection and descrip-

tion. We consider SIFT descriptors calculated in 256 keypoints evenly spaced in the

face image. We employed the default parameters proposed by Lowe [2004], which are

4× 4 histogram cells, each with 8 bins, contrast threshold 0.04, Gaussian smoothness

1.6 and edge threshold 10. The final feature descriptor is the concatenation of all

SIFT descriptors in the face image and has 32, 768 dimensions with average time to

calculate equal to 30 milliseconds. We use the OpenCV programming library SIFT

implementation [Bradski, 2000].

42 Chapter 4. Experimental Results

4.1.5.12 SURF

Speeded-up robust features (SURF) [Bay et al., 2008] is a SIFT-like descriptor and,

similarly to SIFT, is largely employed in the literature for object detection and recog-

nition. SURF can be seen as an approximation of SIFT descriptors, which employs

Haar-like features and integral images to reduce computational time to calculate the

feature descriptor. We employ the standard SURF parameters in 256 keypoints evenly

spaced in the face image which, when concatenated, results in a 16, 384-dimensional

feature vector with average calculation time of 29 milliseconds. We use the SURF

implementation available in the OpenCV programming library [Bradski, 2000].

4.2 PLSH Parameter Validation

Herein we evaluate the aspects regarding PLSH model and parameter selection. In

Section 4.2.1, we evaluate 12 feature descriptors and the combination of the four best.

In Section 4.2.2, we evaluate different numbers of hash models. In Section 4.2.3, we dis-

cuss and evaluate whether to employ balanced partitions. In Section 4.2.4, we discuss

and evaluate different number of partitions. In Section 4.2.5, we discuss and evaluate

whether to employ sum or product when combining votes in the PLSH framework.

In Section 4.2.6, we characterize the response of the vote-list, which is useful to dis-

card subjects in the candidate list in linear time with the size of the list. Finally, in

Section 4.2.7, we discuss stability regarding PLSH results.

4.2.1 Combination of Different Feature Descriptors

Figure 4.3a presents MARR for different feature descriptors when 1% of the candidate

list is provided for identification. We consider the binary feature descriptors in the real

domain such that the PLS regression can be directly employed. The number of hash

models in this experiment was empirically set to 150. For each feature descriptor, a

summary of the averaged time spent to calculate and the size of the feature vector is

provided in the table of Figure 4.3a. The feature descriptors are sorted in decreasing

order of MARR and the four best feature descriptors are CLBP, Gabor filters, HOG and

SIFT. In Figure 4.3b, we evaluate these four feature descriptors with their combination

and for different percentages of subjects in the candidates list.

According to Figure 4.3b, the combination of CLBP, Gabor, HOG and SIFT is

responsible for an increase of about 10 percentage points (p.p.) in MARR compared to

the best individual feature descriptor (CLBP). Therefore, we employ the combination

4.2. PLSH Parameter Validation 43

CLBP
Gabor
HOG
SIFT

BRISK
POEM

Intensity
ORB
LBP

FREAK
Color Hist.

SURF

MARR
0.67
0.62
0.54
0.46
0.33
0.29
0.26
0.24
0.20
0.09
0.04
0.03

Time (ms)
118

1,475
81
30
34

306
103

5
570
679
13
29

Size
9,971

40,960
36,360
32,768
10,816
29,913
3,969
2,592

49,980
7,744

31,360
16,384

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CLB
P

Gab
or

HOG
SIFT

BRISK
POEM

Int
en

sity ORB
LB

P

FREAK

Colo
r H

ist.
SURFM

ax
im

um
 a

ch
ie

va
bl

e
re

co
gn

iti
on

 ra
te

 (M
AR

R
)

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Percentage of subjects in the candidate list (C)

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

A
R

R
)

Feature
descriptors

Combined
CLBP
Gabor
HOG
SIFT

(b)

Figure 4.3: (a) Single features when 1% of the candidate list is provided for identifica-
tion and (b) best four single features compared to their combination.

of these feature descriptors in the remaining experiments. The combined feature de-

scriptor has 120, 059 dimensions with averaged time to calculate equal to 1.7 seconds.

It is important to point out that the time spent to calculate the feature descriptors

for a probe sample is constant (it does not depend on the number of subjects enrolled

in the face gallery). In fact, the computational time to extract the feature descriptors

can be adapted in exchange for reduced MARR. For instance, Gabor filters could be

discarded to reduce the computational time to extract the features since they take 1.4

seconds per face image to calculate, on average.

Although BRISK, SURF and FREAK are based on SIFT, these descriptors pro-

vide considerable less accuracy than SIFT (at least 10 p.p. of MARR difference). We

believe that this difference in accuracy might result from the manner that we are using

these descriptors, which is different from the conventional bag-of-words or other repre-

sentations commonly employed in the literature. BRISK, ORB and FREAK are also

binary feature descriptors. Given that PLS considers the Euclidian space instead of

Hamming, this might also be the reason for the reduced accuracy presented by these

binary feature descriptors.

4.2.2 Number of Hash Models

Figure 4.4 presents MARR for a number of hash models equal to 10, 50, 100, 150 and

200. According to the results, a large improvement in MARR (for any number of

subjects in the candidate list) takes place when the number of hash models increases

from 10 to 150 can be seen in Figure 4.4. However, the increase in MARR is negligible

44 Chapter 4. Experimental Results

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Percentage of subjects in the candidate list (C)

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

A
R

R
)

#Hash models
10
50

100
150
200

Figure 4.4: Number of hash models as a function of the MARR for different percentages
of subjects in the candidate list.

when the number of hash models is raised from 150 to 200. Since the face identification

and the PLSH approaches depend on a single dot product between the feature and the

PLS regression vectors, the computational cost to evaluate each hash function in PLSH

is about the same as the cost to evaluate each subject in the gallery. Therefore, to

obtain a low computational cost for testing samples, we consider 150 hash functions in

the remaining PLSH experiments. As a reference, the average time to evaluate each

hash function in this experiment was 426 microseconds.

4.2.3 Balanced Partitions and Code Distribution

In this section we discuss the best value for the Bernoulli distribution parameter p

necessary to distribute binary codes uniformly among subjects in the gallery. Consider

that we assign a binary code for each subject, of a total of N , in a gallery such that

each code has a number of bits

B = log2(N). (4.1)

We learn B hash functions to determine each bit of the code. The goal is to determine

the probability of choosing a bit b ∈ {0, 1} for a subject X = [x1, ..., xB] such that each

final binary code has equal probability, i.e,

P (code) =
B∏
i=1

P (xi = b) =
1

N
, (4.2)

4.2. PLSH Parameter Validation 45

Subject D
code

Subject C
code

Subject B
code

Subject A
code

1

Hash
function 2

Bit 1 Bit 2

0

N
eg

at
iv

e
su

bs
et

0

1

P
os

it
iv

e
su

bs
et

0

1

1

Hash
function 1

0
P

os
it

iv
e

su
bs

et

N
eg

at
iv

e
su

bs
et

Binary counting sequence

Subject D
code

Subject C
code

Subject B
code

Subject A
code

0

1

1

Hash
function 1

0

P
os

it
iv

e
su

bs
et

N
eg

at
iv

e
su

bs
et

1

Hash
function 2

0

Bit 1 Bit 2

0

1

N
eg

at
iv

e
su

bs
et

P
os

it
iv

e
su

bs
et

Random split

Figure 4.5: Contrast between binary counting sequence and random partition used in
the PLSH bit assignment. The binary counting sequence does not generate all possible
subsets and depends on the order of subjects presented.

where xi is drawn independently and identically from a Bernoulli distribution with

parameter p so that P (xi = 1) = p.

Note that independence when drawing bits implies in independent hash functions.

In the other hand, if we instead assign codes systematically among subjects, e.g.,

following a binary counting sequence (001, 010, ..., 111), the probability of assigning

a specific code to a subject will depend on codes already assigned to other subjects,

therefore, breaking independence among the hash functions. If we systematically assign

codes to subjects, we also limit the combinatorial number of binary subsets resulting

in hash functions biased toward the order of codes assigned to subjects. The advantage

of independent hash functions is illustrated in Figure 4.5.

In practice, we learn more than B hash functions to reduce the number of colli-

sions in the hash table when we independently draw bits from a probability distribution.

We also expect that some hash functions will miss some bits (change one bit for an-

other). However, considering an unbiased classifier, it is expected a zero sum of r values

from the missed bits, such that the final result will be stable.

Considering the Bernoulli distribution, Equation 4.2 is rewritten as

P (code) = pk(1− p)B−k =
1

N
,∀k ∈ {0, ..., B}, (4.3)

where k is the number of bits in the code that are equal to 1. Expanding Equation 4.3,

P (code) = pB = pB−1(1− p) = ... = (1− p)B =
1

N
, (4.4)

46 Chapter 4. Experimental Results

C
1
3
5
7

10

MARR
0.71
0.81
0.83
0.86
0.88

p=0.2
C
1
3
5
7

10

MARR
0.78
0.85
0.88
0.91
0.92

p=0.5
C
1
3
5
7

10

MARR
0.73
0.81
0.84
0.86
0.89

p=0.8

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Percentage of subjects in the candidate list (C)

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

A
R

R
)

p=0.2
p=0.5
p=0.8

Figure 4.6: Evaluation of the parameter p used for partitioning subjects in the gallery.
The theoretical optimal value for p is 0.5.

implying in p = 1− p = 0.5. It can also be solved as

pB =
1

N
=⇒ logp(

1

N
) = log2(N) =⇒ p = 0.5. (4.5)

It is possible to demonstrate that p = 0.5 minimizes the expected number of collisions

in the hash table. We conducted experiments with p equal to 0.2 and 0.8 and both

values resulted in poor performance. Figure 4.6 presents MARR considering p equal

to 0.2, 0.5 and 0.8 where it can be seen that both MARR curves for p = 0.2 and

p = 0.8 are below the curve for p = 0.5. Based on the aforementioned discussion, we

can conclude that (i) the performance of the proposed approach depends only on how

well a classifier can distinguish between two random subsets of subjects and (ii) each

subset must contain half of the subjects.

4.2.4 Number of Random Partitions

In principle, we may consider more than two balanced partitions in PLSH with no

additional computational cost. The number of partitions (b) will change only the base

of the logarithm in Equation 4.1 from 2 to b. In this case, b PLS regression vectors are

necessary to determine whether a test sample belongs to a specific partition. It is also

necessary to store the subjects in each partition to increment the vote-list when testing.

We experimented varying the number of partitions in PLSH using a categorical rather

than Bernoulli distribution with equal probability in each category. We also keep the

4.2. PLSH Parameter Validation 47

m=150,b=2
m=50,b=3
m=30,b=5
m=25,b=6

m=15,b=10

MARR
0.76
0.64
0.70
0.71
0.71

m=10,b=15
m=6,b=25
m=5,b=30
m=3,b=50
m=2,b=75

MARR
0.74
0.79
0.80
0.74
0.74

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

m=150,b=2
m=50,b=3

m=30,b=5
m=25,b=6

m=15,b=10
m=10,b=15

m=6,b=25
m=5,b=30

m=3,b=50
m=2,b=75

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

AR
R

)

Figure 4.7: Evaluation of the partition number.

computational cost constant by fixing the number of regression vectors necessary to

split samples in b partitions and varying the quantity of hash functions (m).

Figure 4.7 presents MARR for different configurations of m and b and with 1%

of subjects in the candidate list. The number of projections is fixed in 150, which

returns MARR equal to 0.76 using two partitions (m = 150, b = 2). The number of

hash functions tested were m ∈ {50, 30, 25, 15, 10, 6, 5, 3, 2}. Although the results are

not strong enough to discard the use of multiple partitions, no significant increase in

MARR compared to the binary partition was found. In conclusion, to keep PLSH

simple and easy to employ, we consider the binary partition to remove the need to

estimate the parameter b.

4.2.5 Voting Scheme

The voting scheme allows sorting subjects in the gallery according to the association of

the test sample to the positive and negative subsets. In this case, there are two intuitive

approaches to associate scores to subjects in the vote-list. One approach consists in

adding scores, as suggested in PLSH. The other approach consists in multiplying scores,

which is akin to the intersection of subjects in the subsets that include the test sample.

In this section, we discuss the implementation of the latter approach and compare it

with the addition of scores.

The product of scores is carried as follows: Let mj = {h(x),P ,N} be the j-th

hash model with the regression function h(x) → R, subjects in the positive P and

48 Chapter 4. Experimental Results

C
1
3
5
7

10

MARR
0.70
0.80
0.84
0.86
0.90

Time (ms)
82
96

110
124
145

Product of scores

C
1
3
5
7

10

MARR
0.74
0.82
0.87
0.90
0.91

Time (ms)
74
86
98

109
129

Sum of scores

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Percentage of subjects in the candidate list (C)

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

A
R

R
)

Product of scores
Sum of scores

Figure 4.8: Comparison between score combination using product and sum.

negative N subsets. Let si = {|r1|, ..., |rk|} be a list of scores for the subject i in the

gallery, where |rj| is included in si if rj > 0 and i ∈ P or if rj < 0 and i ∈ N . The

combination of scores using product consists in associating

p =
∏
r∈si

|r|, (4.6)

log(p) =
∑
r∈si

log(|r|+ ε), ε→ 0, (4.7)

to the i-th element in the vote-list. The sum of log is employed in Equation 4.7 instead

of the direct product of scores to avoid numeric errors (ε is a small positive constant).

Equation 4.7 explicitly shows the difference between the sum and product of scores,

which is the use of log in the latter.

Figure 4.8 presents the comparison between sum and product to combine scores.

The average time to test samples is present in the tables of Figure 4.8 and, as expected,

the product of scores is slightly slower than the sum approach due to the log operations.

Note that there is no large difference between the two approaches in terms of MARR,

therefore, we consider the sum of scores in PLSH and ePLSH.

4.2.6 Characterization of the Vote-List

Figure 4.9 presents the profile of vote values for projections drawn from the multivariate

normal distribution N (0, I) and PLSH. As discussed in Section 2.2.2, the random

projections approximate the cosine distance. The horizontal axis contains positions in

4.2. PLSH Parameter Validation 49

-5000 0 5000 10000

-10000

-5000

0

5000

10000

15000

0 250 500 750 1000 1250
Position in the candidate list

A
ve

ra
ge

d
vo

te
s

(a)

-10 0 10 20

-10

0

10

20

30

0 250 500 750 1000 1250
Position in the candidate list

A
ve

ra
ge

d
vo

te
s

(b)

Figure 4.9: Comparison of vote values in (a) projection based on the standard mul-
tivariate normal distribution (N (0, I)) and (b) PLSH. N (0, I) is employed in LSH
methods to approximate l2 distances.

the candidate list (there are 1, 196 subjects in the gallery) and the vertical axis contains

the averaged vote value in the test set. Ribbons represent standard deviation and the

small plots inside each figure show the histograms of the averaged vote values.

The conclusion is that the voting scheme employed in PLSH provides a bimodal

distribution of vote values. One mode refers to the correct subject in the face gallery

(represented by the small peak around the values 10,000 and 22 in the small plots inside

Figures 4.9a and 4.9b, respectively). The other mode is relative to other subjects in the

face gallery and manifests roughly as a normal distribution with zero mean. The zero

mean results from the sum of r, which are learned to split samples equally using score

values. In practice, what can be concluded from Figure 4.9 is that roughly half of the

subjects with negative votes can be discarded in the vote-list. This heuristic is employed

to reduce by half the computational cost of sorting the vote-list. Furthermore, this

heuristic can be employed in any approach that consider the voting scheme described

for PLSH, given that r does not present bias toward any number other than zero.

4.2.7 Stability of the Results

Figure 4.10 presents the mean MARR and standard deviation when running PLSH

10 times. Although PLSH is a nondeterministic method, it still provide fair stability,

assessing that all experiments performed in this sections are easily reproducible and

present statistical relevance. For instance, the best individual feature descriptor in

Section 4.2.1, Gabor filter, provides MARR (at 1% of subjects in the candidate list)

equal to 0.67, which is considerable lower than the averaged 0.76 MARR presented in

50 Chapter 4. Experimental Results

C
 1
 3
 5
 7
10

Mean
0.761
0.834
0.866
0.889
0.913

St. Dev.
0.031
0.029
0.023
0.021
0.0210.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Percentage of candidates visited (C)

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

A
R

R
)

Figure 4.10: Average MARR and standard deviation for 10 PLSH runs considering 1%
of subjects in the candidate list.

Figure 4.10. The conclusion is that even with the variation in the results from the

feature combination, PLSH rarely presents MARR equals to 0.67, assessing that the

combination of features is better than individual features.

4.3 ePLSH Parameter Validation

In this section, we conduct experiments regarding stability and scalability of ePLSH

in Sections 4.3.1 and 4.3.4, respectively. The feature selection methods described in

Section 3.4 are evaluated in Section 4.3.2. A discussion regarding the number of features

selected is presented in Section 4.3.3.

All experiments in this section consider the combination of CLBP, Gabor filters,

HOG and SIFT feature descriptors. Discussion regarding the choice of other parameters

and features have been presented found in PLSH Section 4.2.

4.3.1 Stability of the Results

The same experiment regarding stability of the PLSH results is performed for ePLSH

in this section. The averaged MARR and standard deviation for 10 ePLSH runs are

presented in Figure 4.11. We are considering regression coefficients for feature selection

in this experiment and we retrain the PLS model after the feature selection step as

discussed in Section 3.4. In this case, the ePLSH presents considerable more stable

results than PLSH, with standard deviation around 0.006 compared to 0.03 in PLSH.

4.3. ePLSH Parameter Validation 51

C
 1
 3
 5
 7
10

Mean
0.944
0.962
0.974
0.979
0.985

St. Dev.
0.006
0.006
0.008
0.005
0.0060.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Percentage of candidates visited (C)

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

A
R

R
)

Figure 4.11: Average MARR and standard deviation for 10 ePLSH runs considering
1% of subjects in the candidate list.

We believe that the increase in stability is a consequence of the augmented number of

hash models, which reduces the variance of the sum of scores in the vote-list, resulting

in a more stable distribution.

4.3.2 Feature Selection

In this section, we compare the feature selection approaches described in Section 3.4.

We also compare whether we should retrain the PLS model in the regression coeffi-

cients approach to redistribute weights from the discarded feature among the selected

features. According to the results presented in Figure 4.12, there is no significant dif-

ference in the feature selection approaches evaluated. Considering the experiments in

Section 4.3.1, the MARR at 1% of subjects in the candidate list for the regression

coefficients approach vary roughly between 0.92 and 0.96. In this case, it can be con-

cluded that the regression coefficients approach is better than the loading weights and

VIP. Furthermore, there is no significant difference between retraining or not the hash

model regression coefficients after the feature selection step.

4.3.3 Number of Hash Models and Selected Features

Figure 4.13 presents MARR for 1% of subjects in the candidate list for different num-

bers of hash models (m) and selected features (d). The ePLSH aims at reducing the

computational cost to evaluate PLSH hash functions, which can be roughly approx-

52 Chapter 4. Experimental Results

C
1
3
5
7

10

MARR
0.91
0.94
0.95
0.97
0.97

Loading
weights

C
1
3
5
7

10

MARR
0.91
0.96
0.97
0.97
0.98

VIP
C
1
3
5
7

10

MARR
0.94
0.96
0.99
0.99
1.00

Regression coef.
C
1
3
5
7

10

MARR
0.93
0.96
0.97
0.97
0.97

Regression coef.
(no retrain)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Percentage of candidates visited (C)

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

AR
R

)
Feature selection approach

Loading weights
VIP
Regression coef.
Regression coef. (no retrain)

Figure 4.12: Evaluation of loading weights, variable importance on projection (VIP)
and regression coefficients for feature selection.

imated to a number of multiplication operations equal to m × d. It is important to

point out that d equal to 500 provides nearly the same MARR for a sufficient large

enough m. Therefore, we fix d to 500 and vary m for different datasets and number

of subjects in the face gallery. In this case, we achieve minimum computational cost

with almost maximum MARR using 5, 000 hash models and resulting in 2.5 million

multiplications. Note that this number of multiplications refers only to the ePLSH ap-

proach such that the total computational cost of the pipeline also includes the number

of multiplications in the face identification. As a comparison, the number of multipli-

cations necessary in the brute-force approach for the 1, 196 subjects in the gallery is

1, 196 × 120, 059 = 143.5 millions, which is about 57 times more than the number of

multiplications necessary to calculate all of the 5, 000 ePLSH hash functions.

The time spent to calculate each ePLSH hash function is considerable lower than

PLSH hash functions. Since both approaches consists in a dot product between the

feature vector and the regression vector, the number of multiplications needed to com-

pute each hash function is equal to the dimensionality of the feature vector in PLSH

(120, 059 multiplications) and equal to the number of selected features in ePLSH (500

multiplications). In this way, ePLSH hash functions should be theoretically 240 times

faster than PLSH hash functions. However, the nonlinear access to the feature vector

in ePLSH hash functions may induce an additional overhead due to the weak locality of

reference (accessing positions in the memory that are far from each other). We also use

the same implementation of NIPALS algorithm for PLSH and ePLSH and we make

4.3. ePLSH Parameter Validation 53

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 1k 5k 10k
Number of hash models

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

AR
R

)

#Feature
selected

100
500

1k
5k

Figure 4.13: MARR with different numbers of hash models and the feature selected in
ePLSH.

copies of values in the feature vector to evaluate ePLSH hash functions, which also

reduce the speedup obtained in ePLSH. The best option should be directly indexing

and multiplying values from the regression and the feature vectors and storing the sum

without making copy of values.

The average time to calculate each PLSH hash function is 446 microseconds com-

pared to 12 microseconds for each ePLSH hash function. However, since a considerable

number of hash functions is employed in ePLSH compared to PLSH, the time to train

ePLSH is significant higher than PLSH. The time spent to train all the 5, 000 hash

functions in ePLSH is 14 hours compared to 22 minutes for the 150 hash functions in

PLSH, which may not impose an issue because the train is performed offline and only

once for a fixed face gallery. The train can also be accelerated considering other PLS

algorithms such as SIMPLS [De Jong, 1993] rather than NIPALS.

4.3.4 Number of Hash Models and Gallery Size

In all experiments presented so far, we considered a fixed number of subjects in the

gallery, which are in total 1, 196 for the FERET dataset. We still need to assess the

ePLSH performance with an increasing number of subjects in the face gallery, which,

theoretically, should require a logarithmic number of hash models to index the subjects

in the face gallery (see Section 4.2.3). For the experiment in this section, we randomly

select 50, 100, 250, 500, 750, 1000 subjects in the FERET dataset to be enrolled onto

the face gallery. We consider the fb test set in FERET because it has more test

54 Chapter 4. Experimental Results

Subjects
 50
 100
 250
 500
 750
1000
1196

#Models
 50
 50
150
350
500
550
550

MARR (1%)
0.980
0.950
0.956
0.954
0.955
0.954
0.952

50

100

150

200

250

300

350

400

450

500

550

0 100 250 500 750 1000 1200
Number of subjects in the gallery

N
um

be
r o

f h
as

h
m

od
el

s

Figure 4.14: Number of hash models necessary to provide at least 0.95 MARR with
different gallery sizes and 1% of subjects in the candidate list.

samples (1, 195 in total) and ePLSH because it provides more stable and better results

than PLSH. We also consider only test samples of subjects enrolled in the face gallery

because we are evaluating the closed set recognition. We raise the number of hash

models from 50 to 550, in steps of 50, until we reach at least 0.95 MARR for 1% of

subjects in the candidate list.

The results in Figure 4.14 demonstrate that at least the number of hash models

necessary to maintain accuracy is logarithmic with the size of the face gallery. However,

the number of subjects in the candidate list still depend on 1% of the gallery size.

The problem in this case is that the face identification still needs to evaluate 1% of

subjects in the face gallery, considering the worst case of the early-stop heuristic. We

tried varying the percentage -or fixing to a small value- the number of subjects in the

candidate list, but for both cases, the number of hash models did not stabilize for the

number of enrolled subjects evaluated. We believe this happens because the number

of subjects in our evaluation is not large enough to demonstrate convergence of the

number of hash models. Nonetheless, Figure 4.14 indicates that we can reduce at least

in two orders of magnitude the number of subjects evaluated in the face identification,

which is so far, the best known result in the literature as will be presented in the next

sections.

4.4. Results on the FERET Dataset 55

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Percentage of candidates visited (C)

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

AR
R

)

Test set
fb
fc
dup1
dup2

(a)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Percentage of candidates visited (C)

Ra
nk

-1
 re

co
gn

iti
on

 ra
te

Test set
fb (97.90)
fc (99.48)
dup1 (88.91)
dup2 (87.17)

(b)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Percentage of candidates visited (C)

M
ax

im
um

 a
ch

ie
va

bl
e

re
co

gn
iti

on
 ra

te
 (M

AR
R

)

Test set
fb
fc
dup1
dup2

(c)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Percentage of candidates visited (C)

Ra
nk

-1
 re

co
gn

iti
on

 ra
te

Test set
fb (97.90)
fc (99.48)
dup1 (88.91)
dup2 (87.17)

(d)

Figure 4.15: Results on the FERET dataset. (a) PLSH MARR curves, (b) PLSH rank-1
recognition rate, (c) ePLSH MARR curves and (d) ePLSH rank-1 recognition rate.
Number in parenthesis indicate rank-1 recognition rate for the brute force approach.

4.4 Results on the FERET Dataset

Results regarding MARR and rank-1 recognition rate for PLSH in all test sets from

the FERET dataset are presented in Figures 4.15a and 4.15b. For the test sets fb and

fc, about 1% of subjects in the candidates list is enough to achieve more than 95%

of the rank-1 recognition rate of the brute-force approach (presented in the legend of

Figure 4.15b for each test set). However, for the test sets dup1 and dup2, about 5% of

subjects in the candidate list ensured at least 95% of the brute-force rank-1 recognition

rate. The theoretical speedup in the worst case can be calculated considering the 150

PLSH hash function evaluations and the 5% of the gallery size, which consists of 60

PLS projections. In this case, if the early-stop search heuristic is not considered, i.e.,

all subjects in the candidate list are evaluated for each test sample, the number of

56 Chapter 4. Experimental Results

PLS projections would be 210 compared to the 1, 196 projections necessary in the

brute-force approach, which would still results in a 5.6 times speedup.

Results from ePLSH are presented in Figures 4.15c and 4.15d. Using only 1%

of subjects in the candidate list, it is possible to recover all subjects in the rank-1

recognition rate from brute-force approach for all four test sets. In this case, the rank-

1 recognition rate from the ePLSH pipeline is the same as the brute-force approach,

but with reduction to 1% of the subjects evaluated in the identification. Considering

that the cost to evaluate all hash models in ePLSH is about the same as in PLSH, the

theoretical speedup is 7.38 times compared to the brute-force approach in the worst

case.

4.5 Results on the FRGC Dataset

Results from the FRGC dataset for PLSH and ePLSH are presented in Table 4.1

along with results from three other methods as presented in the literature. The

three methods are the cascade of rejection classifiers (CRC) from [Yuan et al., 2005],

the PLS-based search tree [Schwartz et al., 2012], and our previous published

work [Santos Jr et al., 2015], which consists of PLSH with the combination of HOG,

Gabor filter and LBP feature descriptors. For PLSH and ePLSH, we vary the number of

hash models and the maximum percentage of subjects visited in the candidate list and

we present the results with rank-1 recognition rate close to 0.95 and higher speedups.

In this way, it is possible to compare directly the maximum speedup achievable when

using PLSH and ePLSH compared to the other approaches, which also provide rank-1

recognition rate close to 0.95.

Results for a fixed setup that provide at least 0.95 rank-1 recognition rate

are also provided, consisting of 50 hash models with 25% of subjects in the candi-

date list for PLSH and 200 hash models with 10% of subjects in the candidate list

for ePLSH. The experiments were conducted with the following percentages of sub-

jects in the candidate list (rounding up): 0.1, 0.5, 1, 3, 5, 7, 10, 13, 15, 20, 25, 30. The

number of hash models evaluated are: 10, 15, 20, 25, 30, 35, 40, 45, 50; for PLSH, and

25, 50, 75, 100, 125, 150, 175, 200, for ePLSH.

According to Table 4.1, the rank-1 recognition rate is reasonably stable, with

variance in the first decimal place, which is similar to the results regarding stability

presented for PLSH and ePLSH. The speedup for PLSH and ePLSH decreases consid-

erable as the number of samples per subject available for train reduces. The reason for

that is the increase in the number of hash models and the maximum number of subjects

4.5. Results on the FRGC Dataset 57

visited in the candidate list to guarantee at least 0.95 rank-1 recognition rate. Even

with reduced speedups considering 35% of samples available for train, ePLSH provides

significant improvement over the speedup achieved by the tree-based approach (3.6

times faster), while PLSH provide competitive speedup.

The speedup provided by PLSH and ePLSH compared to the tree-based approach

is noticed with 90% of the samples available for train, where PLSH is about 5 times

faster than the tree-based approach while ePLSH is about 13 times faster than PLSH.

Finally, in the worse case, ePLSH provides at least 14 times speedup considering the

brute-force approach in the setup with 200 hash models and 10% of subjects in the

candidate list.

58
C
h
a
p
t
e
r
4
.
E
x
p
e
r
im

e
n
t
a
l
R
e
su

lt
s

% of samples
for train 90% 79% 68% 57% 35%

CRC
[Yuan et al., 2005]

Speedup 1.58× 1.58× 1.60× 2.38× 3.35×
Rank-1 rec. rate 80.5% 77.7% 75.7% 71.3% 58.0%

Tree-based
[Schwartz et al., 2012]

Speedup 3.68× 3.64× 3.73× 3.72× 3.80×
Rank-1 rec. rate 94.3% 94.9% 94.3% 94.46% 94.46%

PLSH
[Santos Jr et al., 2015]
HOG,Gabor filter,LBP

Speedup (16.84± 1.56)× (7.30± 1.40)× (5.66± 0.41)× (3.42± 0.34)× (2.79± 0.11)×
Rank-1 rec. rate (96.5± 0.7)% (96.7± 1.6)% (93.4± 1.3)% (93.6± 0.5)% (93.3± 0.7)%
Hash models 10 20 25 35 35
Max. candidates 3% 10% 13% 20% 30%

PLSH

Speedup (18.24± 1.28)× (8.61± 0.30)× (6.95± 0.31)× (3.96± 0.05)× (3.49± 0.17)×
Rank-1 rec. rate (95.31± 0.62)% (95.31± 0.70)% (93.60± 1.15)% (94.67± 0.34)% (94.60± 0.16)%
Hash models 10 20 30 50 50
Max. candidates 3% 13% 13% 15% 25%

PLSH - 50 hash models
25% max. candidates

Speedup (2.95± 0.03)× (4.00± 0.16)× (4.13± 0.30)× (3.16± 0.03)× (3.49± 0.17)×
Rank-1 rec. rate (99.69± 0.12)% (98.26± 0.06)% (97.74± 0.42)% (96.19± 0.15)% (94.60± 0.16)%

ePLSH

Speedup (233.61± 37.05)× (98.93± 8.39)× (45.42± 3.84)× (22.29± 1.03)× (14.21± 1.74)×
Rank-1 rec. rate (96.03± 0.70)% (95.02± 0.45)% (95.98± 0.31)% (94.67± 0.49)% (94.44± 0.40)%
Hash models 50 100 150 150 200
Max. candidates 0.1% 0.5% 3% 5% 10%

ePLSH - 200 hash models
10% max. candidates

Speedup (19.74± 1.35)× (16.30± 1.01)× (19.12± 1.89)× (12.28± 0.57)× (14.21± 1.74)×
Rank-1 rec. rate (99.79± 0.22)% (98.30± 0.11)% (97.63± 0.04)% (96.71± 0.36)% (94.44± 0.40)%

Table 4.1: Comparison between the proposed approach and other approaches in the literature. The highest speedups are shown
in bold.

Chapter 5

Conclusions and Future Works

In this work, we proposed and evaluated PLSH and its extension ePLSH for face in-

dexing. PLSH is inspired by the well-known locality-sensitive hashing for large-scale

image retrieval and PLS for face identification, which provides fast and robust results

for face indexing. Additional gain in speedup was achieved with the ePLSH, a method

that employs PLS-based feature selection to reduce the computational cost to evaluate

hash functions, enabling a large amount of additional hash functions to be employed

and raising the indexing precision. We evaluated several parameters and alternative

implementations of PLSH in the hope that they will be useful for future face index-

ing development. The experiments were conducted on two face identification standard

datasets, FERET and FRGCv1, with 1, 196 and 275 subjects, respectively. Although

these datasets do not provide enough number of subjects for a proper evaluation regard-

ing scalability to large galleries, PLSH and ePLSH still provide significant improvement

in speedup compared to other scalable face identification approaches in the literature.

The conclusions and considerations regarding PLSH and ePLSH are the following:

• They support for high dimensional feature vectors, allowing different comple-

mentary feature descriptors to be employed to increase the robustness of the face

indexing.

• They are easy to implement and deploy in practice since the only parameters

needed to be set are the number of hash models and subjects in the candidate

list (considering a fixed set of parameters for the feature descriptors and face

identification.).

• They do not provide good performance when the number of samples per subject

is reduced.

59

60 Chapter 5. Conclusions and Future Works

• Incremental enrollment of subjects in the framework requires re-training of the

hash models, which may be prohibitive to perform in practice, specially for ePLSH

which demands considerable more hash models.

In future works, we may consider the incremental learning algorithm for PLS

rather than NIPALS [Zeng and Li, 2014], which might solve the issue regarding the in-

cremental enrollment of subjects. We also may consider learning PLSH hash models for

different subsets of subjects in the gallery, which have already been extensively study

by de Paulo Carlos et al. [2015] to make PLS face identification scalable to incremen-

tal enrollment of subjects in the gallery. In this way, it is possible, for instance, to

distribute the processing among numerous nodes in a computer cluster, which should

be necessary to scale the approach for millions of subjects. The performance drop of

PLSH and ePLSH when there are few samples per subject in the face gallery might

be alleviated by generating synthetic samples using face morphing methods, which

has already been considered for PLS face identification to leverage the recognition

rates [Schwartz et al., 2012]. Finally, the main issue regarding the experiments in this

work is the low number of subjects in the datasets, which hampers the possibility to

demonstrate scalability for PLSH and ePLSH. Large face identification datasets are

challenging to build since they require large human effort to label and verify correct-

ness of the identities associated to the face images. However, building large datasets

for face identification might be possible by crawling face images in the Internet using

the same principles employed in the LFW dataset [Huang et al., 2007] or using human

work services such Amazon Mechanical Turk.

Bibliography

Ahonen, T., Hadid, A., and Pietikainen, M. (2006). Face description with local binary

patterns: Application to face recognition. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 28(12):2037–2041.

Alahi, A., Ortiz, R., and Vandergheynst, P. (2012). Freak: Fast retina keypoint.

In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, pages

510–517.

Andoni, A. and Indyk, P. (2006). Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. In Foundations of Computer Science, IEEE

Symposium on, pages 459–468.

Barkan, O., Weill, J., Wolf, L., and Aronowitz, H. (2013). Fast high dimensional vector

multiplication face recognition. In Computer Vision (ICCV), IEEE Conference on,

pages 1960–1967.

Basri, R. and Jacobs, D. (2004). Illumination modeling for face recognition. In Hand-

book of Face Recognition, pages 89–111. Springer.

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features

(SURF). Computer Vision and Image Understanding, Elsevier Transactions on,

110(3):346–359.

Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. (1997). Eigenfaces vs. fish-

erfaces: Recognition using class specific linear projection. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 19(7):711–720.

Bradski, G. (2000). The OpenCV Library. Software Tools, Dr. Dobb’s Journal of.

Retrieved online from http: // opencv. org/ on August 2015.

Broder, A. Z. (1997). On the resemblance and containment of documents. In Com-

pression and Complexity of Sequences, IEEE Conference on, pages 21–29.

61

http://opencv.org/

62 Bibliography

Bronstein, A. M., Bronstein, M. M., Guibas, L. J., and Ovsjanikov, M. (2011). Shape

Google: Geometric words and expressions for invariant shape retrieval. Graphics

(TOG), ACM Transactions on, 30(1):1.

Brutlag, J. (2009). Speed matters for google web search. Technical report,

Google. Retrieved online at http://googleresearch.blogspot.com/2009/06/

speed-matters.html on August, 2015.

Chandrasekhar, V., Takacs, G., Chen, D., Tsai, S., Grzeszczuk, R., and Girod, B.

(2009). CHOG: Compressed histogram of gradients a low bit-rate feature descriptor.

In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, pages

2504–2511.

Chandrasekhar, V., Takacs, G., Chen, D. M., Tsai, S. S., Reznik, Y., Grzeszczuk, R.,

and Girod, B. (2012). Compressed histogram of gradients: A low-bitrate descriptor.

Computer Vision, Springer Journal of, 96(3):384–399.

Chávez, E., Navarro, G., Baeza-Yates, R., and Marroqúın, J. L. (2001). Searching in

metric spaces. Computing Surveys (CSUR), ACM Transactions on, 33(3):273–321.

Chellappa, R., Sinha, P., and Phillips, P. J. (2010). Face recognition by computers and

humans. Computer, IEEE Transactions on, 43(2):46–55.

Chen, H.-T., Chang, H.-W., and Liu, T.-L. (2005). Local discriminant embedding and

its variants. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference

on, volume 2, pages 846–853.

Chum, O., Philbin, J., Zisserman, A., et al. (2008). Near duplicate image detection:

min-hash and tf-idf weighting. In British Machine Vision Conference (BMVC).,

volume 810, pages 812–815.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detec-

tion. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on,

volume 1, pages 886--893.

Dasgupta, S. and Freund, Y. (2008). Random projection trees and low dimensional

manifolds. In Theory of Computing, ACM Symposium on, pages 537–546.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-sensitive

hashing scheme based on p-stable distributions. In Computational Geometry. ACM

Symposium on, pages 253–262.

http://googleresearch.blogspot.com/2009/06/speed-matters.html
http://googleresearch.blogspot.com/2009/06/speed-matters.html

Bibliography 63

De Jong, S. (1993). Simpls: an alternative approach to partial least squares regres-

sion. Chemometrics and Intelligent Laboratory Systems, Elsevier Transactions on,

18(3):251–263.

de Paulo Carlos, G., Pedrini, H., and Schwartz, W. R. (2015). Classification schemes

based on partial least squares for face identification. Journal of Visual Communica-

tion and Image Representation, 32:170 – 179. ISSN 1047-3203.

Deng, W., Hu, J., and Guo, J. (2012). Extended SRC: Undersampled face recognition

via intraclass variant dictionary. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 34(9):1864–1870.

Deng, W., Hu, J., and Guo, J. (2013). In defense of sparsity based face recognition.

In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, pages

399–406.

Erin Liong, V., Lu, J., Wang, G., Moulin, P., and Zhou, J. (2015). Deep hashing

for compact binary codes learning. In Computer Vision and Pattern Recognition

(CVPR), IEEE Conference on, pages 2475–2483.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Eu-

genics, Wiley Online Library Annals of, 7(2):179–188.

Gan, G., Ma, C., and Wu, J. (2007). Appendix B: The kd-Tree Data Structure, chap-

ter 22, pages 375–376. Siam.

Gong, Y., Lazebnik, S., Gordo, A., and Perronnin, F. (2013). Iterative quantization: A

procrustean approach to learning binary codes for large-scale image retrieval. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 35(12):2916–2929.

Gu, W., Xiang, C., Venkatesh, Y., Huang, D., and Lin, H. (2012). Facial expression

recognition using radial encoding of local gabor features and classifier synthesis.

Pattern Recognition, Elsevier Transactions on, 45(1):80–91.

Guo, H., Schwartz, W. R., and Davis, L. S. (2011). Face verification using large

feature sets and one shot similarity. In Biometrics (IJCB), IEEE International

Joint Conference on, pages 1–8.

Har-Peled, S. (2001). A replacement for voronoi diagrams of near linear size. In

Foundations of Computer Science. IEEE Symposium on, pages 94–.

64 Bibliography

He, B., Xu, D., Nian, R., van Heeswijk, M., Yu, Q., Miche, Y., and Lendasse, A. (2014).

Fast face recognition via sparse coding and extreme learning machine. Cognitive

Computation, Springer Transactions on, 6(2):264–277.

He, K., Wen, F., and Sun, J. (2013). K-means hashing: An affinity-preserving quanti-

zation method for learning binary compact codes. In Computer Vision and Pattern

Recognition (CVPR), IEEE Conference on, pages 2938–2945.

Hua, G., Brown, M., and Winder, S. (2007). Discriminant embedding for local image

descriptors. In Computer Vision (ICCV), IEEE Conference on, pages 1–8.

Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. (2007). Labeled faces in

the wild: A database for studying face recognition in unconstrained environments.

Technical report 07-49, University of Massachusetts, Amherst.

Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: towards removing

the curse of dimensionality. In Theory of Computing, ACM Symposium on, pages

604–613.

Jain, P., Kulis, B., and Grauman, K. (2008). Fast image search for learned metrics.

In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, pages

1–8.

Jégou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., and Schmid, C. (2012). Ag-

gregating local image descriptors into compact codes. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 34(9):1704–1716.

Joly, A. and Buisson, O. (2011). Random maximum margin hashing. In Computer

Vision and Pattern Recognition (CVPR), IEEE Conference on, pages 873–880.

Joly, A., Frélicot, C., and Buisson, O. (2004). Feature statistical retrieval applied to

content based copy identification. In Image Processing (ICIP). IEEE Conference on,

volume 1, pages 681–684.

Kämäräinen, J.-K., Hadid, A., and Pietikäinen, M. (2011). Local representation of

facial features. In Handbook of Face Recognition, pages 79–108. Springer.

Klare, B. F. and Jain, A. K. (2013). Heterogeneous face recognition using kernel pro-

totype similarities. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 35(6):1410–1422.

Bibliography 65

Kulis, B., Jain, P., and Grauman, K. (2009). Fast similarity search for learned metrics.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(12):2143–

2157.

Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). Brisk: Binary robust invariant

scalable keypoints. In Computer Vision (ICCV), IEEE Conference on, pages 2548–

2555.

Li, S. Z. and Jain, A. K. (2011). Handbook of Face Recognition. Springer Publishing

Company, Incorporated, 2nd edition. ISBN 085729931X, 9780857299314.

Liao, S., Jain, A. K., and Li, S. Z. (2013). Partial face recognition: Alignment-

free approach. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

35(5):1193–1205.

Lin, K., Yang, H.-F., Hsiao, J.-H., and Chen, C.-S. (2015). Deep learning of binary

hash codes for fast image retrieval. In Computer Vision and Pattern Recognition

Workshops (CVPRW), IEEE Conference on, pages 27–35.

Liu, T., Moore, A. W., Yang, K., and Gray, A. G. (2004). An investigation of prac-

tical approximate nearest neighbor algorithms. In Advances in Neural Information

Processing Systems, Conference on, pages 825–832. The MIT Press.

Liu, W., Wang, J., Ji, R., Jiang, Y.-G., and Chang, S.-F. (2012). Supervised hashing

with kernels. In Computer Vision and Pattern Recognition (CVPR), IEEE Confer-

ence on, pages 2074–2081.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Com-

puter Vision, Springer Journal of, 60(2):91–110.

Mehmood, T., Liland, K. H., Snipen, L., and Sæbø, S. (2012). A review of variable

selection methods in partial least squares regression. Chemometrics and Intelligent

Laboratory Systems, Elsevier Transactions on, 118:62–69.

Mevik, B.-H. and Wehrens, R. (2007). The PLS package: principal component and

partial least squares regression in R. Statistical Software, American Statistical As-

sociation Journal of, 18(2):1–24.

Mopuri, K. and Babu, R. (2015). Object level deep feature pooling for compact image

representation. In Computer Vision and Pattern Recognition Workshops (CVPRW),

IEEE Conference on, pages 62–70.

66 Bibliography

Motwani, R., Naor, A., and Panigrahy, R. (2007). Lower bounds on locality sensitive

hashing. Discrete Mathematics, SIAM Journal on, 21(4):930–935.

Muja, M. and Lowe, D. G. (2014). Scalable nearest neighbor algorithms for high

dimensional data. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 36.

Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In

Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, volume 2,

pages 2161–2168.

Norouzi, M. and Blei, D. M. (2011). Minimal loss hashing for compact binary codes.

In Machine Learning (ICML), International Conference on, pages 353–360.

Norouzi, M., Punjani, A., and Fleet, D. J. (2012). Fast search in hamming space with

multi-index hashing. In Computer Vision and Pattern Recognition (CVPR), IEEE

Conference on, pages 3108–3115.

Oh, J., Choi, S.-I., Kim, C., Cho, J., and Choi, C.-H. (2013). Selective generation

of gabor features for fast face recognition on mobile devices. Pattern Recognition,

Elsevier Transactions on, 34(13):1540–1547.

Pang, S., Kim, D., and Bang, S. Y. (2005). Face membership authentication using

SVM classification tree generated by membership-based LLE data partition. Neural

Networks, IEEE Transactions on, 16(2):436–446.

Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K.,

Marques, J., Min, J., and Worek, W. (2005). Overview of the face recognition grand

challenge. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference

on, volume 1, pages 947–954.

Phillips, P. J., Moon, H., Rizvi, S. A., and Rauss, P. J. (2000). The FERET evalu-

ation methodology for face-recognition algorithms. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 22(10):1090–1104.

Poullot, S., Buisson, O., and Crucianu, M. (2007). Z-grid-based probabilistic retrieval

for scaling up content-based copy detection. In Image and Video Retrieval. ACM

Conference on, pages 348–355.

Randen, T. and Husoy, J. H. (1999). Filtering for texture classification: A comparative

study. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 21(4):291–

310.

Bibliography 67

Rosipal, R. and Kramer, N. (2006). Overview and recent advances in partial least

squares. In Subspace, Latent Structure and Feature Selection: Statistical and Op-

timization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, Revised Selected

Papers, volume 3940, page 34. Springer.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: an efficient

alternative to SIFT or SURF. In Computer Vision (ICCV), IEEE Conference on,

pages 2564–2571.

Salah, S. H., Du, H., and Al-Jawad, N. (2013). Fusing local binary patterns with wavelet

features for ethnicity identification. Signal Image Process, IEEE Transactions on,

21(5):416–422.

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted Boltzmann machines

for collaborative filtering. In Machine learning. International Conference on, pages

791–798.

Santos Jr, C. E., Kijak, E., Gravier, G., and Schwartz, W. R. (2015). Learning to hash

faces using large feature vectors. In Content-Based Multimedia Indexing (CBMI),

13th IEEE International Workshop on, pages 1–6.

Santos Jr, C. E. and Schwartz, W. R. (2014). Extending face identification to open-set

face recognition. In Graphics, Patterns and Images (SIBGRAPI), IEEE Conference

on, pages 188–195.

Schwartz, W. R., Guo, H., Choi, J., and Davis, L. S. (2012). Face identification using

large feature sets. Image Processing, IEEE Transactions on, 21(4):2245–2255.

Shakhnarovich, G. (2005). Learning task-specific similarity. PhD thesis, Massachusetts

Institute of Technology.

Shakhnarovich, G. and Moghaddam, B. (2011). Face recognition in subspaces. In

Handbook of Face Recognition, pages 19–49. Springer.

Silpa-Anan, C. and Hartley, R. (2008). Optimised KD-trees for fast image descriptor

matching. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference

on, pages 1–8.

Sirovich, L. and Kirby, M. (1987). Low-dimensional procedure for the characterization

of human faces. Optical Society of America A (JOSA), Optical Society of America

(OSA) Transactions on, 4(3):519–524.

68 Bibliography

Sproull, R. F. (1991). Refinements to nearest-neighbor searching in k-dimensional trees.

Algorithmica, Springer Transactions on, 6(1-6):579–589.

Srinivasan, B. V., Schwartz, W. R., Duraiswami, R., and Davis, L. (2010). Partial least

squares on graphical processor for efficient pattern recognition. Technical report,

University of Maryland. Computer Science Department. CS-TR-4968.

Strecha, C., Bronstein, A. M., Bronstein, M. M., and Fua, P. (2012). LDAHash:

Improved matching with smaller descriptors. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 34(1):66–78.

Terasawa, K. and Tanaka, Y. (2007). Spherical LSH for approximate nearest neighbor

search on unit hypersphere. In Algorithms and Data Structures, Springer Conference

on, pages 27–38. Springer.

Torralba, A., Fergus, R., and Weiss, Y. (2008). Small codes and large image databases

for recognition. In Computer Vision and Pattern Recognition (CVPR), IEEE Con-

ference on, pages 1–8.

Uhlmann, J. K. (1991). Satisfying general proximity/similarity queries with metric

trees. Information Processing Letters, Elsevier Transactions on, 40(4):175–179.

Valstar, M. F. and Pantic, M. (2012). Fully automatic recognition of the temporal

phases of facial actions. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, 42(1):28–43.

Vu, N.-S., Dee, H. M., and Caplier, A. (2012). Face recognition using the POEM

descriptor. Pattern Recognition, Elsevier Transactions on, 45(7):2478–2488.

Wang, H., Li, S. Z., and Wang, Y. (2004). Face recognition under varying lighting

conditions using self quotient image. In Automatic Face and Gesture Recognition,

IEEE Conference on, pages 819–824.

Wang, J., Kumar, S., and Chang, S.-F. (2012). Semi-supervised hashing for large-

scale search. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

34(12):2393–2406.

Wang, J., Shen, H. T., Song, J., and Ji, J. (2014a). Hashing for similarity search: A

survey. arXiv preprint arXiv:1408.2927.

Wang, J., Wang, N., Jia, Y., Li, J., Zeng, G., Zha, H., and Hua, X.-S. (2014b).

Trinary-projection trees for approximate nearest neighbor search. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 36(2):388–403.

Bibliography 69

Wechsler, H. (2009). Reliable face recognition methods: system design, implementation

and evaluation, volume 7. Springer-Verlag New York, Inc., Secaucus, NJ, USA. ISBN

038722372X.

Weiss, Y., Torralba, A., and Fergus, R. (2009). Spectral hashing. In Koller, D.,

Schuurmans, D., Bengio, Y., and Bottou, L., editors, Advances in Neural Information

Processing Systems 21, Curran Associates Conference on, pages 1753–1760.

Wold, H. (1985). Partial least squares. In Kotz, S. and Johnson, N., editors, Encyclo-

pedia of Statistical Science, pages 581–591. New York: Wiley.

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust face

recognition via sparse representation. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 31(2):210--227.

Xie, Z., Liu, G., and Fang, Z. (2012). Face recognition based on combination of human

perception and local binary pattern. In Intelligent Science and Intelligent Data

Engineering, Springer Revised Selected Papers on, pages 365–373. Springer.

Yuan, Q., Thangali, A., and Sclaroff, S. (2005). Face identification by a cascade

of rejection classifiers. In Computer Vision and Pattern Recognition Workshops

(CVPRW), IEEE Conference on, pages 152–152.

Zeng, X.-Q. and Li, G.-Z. (2014). Incremental partial least squares analysis of big

streaming data. Pattern Recognition, Elsevier Transactions on, 47(11):3726–3735.

Appendix A

Partial Least Squares Example in R
The goal in this chapter is to provide practical information regarding PLS implemen-

tation. A sample to calculate PLS beta regression vector is presented in Figure A.1.

The objective is to learn a PLS model (beta regression vector) that returns values close

to +1 for the flower parameters (petal length, sepal length and width), if the flower is

Virginica, and −1, otherwise. To prepare the data to learn the PLS model, we first

create a matrix Xn×3 with the n samples in the dataset (lines 1–5). Then, a target

matrix Ynx1 is created where each element yi is set to +1, if the correspondent element

in X is from Virginica flower or −1 otherwise (lines 6 and 7). The columns in the

matrices X and Y are normalized to zero mean, according to NIPALS algorithm, and

unit standard deviation to avoid that large-scale features receive more importance in

the projection even if it is not very discriminant (lines 11–13).

After setting the number of factors and reserving memory for PLS matrices (lines

16–24, see Equation 3.1 for definition of each matrix), we initialize randomly (alterna-

tively a column in X or XTY/||XTY ||) a regression direction ui (line 29) and iterate

until the maximum covariance axis is found (lines 32–43). In practice, few iterations

are necessary to find the maximum covariance axis. In our tests, we noticed that the

convergence is immediate, at the first iteration, and the value of W [, i] does not change

in the next iterations. Lines 45–50 remove the W [, i] contribution from X and Y so

the next iteration find a new regression direction orthogonal to previously calculated

directions. The β regression vector between the latent variables represented in the ma-

trices T and U can be calculated using Equation 3.2 (line 53). A copy of the original

target values Y is necessary to calculate the regression vector (line 10). In practice,

pseudo-inverse is employed to avoid errors regarding singular matrices. To test, it is

necessary to normalize the test sample (subtract the mean and divide by standard

deviation pre-calculated in lines 11–13), and calculate the dot product between the

normalized test sample and the beta regression vector.

71

72 Appendix A. Partial Least Squares Example in R

1 ## Prepare da ta s e t
2 v i r g i n i c a <− i r i s [i r i s $ Spec i e s == ’ v i r g i n i c a ’ , 1:3]
3 o the r s <− i r i s [i r i s $ Spec i e s != ’ v i r g i n i c a ’ , 1:3]
4
5 X <− as .matrix (rbind (v i r g i n i c a , o the r s))
6 Y <− rbind (matrix (data=+1 , nrow=nrow(v i r g i n i c a) , ncol=1) ,
7 matrix (data=-1 , nrow=nrow(o the r s) , ncol=1))
8
9 ## Normalize data
10 Ycopy <− Y
11 X <− X − apply (X, 2 , mean)
12 X <− X / apply (X, 2 , sd)
13 Y <− Y − apply (Y, 2 , mean)
14
15 ## Run NIPALS
16 f a c t o r s <− 2
17
18 ## reserve space f o r matr ices
19 T <− matrix (nrow=nrow(X) , ncol=f a c t o r s)
20 P <− matrix (nrow=ncol (X) , ncol=f a c t o r s)
21 U <− matrix (nrow=nrow(Y) , ncol=f a c t o r s)
22 Q <− matrix (nrow=ncol (Y) , ncol=f a c t o r s)
23 W<− matrix (nrow=ncol (X) , ncol=f a c t o r s)
24 B <− matrix (nrow=1 , ncol=f a c t o r s)
25
26 for (i in 1 : f a c t o r s) {
27
28 ## s t a r t ui randomly or with some column of X
29 U[, i] <− rnorm(n=nrow(U) , mean=0 , sd=1)
30
31 ## f ind maximum covar iance ax i s
32 for (epoc in 1:10) {
33
34 W[, i] <− t (X) %∗% U[, i]
35 W[, i] <−W[, i] / sqrt (t (W[, i]) %∗% W[, i]) [1 , 1]
36
37 T[, i] <− X %∗% W[, i]
38
39 Q[, i] <− t (Y) %∗% T[, i]
40 Q[, i] <− Q[, i] / sqrt (t (Q[, i]) %∗% Q[, i]) [1 , 1]
41
42 U[, i] <− Y %∗% Q[, i]
43 }
44 ## de f l a t e matr ices
45 B[, i] <− t (U[, i]) %∗% T[, i] / (t (T[, i]) %∗% T[, i]) [1 , 1]
46
47 P[, i] <− t (X) %∗% T[, i] / (t (T[, i]) %∗% T[, i]) [1 , 1]
48
49 X <− X − T[, i] %∗% t (P[, i])
50 Y <− Y − B[, i] ∗ (T[, i] %∗% t (Q[, i]))
51 }
52 ## Calcu la t e r e g r e s s i on c o e f f i c i e n t s
53 beta <− (W %∗% solve (t (P) %∗% W)) %∗% solve (t (T) %∗% T) %∗% t (T) %∗% Ycopy

Figure A.1: PLS sample code in R language used to discriminate Virginica from others
flowers in the IRIS dataset. This code was used to generate Figure 3.2.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of algorithms
	List of Acronyms
	1 Introduction
	2 Literature Review
	2.1 Face Identification
	2.1.1 Fast Face Identification

	2.2 Large-Scale Image Retrieval
	2.2.1 Tree-Based Approaches
	2.2.2 Locality-Sensitive Hashing
	2.2.3 Hamming-based Approaches

	3 Methodology
	3.1 Partial Least Squares Regression
	3.2 Face Identification Based on Partial Least Squares
	3.3 Partial Least Squares for Face Hashing (PLSH)
	3.3.1 Consistency
	3.3.2 Hamming Embedding
	3.3.3 Computational Requirements
	3.3.4 Alternative Implementations

	3.4 Feature Selection for Face Hashing (ePLSH)
	3.4.1 Loading Weights
	3.4.2 Variable Importance on Projection
	3.4.3 Regression Coefficients

	3.5 Early-Stop Search Heuristic

	4 Experimental Results
	4.1 Experimental Setup
	4.1.1 FERET Dataset
	4.1.2 FRGC Dataset
	4.1.3 Evaluation Metric (MARR)
	4.1.4 Number of Dimensions in the PLS models
	4.1.5 Feature Descriptors

	4.2 PLSH Parameter Validation
	4.2.1 Combination of Different Feature Descriptors
	4.2.2 Number of Hash Models
	4.2.3 Balanced Partitions and Code Distribution
	4.2.4 Number of Random Partitions
	4.2.5 Voting Scheme
	4.2.6 Characterization of the Vote-List
	4.2.7 Stability of the Results

	4.3 ePLSH Parameter Validation
	4.3.1 Stability of the Results
	4.3.2 Feature Selection
	4.3.3 Number of Hash Models and Selected Features
	4.3.4 Number of Hash Models and Gallery Size

	4.4 Results on the FERET Dataset
	4.5 Results on the FRGC Dataset

	5 Conclusions and Future Works
	Bibliography
	A Partial Least Squares Example in R

