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Abstract

Comparing with traditional fixed formation for a group of dynamical systems, time-varying formation
can produce the following benefits: i) covering the greater part of complex environments; ii) collision
avoidance. This paper studies the time-varying formation tracking for multiple manipulator systems
(MMSs) under fixed and switching directed graphs with a dynamic leader, whose acceleration cannot
change too fast. An explicit mathematical formulation of time-varying formation is developed based on
the related practical applications. A class of extended inverse dynamics control algorithms combining with
distributed sliding-mode estimators are developed to address the aforementioned problem. By invoking
finite-time stability arguments, several novel criteria (including sufficient criteria, necessary and sufficient
criteria) for global finite-time stability of MMSs are established. Finally, numerical experiments are
presented to verify the effectiveness of the theoretical results.

Keywords time-varying formation tracking, dynamic leader, multiple manipulator systems (MMSs),
finite-time stability.

1 Introduction

Recently, distributed control problems for a group of dynamical systems have attracted much attentions
due to its wide applications, including coordination for multi-agent systems [1]-[5], synchronization in com-
plex networks [6, 7], distributed computing in sensor networks [8]-[10], multi-fingered hand grasping and
manipulation [11, 12]. Formation control is a significant issue in the distributed control field. A formation
is defined as a special configuration (i.e., desired positions and orientations) formed by a cluster of intercon-
nected autonomous agents, in which a global goal is achieved cooperatively [13]. Many formation control
methods have been developed, such as virtual structure methods [14], behavior-based methods [15, 16],
leader-follower methods [17], artificial potential field methods [18]. The aforementioned methods can only
produce fixed formations for multi-agent systems. However, in a number of real-world applications, the
formation of multi-agent systems is always changing to adapt to the dynamical changing environment. It
follows that the fixed formations cannot satisfy the practical requirements of many real-world applications.
It thus motivates several research on time-varying formations. Time-varying formation control algorithms
for a group of unmanned aerial vehicles with its applications to quadrotor swarm systems had been pre-
sented based on consensus theory [19]. Coherent formation control of a set of agents, including unmanned
aerial vehicles and unmanned ground vehicles, in the presence of time-varying formation had been studied
in [20]. Time-varying formation implies that the formation of a multi-agent system can be changing as
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required without losing system stability, which products the following benefits: i) covering the greater part
of complex environments; ii) collision avoidance. However, to the authors’ knowledge, the mathematical
formulations of time-varying formation tracking are still not clear, which impedes the development and
applications of the relative technologies.

On the other hand, networked robotic systems have been broadly studied due to their various advantages,
including flexibility, adaptivity, fault tolerance, redundancy, and the possibility to invoke distributed sensing
and actuation [21]. Many control algorithms for global asymptotic tracking of networked robotic systems de-
scribed by Euler-Lagrange systems can be found in the literature. Adaptive control approaches are proposed
to address the leader-follower and leaderless coordination problems for multi-manipulator systems based on
graph theory [22, 23]. Distributed containment control had been developed for global asymptotic stabil-
ity of Lagrangian networks under directed topologies containing a spanning tree [24]. Some distributed
average tracking algorithms had been developed invoking extended PI control and applied to networked
Euler-Lagrange systems [25]. The task-space tracking control problems of networked robotic systems under
strongly connected graphs without task-space velocity measurements had been investigated [26]. In pres-
ence of kinematic and dynamic uncertainties, task-space synchronization had been addressed for multiple
manipulators under strong connected graphs by invoking passivity control [27] and adaptive control [28].
All of the aforementioned control algorithms produce global asymptotic tracking of robotic manipulators,
which implies that the system trajectories converge to the equilibrium as time goes to infinity. Finite-time
stabilization of dynamical systems may give rise to fast transient and high-precision performances besides
finite-time convergence to the equilibrium, and a lot of work has been done in the last several years [29]-[31].

Motivated by our preliminary work on distributed control [32, 33], the time-varying formation tracking
of multiple manipulator systems (MMSs) is taken into account. Distributed finite control is developed to
drive the centroid of the MMS to follow the leader at a distance and to achieve the desired time-varying
formation of the MMS meanwhile. The main contributions are summarized as following: i) Comparing with
the existing work based on multi-agent systems with single-integrator and double-integrator dynamics [21],
we consider MMSs described by Euler-Lagrange systems. ii) Comparing with the existing fixed formation
tracking algorithms for multi-agent system [34], we consider the time-varying formation tracking problems
with a dynamic leader and present an explicit mathematical formulation of time-varying formation based on
its practical characteristics. iii) Some novel estimator-based finite-time control algorithms are developed for
the above time-varying formation tracking problems. For the presented control algorithms, some conditions
(including sufficient conditions, necessary and sufficient conditions) are derived to guarantee the achievement
of time-varying formation tracking.

The rest of this paper is organized as follows: system formulation and some preliminaries are presented
in Section 2. The control algorithms and conditions of time-varying formation tracking are given in Section
3. In Section 4, the simulation results are presented. The conclusions are provided in Section 5.

2 Preliminaries

2.1 System formulation

The dynamics of the ith manipulator in the MMS is given as following [35]:

Hi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, (1)

where i ∈ V = {1, 2, · · · , n}, t ∈ J = [t0,∞), t0 ≥ 0 is the initial time, qi, q̇i and q̈i ∈ Rm are the position,
velocity and acceleration vectors of generalized coordinates, Hi(qi) and Ci(qi, q̇i) ∈ Rm×m are the inertia and
the Coriolis/centrifugal force matrices, gi(qi) and τi ∈ Rm denote the gravitational torque and the input
torque respectively.

The leader for the MMS is given as following:

{

ẋ0 = v0,
v̇0 = a0,
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where x0, v0, a0 ∈ Rm are the position, velocity and acceleration vectors of generalized coordinates respec-
tively.

We invoke a directed graph G = {V, E ,W} to describe the interaction of the MMS, where V denotes
the node set given right after (1), E ⊆ V2 is the edge set, W = [wij ]n×n represents the adjacency matrix.
The ith node denotes the ith manipulator in the MMS. An edge {j, i} ∈ E denotes that the ith node can
access information from the j th node. The adjacency weight wij is defined as wij > 0 if {j, i} ∈ E , and
wij = 0 otherwise. Besides, self-edges are not allowed in this paper, i.e., wii = 0. A directed path from the
ith node to the j th node is an ordered sequence of edges {i1, i2}, {i2, i3}, · · · , in the directed graph. The
neighbor set of the j th manipulator is denoted by Ni = {j ∈ V | (j, i) ∈ E}. G is said to be undirected if
and only if {j, i} ∈ E ⇔ {i, j} ∈ E , i.e., wij = wji, ∀i, j ∈ V. Throughout this paper, G is supposed to be
undirected. Let P = [p1, p2, . . . , pn]

T be the nonnegative weight vector between the n nodes and the leader,
where pi > 0 if the information of the leader is available to the ith node, namely, the ith node is pinned;
pi = 0 otherwise. The Laplacian matrix L for G is defined as lii =

∑n
j=1wij and lij = −wij , i 6= j. Two

assumptions throughout this paper are presented as following:

A1) The leader has a directed path to the nodes in the set V under G and P;
A2) supt∈J ‖ȧ0(t)‖ < β, where ‖ · ‖ represents the Euclidean norm and β is a positive constant.

By Assumption A2 , the derivative of the acceleration a0(t) of the leader is bounded, which happens to
be the actual characteristics of the trajectories that can be reachable by the manipulators described by
Euler-Lagrange system [36].

Lemma 1. [37] Suppose that Assumption A1 holds. M = (L + diag{P}) ⊗ Im ∈ Rmn×mn is symmetric
positive definite, where ⊗ denotes the Kronecker product and Im ∈ Rm×m represents the identity matrix.

2.2 Problem Statement

In a number of real-world applications, the desired formation for the MMS is required to be time-varying and
switching according to task demands. In this section, the explicit mathematical definition of time-varying
formation tracking is presented.

Let ̥0−k = {̥0,̥1, . . . ,̥k} be a finite set of desired formations, where ̥s = {ηs1, ηs2, . . . , ηsn} denotes
the sth desired formation, ηsi ∈ Rm denotes the local coordinate of the ith manipulator in the m-dimensional
Euclidean space with respect to ̥s, ∀s = 0, 1, . . . , k. Note that ̥s becomes a desired geometric pattern in
2D plane if m = 2. Let I = {0, 1, . . . , k} denote the index set of ̥0−k. A switching signal σ(t) : J → I is
introduced with a sequence of time points {t1, t2, . . . , ts, . . .}, satisfying t0 < t1 < · · · < ts < · · · , at which
the desired formation changes. Let ̥(t) be the desired formation at time t. Then for any t ∈ [ts, ts+1), the
desired formation ̥(t) = ̥σ(t) = ̥s ∈ ̥0−k. Besides, we assume that the desired formation is closed at
each time instant, i.e.,

∑n
i=1 ηsi = 0, ∀s ∈ I.

The control objective is to design distributed control τi for the ith manipulator by invoking its
information (i.e., qi, q̇i and ηsi) and its neighbour node’s states (i.e., qj, q̇j and ηsj for j ∈ Ni) such that for
any t ∈ [ts, ts+1), the time-varying formation tracking is said to be achieved for the MMS, i.e.,
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lim
t→ts

f

‖qi − qj − ηsi + ηsj‖ = 0,

lim
t→ts

f

∥

∥

∥

∥

1
n

n
∑

i=1
qi − x0

∥

∥

∥

∥

= 0,

lim
t→ts

f

‖q̇i − v0‖ = 0,

(2)

where tsf denotes the settle time. In this paper, we assume that the minimum switching interval h =
min
s

(ts+1− ts) is large enough such that tsf can be included in the half-open interval [ts, ts+1), ∀s = 0, 1, · · · .
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Remark 1. Note that (2) means that for any [ts, ts+1), the MMS converge to the desired formation ̥s

and the centroid of the MMS follows the leader before time ts+1. By designing time-varying formations, the
obstacle and collision avoidance can be achieved while the centroid follows the leader. It is worthy to point
out that the control problem addressed in [34] is a special case of (2).

2.3 Finite-time stability

Some concepts for finite-time stability and homogeneous systems are introduced in this section [40]. Consider
a k -dimensional system

ż = f(z), f(0) = 0, z(t0) = z0, z ∈ R
k, (3)

where k is an arbitrary positive integer. The continuous vector field f(z) = col(f1(z), f2(z), . . . , fk(z)) is
homogeneous of degree λ ∈ R with dilation (γ1, γ2, . . . , γk), if for any ε > 0,

fi(ε
γ1z1, ε

γ2z2, . . . , ε
γkzk) = ελ+γifi(z),

where i = 1, 2 . . . , k. System (3) is said to be homogeneous if its vector field is homogeneous. Additionally,
the following k -dimensional system

ż = f(z) + f̃(z), f̃(0) = 0, (4)

is called being locally homogeneous of degree λ ∈ R with dilation (γ1, γ2, . . . , γk), if system (3) is homoge-
neous and the continuous vector field f̃(z) satisfies

lim
ε→0

f̃i(ε
γ1z1, ε

γ2z2, . . . , ε
γkzk)

ελ+γi
= 0, ∀z 6= 0, i = 1, 2 . . . , k.

Based on the above presentations, some results and lemmas in [40]-[42] which will be used in this paper are
proposed here.

Lemma 2. (LaSalle’s Invariance Principle) Let z(t) be a solution of ż = f(z), z(t0) = z0 ∈ Rk, where t0
is the initial time, f : U → Rk is continuous with an open subset U of Rk, and V : U → R be a locally
Lipschitz function such that D+V (z(t)) ≤ 0, where D+ denotes the upper Dini derivative. Then Θ+(z0)∩U
is contained in the union of all solutions that remain in S = {z ∈ U : D+V (z) = 0}, where Θ+(z0) denotes
the positive limit set.

Lemma 3. Suppose that system (3) is homogeneous of degree λ ∈ R with dilation (γ1, γ2, . . . , γk), z = 0 is
its asymptotically stable equilibrium. If homogeneity degree λ < 0, the equilibrium of system (3) is finite-time
stable. Moreover, if system (4) is locally homogeneous, the equilibrium of system (4) is locally finite-time
stable.

Lemma 4. If the equilibrium of a closed-loop system is global asymptotic stable and local finite-time stable,
then it is also global finite-time stable.

3 Time-varying formation tracking of multiple manipulators

In this section, we are concerned with the time-varying formation tracking problems where the formations
of the MMS is time-varying and the leader has varying vectors of generalized coordinate derivatives.

Before moving on, some auxiliary variables are given. Let the ith manipulator’s estimated value of a0(t)
be ai(t) ∈ Rm, ∀i ∈ V. For any i, j ∈ V and t ∈ [ts, ts+1), some auxiliary variables are defined as follows:


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

q̄ij = qi − qj − ηsi + ηsj,

¯̇qij = q̇i − q̇j,

āij = ai − aj.

(5)
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Remark 2. The variable q̄ij presented in (5) contains the information of the time-varying formations and
switches at the time sequence {t1, t2, . . . , ts, . . .}. Besides, q̄ij = 0 means that the formation described by ̥s

is obtained for the MMS.

Let q̄i = qi − ηsi − x0, ¯̇qi = q̇i − v0, āi = ai − a0 and

q̈ri = ai − ϕ(sig(
∑

j∈Ni

wij q̄ij + piq̄i)
α1)

− ψ(sig(
∑

j∈Ni

wij
¯̇qij + pi ¯̇qi)

α2),
(6)

where α1, α2 > 0 are positive constants, ϕ and ψ are continuous odd vector fields satisfying zTϕ(z) > 0,
zTψ(z) > 0 (∀z 6= 0), ϕ(z) = c1z + o(z) and ψ(z) = c2z + o(z) around z = 0 for some positive constants c1
and c2, wij is the (i, j)th entry of the adjacency matrix W, pi is the weight between the leader and the ith
manipulator, sig(z)κ = col{|z1|κsign(z1), · · · , |zm|κsign(zm)}, sign(·) is the signum function, ∀κ ∈ R, z ∈
Rm. We then propose the following distributed estimator-based control

τi = Hi(qi)q̈ri + Ci(qi, q̇i)q̇i + gi(qi), (7a)

ȧi = −βsgn(
∑

j∈Ni

wij āij + piāi), (7b)

where β is presented in Assumption A2, sgn(z) = col{sign(z1), · · · , sign(zm)}, ∀z ∈ Rm.

Remark 3. As shown in (6), the sliding-mode estimator (7b) provides a distributed estimated value ai to
construct the auxiliary variable qri. Moreover, inspired by the inverse dynamics control technology proposed
in [43]-[45], the input torque τi presented in (7a) is developed by using qri. Thus, the control law (7) is called
distributed estimator-based control.

Theorem 1. Suppose that Assumptions A1 and A2 hold. Using (7) for (1), if 0 < α1 < 1 and α2 =
2α1/(α1 + 1), then (2) holds, i.e., the time-varying formation tracking is achieved for the MMS.

Proof. The proof proceeds in the following three steps. First, the simplification of the close-loop system is
derived from the finite-time stability of sliding-mode estimators. Second, the global asymptotic stability is
proved based on the LaSalle’s Invariance Principle. Thirdly, the global finite-time stability is demonstrated
using finite-time stability arguments for homogeneous systems.

For the first presentation, the simplification of the close-loop system is carried out. Substituting (6) and
(7a) into (1) gives

Hi(qi)[q̈i − ai + ϕ(sig(
∑

j∈Ni

wij q̄ij + piq̄i)
α1)

+ ψ(sig(
∑

j∈Ni

wij
¯̇qij + pi ¯̇qi)

α2)] = 0.
(8)

The positive definiteness of Hi(qi) implies that the eigenvalues of Hi(qi) is greater than 0. Then the
combination of (7b) and (8) yields the following cascade system:

q̈i = ai − ϕ(sig(
∑

j∈Ni

wij q̄ij + piq̄i)
α1)

− ψ(sig(
∑

j∈Ni

wij
¯̇qij + pi ¯̇qi)

α2),

ȧi = −βsgn( ∑

j∈Ni

wij āij + piāi),

(9)

Let ā be the column stack vector of āi, ∀i ∈ V. The sliding-mode estimator (7b) can be rewritten as

˙̄a = −βsgn(Mā)− 1n ⊗ a0, (10)
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where 1n denotes the n-dimensional column vector whose elements are all one. By Lemma 1, M is symmetric
positive definite. Take the Lyapunov function ca. . ndidate V0 = 1/2āTMā for system (10). By the similar
analysis in Theorem 3.1 of [37], we get that

V̇0 ≤ −(β − supt∈J ‖ȧ0(t)‖)
λmin(M)

√
2V0

√

λmax(M)
.

Therefore, for the sliding-mode estimator (7b), there exists a bounded settle time given by

Tf = t0 +

√

2λmax(M)V0(t0)

λmin(M)(β − supt∈J ‖ȧ0(t)‖)

such that ai = a0 when t ≥ Tf , ∀i ∈ V. We then show that for bounded initial values qi(t0) and q̇i(t0),
invoking (7) for (1), the states qi(t) and q̇i(t) remain bounded when t ∈ [t0, Tf ], ∀i ∈ V. The distributed
sliding-mode estimator (7b) implies that ai(t) remain bounded for any initial value ai(t0) when t ∈ [t0, Tf ].
For bounded states qi and q̇i, ∀i ∈ V, equation (5) implies that q̄i, ¯̇qi, q̄ij and ¯̇qij remain bounded when
t ∈ [t0, Tf ], ∀j ∈ V. It thus follows from (9) that q̈i is bounded with respect to bounded states ai, q̄i, ¯̇qi,
q̄ij and ¯̇qij . Thus, we can obtain that qi(t) and q̇i(t) remain bounded for bounded initial values qi(t0) and
q̇i(t0) when t ∈ [t0, Tf ], ∀i ∈ V. Thus, using (6) and (7) for (1), when t ≥ Tf , the closed-loop dynamics of
system (1) can be rewritten as

¯̈qi = −ϕ(sig( ∑

j∈Ni

wij q̄ij + piq̄i)
α1)

− ψ(sig(
∑

j∈Ni

wij
¯̇qij + pi ¯̇qi)

α2),
(11)

where ¯̈qi = q̈i − a0. It thus follows from (5) that ¯̇qi and ¯̈qi are the first-order and second-order derivatives of
q̄i, ∀i ∈ V. Let q̄, ¯̇q and ¯̈q be the column stack vectors of q̄i, ¯̇qi and ¯̈qi respectively, ∀i ∈ V. System (11) can
be rewritten as

¯̈q = −ϕ(sig(Mq̄)α1)− ψ(sig(M ¯̇q)α2). (12)

The first presentation shows that for bounded initial values ai(t0), qi(t0) and q̇i(t0), the states ai(t), qi(t)
and q̇i(t) remain bounded when t ∈ [t0, Tf ], and the close-loop dynamics of (1) under the control algorithms
(6) and (7) is equivalent to equation (12) when t ≥ Tf .

For the second presentation, the global asymptotic stability of system (12) is analyzed. Let an auxiliary
variable y = Mq̄ ∈ Rmn. Then ẏ = M ¯̇q and ÿ = M ¯̈q. When t ≥ Tf , for (12), consider the Lyapunov
function candidate V = V1 + V2 with

V1 =
mn
∑

k=1

∫ y(k)
0 ϕ(sig(σ)α1)dσ,

V2 =
1
2
¯̇qTM ¯̇q,

where y(k) ∈ R (k = 1, 2, . . . ,mn) denotes the kth element of the vector y. By Lemma 1, M is symmetric
positive definite. It thus follows from the definition of ϕ(·) that the Lyapunov function candidate V is
positive definite. Taking the derivatives of V1 and V2 along (12) renders that

V̇1 =
mn
∑

k=1

ẏ(k)ϕ(sig[y(k)]α1 )

= ẏTϕ(sig(y)α1),

V̇2 = ¯̇qTM ¯̈q
= −ẏTϕ(sig(y)α1)− ẏTψ(sig(ẏ)α2),

It thus follows that
V̇ = V̇1 + V̇2

= −ẏTψ(sig(ẏ)α2).
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Considering that ψ(·) is continuous odd function, we can conclude that V̇ ≤ 0. Besides, V̇ = 0 gives that
ẏ = 0. It thus follows from the positive definiteness of M that V̇ = 0 if and only if ¯̇q = 0, which implies that
¯̈q = 0. It thus follows from (12) that ϕ(sig(Mq̄)α1) = 0, which means that q̄ = 0. By LaSalle’s Invariance
Principle in Lemma 2, for any bounded q̄(Tf ) and ¯̇q(Tf ), the states q̄ → 0 and ¯̇q → 0 as t→ ∞. Hence, the
second presentation shows that the equilibrium (q̄ = 0, ¯̇q = 0) of system (12) is global asymptotic stable.

For the third presentation, the global finite-time stability of system (12) is analyzed. First, the local
finite-time stability is proven by invoking Lemma 3 and 4. To this end, let z1 = q̄, z2 = ¯̇q and z = col(z1, z2).
By the definition of ϕ(·) and ψ(·) right after (6), we can get that system (12) can be written as

{

ż1 = z2,

ż2 = f(z1, z2) + f̃(z1, z2),
(13)

where
{

f(z1, z2) = −c1sig(Mz1)
α1 − c2sig(Mz2)

α2 ,

f̃(z1, z2) = −o(sig(Mz1)
α1)− o(sig(Mz2)

α2).

It visibly follows that (z1 = 0, z2 = 0) is the equilibrium of system (13). Considering that α2 = 2α1/(α1+1),
we can conclude that system (13) is locally homogeneous of degree λ = α1 − 1 < 0 with respect to dilation
col(2mn, (α1 + 1)mn), where 2mn and (α1 + 1)mn are mn-dimensional column vectors whose elements are 2
and α1 + 1 respectively. Hence, the third presentation shows that the equilibrium (q̄ = 0, ¯̇q = 0) of system
(12) is finite-time asymptotic stable.

By Lemma 4, the second and third presentations show that for bounded q̄(Tf ) and ¯̇q(Tf ), there exists a
time point T̄f > Tf that the states q̄ → 0 and ¯̇q → 0 as t → T̄f . By the first presentation, q̄(Tf ) and ¯̇q(Tf )
remain bounded for bounded initial value q̄(t0), ¯̇q(t0) and ai(t0). Hence, for bounded initial value q̄(t0),
¯̇q(t0) and ai(t0), the states q̄ → 0 and ¯̇q → 0 as t→ T̄f . This completes the proof.

Note that the following necessary and sufficient condition can be easily obtained by some simple trans-
formation for Theorem 1.

Corollary 1. Suppose that 0 < α1 < 1, α2 = 2α1/(α1 + 1), and Assumption A2 holds. Using (6) and (7)
for (1), then (2) holds (i.e., the time-varying formation tracking is achieved for the MMS) if and only if
Assumption A1 holds.

Proof. The sufficiency of Corollary 1 is proved as the same as in Theorem 1. Next we show the necessity
part by contradiction. If Assumption A1 dose not hold, there exists an isolated subset of manipulators,
which cannot obtain any information of the leader directly or mediately. It follows that the evolution of the
close-loop dynamics of these manipulators is carried out without any information of the leader. Thus, these
manipulators cannot necessarily follow the trajectory of the leader. This ends the proof.

Let a switching graph G(t) = {V, E(t),W(t)} describe the interaction of the MMS), where W(t) =
[wij(t)]n×n represents the weight adjacency matrix. Let P(t) = [p1(t), p2(t), . . . , pn(t)]

T be the switching
nonnegative weight vector between the n nodes and the leader. Then the following corollary can be obtained
for the case, in which the communication topology is switching.

Corollary 2. Suppose that A2 holds and the leader are reachable to the MMS under G(t) and P(t). Let
the control algorithms be replaced by















































q̈ri = ai − ϕ(sig(
∑

j∈Ni

wij(t)q̄ij + pi(t)q̄i)
α1)

− ψ(sig(
∑

j∈Ni

wij(t)¯̇qij + pi(t)¯̇qi)
α2),

τi = Hi(qi)q̈ri + Ci(qi, q̇i)q̇i + gi(qi),

ȧi = −βsgn( ∑

j∈Ni

wij(t)āij + pi(t)āi),

7



then (2) holds (i.e., the time-varying formation tracking is achieved for the MMS) if and only if Assumption
A1 holds.

Proof. The proof can be easily derived by the combination of Theorem 1 and Lemma 6 presented in [46],
and is omitted here.

Remark 4. Note that the functions ϕ(·) and ψ(·) can be easily selected, such as x, sat(x), and tanh(x),
where sat(·) and tanh(·) denote the saturation function and the hyperbolic tangent function respectively.
Besides, by the boundedness of sat(·) and tanh(·), we can conclude that the control law in this paper is
bounded by the boundedness of the dynamic terms in system (1).

Remark 5. The dynamics of the leader can also be described by the Euler-Lagrange equation H0(q0)q̈0 +
C0(q0, q̇0)q̇0 + g0(q0) = τ0, which gives a additional task for designing τ0. In this case, the MMS has a
master-slave structure, in which the master manipulator acts as the leader while the slave manipulators act
as followers [38, 39]. By designing suitable τ0 such that Assumption A2 holds following [24], the main
results presented in this paper can still be effective.

Remark 6. Comparing with [24, 25], in which global asymptotic stability is achieved, we study the global
finite-time stability for time-varying formation tracking which is more practical and challenging than tra-
ditional global asymptotic stability, especially for robotic systems. Different from [27, 28], in which the
constant agreement value is taken into account, we consider the time-varying formation tracking problem of
multi-robot systems with a dynamic leader.

4 Simulations

In this section, simulations are presented to illustrate the effectiveness of the proposed algorithms. We
consider the time-varying formation tracking problem for a MMS containing six manipulators (i.e., agents)
with three desired formations. Each agent is assumed to be a planer robotic manipulator with two revolute
joints, i.e., qi ∈ R2, ∀i ∈ V. The dynamic model and the physical parameters presented in [45] are invoked.
For simplify, in our simulation, we choose wij = 1 if agent i can access the information of agent j, wij = 0
otherwise; pi = 1 if agent i can obtain the information of the leader directly, pi = 0 otherwise. The
interaction topology is shown in Fig.1. The Laplacian matrix L is

L =

















2
0
−1
−1
0
0

0
0
0
0
0
0

−1
0
1
0
0
0

−1
0
0
1
0
0

0
0
0
0
1
−1

0
0
0
0
−1
1

















,

and the nonnegative weight vector is given by P = col(1, 1, 0, 0, 1, 0). The elements of the initial values qi(0),
q̇i(0) and ai(0) are randomly selected from [−6, 6].

The finite set of desired formations ̥c = {̥0,̥1,̥2} is shown in Fig.2, the local coordinates in the
2D plane is given as ̥s = {ηs1, ηs2, . . . , ηs6}, s = 0, 1, 2. The details of ηsi = [asi, bsi]

T , i = 1, . . . , 6, are
presented in Table 1. The sampling period is adopted to be 10 ms. The simulation time span is selected as
t ∈ [0, 50]. The time-varying formation ̥(t) are given as following

̥(t) =







̥0, t ∈ [0, 15),
̥1, t ∈ [15, 35),
̥2, t ∈ [35, 50).

The trajectory of the leader is given by x0(t) = col[30 cos(0.05πt), 30 sin(0.05πt)], and v0(t), a0(t) can be
calculated easily, where t ≥ 0. Without loss of generality, let ϕ(z) = 100z and ψ(z) = 100z. The other
control parameters are selected as follows: α1 = 0.2, β = 4, and α2 can be easily computed.
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Table 1: The local coordinates.
asi, bsi s = 0 s = 1 s = 2

i = 1 1,
√
3 2,

√
3 2/3,

√
3/2

i = 2 2, 0 2, 0 8/3, 0

i = 3 1,−
√
3 2,−

√
3 2/3,−

√
3/2

i = 4 −1,−
√
3 −2,−

√
3 −4/3,−

√
3

i = 5 −2, 0 −2, 0 −4/3, 0

i = 6 −1,
√
3 −2,

√
3 −4/3,

√
3

Figure 1: The interaction graph G, where the agent 1, 2, and 5 can access the information of the leader
directly.

Figure 2: The formations from left to right are ̥0, ̥1 and ̥2 respectively. The black point i denote the
robot i in the local coordinate.
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Figure 3: Trajectories of q̄i and ¯̇qi under G.
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Figure 4: Trajectories and the formation of the six robots under G.

The simulation results are presented in Fig.3 and Fig.4. Fig.3 shows that the tracking errors q̄i and
¯̇qi defined in (5) converge to zero in finite time at each dwell time interval, which means the time-varying
formations of the MMS in the 2D plane and the tracking of the leader can be achieved simultaneously, i.e.,
the time-varying formation tracking is accomplished. Additionally, the trajectory of the manipulators in 2D
space is illustrated in Fig.4. It follows that the robots can reach the desired time-varying formation and the
geometric center of the MMS follows the leader as required. It is clear in Fig.3 and Fig.4 that using the
control algorithm (7) under the aforementioned configurations, the time-varying formation tracking can be
achieved for the MMS.

Remark 7. It is shown from picture b and d in Fig.3 that the second elements of q̄i and ¯̇qi do not change
at the switching time instant t = 15. Note that the time-varying formation ̥(t) changes from ̥0 to ̥1. By
the set of ̥0 and ̥1 in Table 1, bsi stays the same at the switching time instant t = 15, which thus gives
that q̄i and ¯̇qi do not change at the switching time instant.

5 Conclusion

For multiple manipulator systems (MMSs) under fixed and switching graphs, the time-varying formation
tracking problem is addressed using inverse dynamics control technologies. Based on the functional charac-
teristics of MMSs, an explicit formulation of time-varying formation is presented. The conditions (including
sufficient conditions, necessary and sufficient conditions) on the interaction topology and control parame-
ters are derived. Simulation results are presented to verify the effectiveness of the proposed algorithms. A
few interesting issues, which are not addressed in this paper, concern the time-varying formation tracking
problems of uncertain Euler-Lagrange systems and the extension of the presented approaches to the case of
the polynomial trajectories. These issues will be considered in our future work.
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[7] R. Lu, W. Yu, J. Lü, A. Xue, Synchronization on complex networks of networks, IEEE Trans. Neural
Netw. Learn. Syst. DOI: 10.1109/TNNLS.2015.2503772.

[8] G. Serpen, L. Liu. Parallel and distributed neurocomputing with wireless sensor networks. Neurocom-
puting (2015) DOI: 10.1016/j.neucom.2015.08.074.

[9] B. Shen, Z. Wang, H. Dong, S. Zhang, Finite-horizon distributed H∞ fault estimation for time-varying
systems in sensor networks: a krein-space approach, IFAC-PapersOnLine 48 (21) (2015) 48-53.

[10] H. Dong, Z. Wang, H. Gao, DistributedH∞ filtering for a class of Markovian jump nonlinear time-delay
systems over lossy sensor networks, IEEE Trans. Ind. Electron. 60 (10) (2013) 4665-4672.

[11] S. Ueki, H. Kawasaki, T. Mouri, Adaptive coordinated control of multi-fingered robot hand, J. Robot.
Mechatron. 21 (1) (2009) 36-43.

[12] M.F. Ge, Z.H. Guan, T. Li, D.X. Zhang, R.Q. Liao, Robust mode-free sliding mode control of multi-
fingered hand with position synchronization in the task space, Intelligent Robotics and Applications,
Springer Berlin Heidelberg (2012) 571-580.
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