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Abstract—Compressive sensing (CS) has been widely studiedcoding and Huffman coding. Wu and Kua! [1] suggested
and applied in many fields. Recently, the way to perform sec two approaches for integrating encryption with multimedia
compressive sensing (SCS) has become a topic of growing I®EL. 1y ression systems, i.e., selective encryption and neddifi

The existing works on SCS usually take the sensing matrix as - . o
a key and the resultant security level is not evaluated in dep. entropy coders with multiple statistical models. Both cbul

They can only be considered as a preliminary exploration onSS, be applied to the Huffman and the QM coders. Grangetto
but a concrete and operable encipher model is not given yetnl al. [2] introduced a randomized arithmetic coding paradigm
this paper, we are going to investigate SCS in a systematic wa which provides secrecy by introducing randomization in the
The relationship between CS and symmetric-key cipher indiates coding process. West al. [3] described an interval splitting

some possible encryption models. To this end, we propose theo- . . N .
level protection models (TLPM) for SCS which are developed 2fithmetic coding in which a key known to both encoder and

from measurements taking and “Something e|se"’ respecti\jy_ It decoder is used to determine where the intervals are Sm't pr
is believed that these models will provide a new point of view to encoding each symbol. As a result, the traditional apgroa
and stimulate further research in both CS and cryptography. of using a single contiguous interval to encode a source symb
Specifically, an efficient and secure encryption scheme forgpallel is relaxed. Kimet al. [4] further analyzed the security of

compressive sensing (PCS) is designed by embedding a twgda . -, - . . . .
protection in PCS using chaos. The first layer is undertaken interval splitting ar|thme_t|c coding agalr_wst chosen-ip_ule)(t

by random permutation on a two-dimensional signal, which attack and added a series of permutations at the input and
is proved to be an acceptable permutation with overwhelming output of the encoder. Furthermore, chaos has been employed
probability. The other layer is to sample the permuted sign& in arithmetic coding for encryption purpose [5, 6]. Bose and
column by column with the same chaotic measurement matrix, Pathak([5] presented a chaos-based adaptive arithmeiiogsod
which satisfies the restricted isometry property of PCS with r .

overwhelming probability. Both the random permutation and encryption system. Unfortunately, this system has beendou .
the measurement matrix are constructed under the control of NOt decodable, since the current symbol to be encoded is
a chaotic system. Simulation results show that unlike the geeral  swapped with a randomly selected symbol in the model prior
joint compression and encryption schemes in which encryptin  to encoding, making it impossible for the decoder to mirror
always leads to the same or a lower compression ratio, the the encoder’s operationls [11]. Observing that iteratingeas

proposed approach of embedding encryption in PCS actually . : . . .
improves the compression performance. Besides, the propes tent map reversely is equivalent to arithmetic coding, Weing

approach possesses high transmission robustness againdtiaive @ [6] proposed a simultaneous compression and encryption
Gaussian white noise and cropping attack. scheme in which the chaotic map for arithmetic coding is
Index Terms—Secure compressive sensing, two-level protection CONtrolled by a secret key and keeps changing. _
models, symmetric-key cipher, parallel compressive sensi, ran- The aforementioned schemes are basically compression-
dom permutation, chaotic measurement matrix. orientated by embedding encryption in a compression algo-
rithm. There are also a few reports like [7, 8] on encryption-
orientated schemes. Worgy al. [7] designed an algorithm
for embedding compression in the Baptista-type chaotip-cry
tosystem and Cheet al. [8] further improved its compression
A. Existing Work on Joint Compression and Encryption performance. Besides, there exist some chaos-based compre
N digital signal processing, Shannon/Nyquist samplingjon and encryption schemes aiming at multimedia data such
theory is considered as the keystone in signal acquisitiéf image [9] or videol [10]. These works are based on the
and reconstruction. It governs the sampling process frdfiaditional Shannon/Nyquist sampling theory. However, do
the perspective of signal band limitedness. Traditiondlleg new sampling theory referred to as compressed sensing or
sampled data are first compressed and then encryptedcdmpressive sampling (CS), it is worth to investigate howtjo
necessary. There is an increasing research interest on je@mpression and encryption can be achieved. In other words,
compression and encryption| [1+-10] mostly by leveragirifje topic to be investigated in this paper is how secrecy can
chaos theory and source coding schemes including aritbméag incorporated in CS theory.
Making use of the sparseness of natural signals, |CS [12—
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resource sensor and video surveillance. It has been seglgesntropy coding or chaos theory suffer from the following
in [15] that CS framework leads to an encryption schemdrawbacks:

where the sensing matrix can be considered as an encryptioa. Low compression performance. Entropy coding based
key. In recent years, there exist some pioneer works encryption always sacrifices the compression performance o
secure compressive sensing (SCS) [16—-20]. Rachlin anchBaemtropy coding|[3-6,!9, 10] or at most maintains the same
[1€] found that CS cannot achieve perfect secrecy but chavel of compression performance [1, 2].

guarantee computational secrecy. The definition of perfectb. Low robustness. The schemes |1-6, 9, 10] are too fragile
secrecy |[21] requires that the occurrence probability of ta be applied in a noisy channel.

message conditioned on the cryptogram is equal t@ {bréori Specifically, we propose a SCS scheme embedding en-
probability of the message?(X = z|Y = y) = P(X = z). cryption in parallel compressed sensing (PCS) by chaos to
Alternatively, the mutual information satisfidgX;Y) = 0. overcome the above drawbacks. Our idea is inspired by two
In contrast to perfect secrecy, computational secrecegelitechniques/ [28, 29]: embed permutation in PCS and generate
on the difficulty in solving a hard computational problenthe measurement matrix by a tent map, respectively. The
(e.g. NP-hard) at the computation resources available ¢o throposed scheme incorporates a two-layer protection i6® P
adversary. Orsdemigt al. [17] investigated the security andunder the control of chaos. The first layer is due to the random
robustness of employing a secret sensing matrix. They evaérmutation on a two-dimensional (2D) sparse signal white t
uated the security against brute force and structuredkattamther samples the permuted signal column by column by using
The analyses indicate that the computational complexity tife same measurement matrix. Both the random permutation
these attacks renders them infeasible in practice. In iaddit order and the measurement matrix are generated by a skew
this SCS method was found to have fair robustness agaitestt map. Our approach has the following superiorities:
additive noise, making it a promising encryption technifpre  a. Embedding random permutation based encryption en-
multimedia applications. Hosse@h al. [18] also addressed thehances the compression performance.

perfect secrecy problem for the scenario that the measunteme b. The proposed approach possesses high transmission ro-
matrix as a key is known to both the sender and the receivieustness against noise.

Similar results have been obtained, as reported_in [16} It i The rest of this paper is organized as follows. The next
shown that the Shannon perfect secrecy is, in general, settion introduces TLPM. In Section Ill, we review two
achievable by such a SCS method while a weaker senserefent techniques including embedding permutation in PCS
perfect secrecy may be achieved under certain conditioasid designing the measurement matrix by a tent map. By
Agrawal and Vishwanath [19] employed the CS framework tmaking use of these two techniques, a SCS scheme embedding
establish secure physical layer communication over a Wyreetwo-layer protection in PCS by chaos is proposed in Section
wiretap channel. They showed that CS can exploit chann¥| followed by simulation results in Section V and security
asymmetry so that a message that is encoded as a sparsdysis in Section VI. The last section concludes our work.
vector is decodable with high probability at the receiveilevh

it is impossible to decode it with high probability by the II. TWO-LEVEL PROTECTIONMODELS

eavesdropper. Dautov and Tsouril[20] proposed an encryptio Suppose ar/-dimensional signaf € R is expressed as
scheme where the sensing matrix is established using ws&rele

physical layer security and linear feedback shift registizh P ZM 2y = Ux, (1)

the correspondingn-sequences. It is shown that by using a i=1

Rician fading channel, the proposed scheme generates valhich means thaf could be sparsely represented in a certain

CS matrices while preventing access from an eavesdroppegdmain by the transform matrid® := [t1, 12, -, Y]
close proximity to one of the legitimate participants. with each column vector); € RM™, i = 1,2,..., M. We
can say thatx is exactly k-sparse if there are at mogt
B. Our Contributions non-zero coefficients in th& domain. Instead of sampling
We will present two main contributions in this paperx directly, we take a small number of CS measurements.
On one hand, the CS-based encryption works [[16—20], origt @ := [p1, p2, --- ,ou] denote aK x M matrix with

investigated SCS for the case that the measurement or gendin < M. Then K non-adaptive linear sampleg can be
matrix serves as a key and the corresponding security otained by
briefly evaluated. They have done a preliminary exploration
on SCS but did not provide concrete and operable encipher y = ®f. (2)
mode!s. Along thls_d|rect|on, we are going _to Investiga ge resultant CS measuremegtare used for the recovery of
SCS in a systematic manner. The relationship between - : : . -
; . - e original signal by solving the following convex optiraiz
and symmetric cryptographic schemes indicates some pbessl
. . jon problem

encryption approaches. To this end, we propose the twd-leve
protection models (TLPM) for SCS from two aspects of CS
which are developed on measurements taking and “something min [|x[|; s.t.y = ®¥x 3
else”, respectively, as summarized in Table I.

On the other hand, as discussed previously, the schemes _
embedding encryption in compression algorithms based tmobtainf = ¥x.

(or in noisy situation : |2¥x —y|, <¢)



TABLE |
ENCIPHER MODELS OFSCS.

Two aspects of CS Encipher models and relevant references
1st-level: Measurements taking Random projection [22]
Deterministic construction [23]
Structurally random matrices [24]
Multiclass encryption [25]

2nd-level: “Something else” Directional DCT during CS-edsmage coding_[26]
Side information in distributed CS [27]
Permutation applied to parallel CS [28]

Noisy channel 5
o ——»Y m—— > Y ——>Recovery—PP —» f

Insecure channel ¥
Plaintext—»Encryption algorithm (9 Ciphertext sio———">> Ciphertext®Decryption algorithm —»Plaintext

Shared secret key Secure key-exchange channel Shared secret key

v A/

Fig. 1. The relationship between CS and symmetric-key ciphe

The basic model for CS is shown in the upper half of Fig.
[, which includes two major aspects: measurements taking P \/ZDFR
and signal recovery. From the perspective of symmetric-key ’
cipher, measurements taking involves an encryption dlyori
and signal recovery is associated with a decryption algarit
The relationship between CS and symmetric cryptograp
indicates that some possible cryptographic features can - 1 MxM : :
embedded in CS. To this end, we propose TLPM for S TRy =+1) = 3. F € R is an orthonormal matrix

) . u ich is selected among popular fast computable transforms
which are developed on measurements taking and somethm(% DCT andD € REK*M represents a subsampling operator
else”, respectively.

which selects a random subset of rows in the mdi. The

scalar coefficient,/ £ is chosen to normalize the transform

A. 1st-level Protection S0 as to ensure that the energy of the measurement vector is
One of the central problems in CS framework is th@/most close to that of the input signal. This SRM can serve

selection of a proper measurement matlixsatisfying the @s & secret due to the fact that the random permutation matrix

Restricted Isometry Property (RIP). R is a common technique in classic encryption schemes.

Definition 1: [30] Matrix & satisfies the Restricted Isometry Recently, Cambaresi al. [23] designed a novel multiclass
Property of ordess if there exists a constart, € [0,1] such €ncryption scheme based on perturbing the measurement ma-

(®)

whereR € RM*M js either a uniform random permutation
atrix or a diagonal random matrix whose diagonal entligs
Ye i.i.d. Bernoulli random variables with identical distrtion

that trix. The transmitter distributes the same encoded measure
ments to receivers with different privileges so that theg ar
(1-4,) HXHS < ||<I’XH§ < (1+4d,) ||X||§ (4) able to rescon_struc_t the signal at various qual_ity Ie\_/mceT
the two-class situation as an example, the relationshipdest
for all s-sparse signals . the two measurement matrices is formulated as
Candés and Tad [15] proposed that a matrix following
the Gaussian or Bernoulli distribution satisfies RIP with ) =30 L A®, (6)

The randomly selected Fourier basis also retains RIP wifffere A® is anc-sparse perturbation matrix of entries
overwhelming probability, provided that the sparsity <

overwhelming probability at sparsitg < O (K /log M).

. 0 i,5) ¢ C©)
0] (K/(logM)G). In [15], it has been suggested that the Ad; ;= { —72A<I>» ‘ ((z'z’jj))fc@ @)
sensing matrix can be used as an encryption key such that wrn
the CS framework leads to an encryption scheme. whereC(©) is a subset of: < KM entries chosen at random

Do et al. [24] proposed a framework called structurallyfor each®(®) with densityc/K M. A first-class user knowing
random matrix (SRM), defined as the complete sampling matri@(!) is able to exactly recover



while a second-class user only having the knowledg® &% [1l. TwO TECHNIQUES

is instead subject to an equivale_nt non-white noise term The background of TLPM has been given in the previous

A®x because of the true sampling= &(Vx. section. In the following sections, an encryption scheme fo
Li et al. [23] introduced a deterministic construction ofPCS will be designed by applying two techniques, random

sensing matrix via algebraic curves over finite fields, whichermutation and chaotic measurement matrix, in the 2nel-lev

is a natural generalization of DeVore’s construction [34g and 1st-level protection models, respectively.

polynomials over finite fields. The diversity of algebraic\ees

provides numerous choices for the sensing matrices, i'ﬁ:’Embedding Random Permutation in Parallel Compressive

more choices of key in the encryption scheme, which m%nsing

be valuable for the potential use of the sensing matrix for . o . )

cryptographic purpose. Besides, it has been investighied t Traditionally, a multidimensional signal needs to be re-

chaotic sequences can be employed to construct the senSgPed into an 1D signal prior to sampling using CS. Never-
matrix [22,[29], which will be further discussed in Sectidh | €1€sS, such a transformation makes the required sizeeof th

ysensing matrix dramatically large and increases the staaad
computational complexity significantly. To solve this piern,
Fanget al. proposed a novel solution [28], referred to as paral-
lel compressed sensing, which reshapes the multidimealsion
signal into a 2D signal and samples the latter column by

Apart from the above encryption mode on measuremegflumn with the same sensing matrix. Moreover, a so-called
taking, in each practical application of CS, some other crygcceptable permutation can effectively relax the RIP foBPC
tographic measures can be incorporated into other aspetts Pefinition 2: [2€] For a 2D sparse sign& with sparsity
we term “something else” according to the specific situatioN€Ctors = [s1,s2,---, sn] satisfying [|s||, = s, wheres;

Take CS-based image coding [[27] as an example. De the_ sparsity level of thg-th _column of X, a permutation
et al. [27] proposed an alternative image coding paradigﬁ o) is called acceptabl_e faX if the Chebyshev norm of the
with a number of descriptions based upon CS for high paci&Rarsity vector of® (X) is smaller thari|s||, of X. .
loss transmission. After a 2D DWT is applied for sparse When a 2Ds-sparse signal is exactly reconstructed by using
representation, DWT coefficients are re-sampled towardaleqPCS, @ sufficient condition is given by the following lemma.
importance of information instead. At the decoder side, tWgfMma 1: [2€] Consider a 2Ds-sparse signalX, if the
different CS recovery algorithms are developed for the IoiRIP of order [s[| . holds for the sensing matrixp, i.e.,
frequency and the high-frequency subbands, respectiagly, 921 < V2 — 1, thenX can be exactly reconstructed using
fully exploiting the intra-scale and inter-scale corrglatof PCS scheme. _
multiscale DWT. Experimental results showed this CS-based'his lemma implies that with respect to PCS, the RIP
image codec is much more robust in lossy channels. DigJuirement of the sensing matrix at a given reconstruction
ing the recovery of scaling coefficients, spatial Gabor riiiteduality is related tol|s|| .. A zigzag-scan permutation is
with different frequencies and orientatioris |[26] are néiti con&dered acceptable in _re_laxmg the RIP condition bgfore
to extract the dominant orientation of structures in eadtsing the PCSL[28], but it is tailored to the sparse signal
block. The Gabor filter kernels with eight directionjs: /8, following a layer model. We generalize the permutation fer t
j=0,1,---,7, are used to output a response with respecti\?(,p sparse signal whose distribution is unknown in advance.
to the filter kernel for each scaling coefficient. The Iargeﬁisume thatP (e) is a rand(])wrrl]\?grmutatlon operation, then
response value is selected as the representative oremtatk = P (X), Where}*( € RY*™ is a permuted 2D signal
corresponding to one of the eight intra predictors, which ith sparsity vectors™. Observing the relationship between
sent to the decoder as side information. Such side infoamatf@ndom and acceptable permutations, we have the following
can serve as a key. Side information is commonly used fagorem. . _ o
distributed coding[[32-34] and its role as a key has bedft€orem 1:Fora 2D sparse sign&, if the distribution of the
discussed in [35=37]. This is an interesting research branc SParsity level in each column is not sufficiently uniformesh

compressing encrypted data, which may lead to a new resedft$ random permutatioi(e) is an acceptable permutation
direction of compressing encrypted data in distributed@g.[ With overwhelming probability

Fanget al. [28] relaxed the RIP for 2D sparse signals by ) ) 1
permutation in PCS, in which the 2D signal is sampled column P{P (o) isacceptable} =1 — NTs/NT® (8)
by column using the same sensing matrix. In particu_lar, the-l-he proof of this theorem can be found in Appendix A.
zigzag-scan permutation as a so-called acceptable pdiamuta
is applied to the 2D signal, the corresponding sensing matri i i
has a smaller required order of RIP condition; thereforg: Chaotic Measurement Matrix
storage and computation requirements are further reducedror a random sensing matrix, its storage and transmission
This idea of permutation inspires us whether the zigzatgquire a lot of space and energy. Thus, it is preferable te ge
scan permutation extended to random permutation can grovfate and handle the sensing matrix by one or more seed keys

cryptographic features in PCS. This topic will be discusised only. Yu et al. [22] proposed to construct the sensing matrix
the following two sections. using chaotic sequence in a trivial manner and proved tleat th

and used in the proposed encryption scheme in Section |

B. 2nd-level Protection
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Fig. 2. A schematic diagram of the proposed approach.

RIP of this kind of matrix is guaranteed with overwhelmings more immune against statistical attacks in cryptogmaphi
probability, providing that the sparsity< O (K /log (M /s)). applications. As a result, the skew tent map is chosen in the
They generated a sampled Logistic sequed€éd,l,zy), permutation operation and the construction of the measure-
which has been regularized, with sampling distadcéength ment matrix.

|l = K x M and initial conditiornzg. Then a matrix® is created

from this sequence column by column, denoted as IV. EMBEDDING BI-LAYER ENCRYPTION IN PARALLEL
COMPRESSEDSENSING USINGCHAOS

0 K AR(M-1) A block diagram of our approach is depicted in Fig. 2.
_ /2 L EREL Tt FK(M-1)+1 Compressive sensing and encryption are performed simulta-
D= . : . : 9) .
K : : - : neously under the control of chaos. The encoding process
2K_1 Zok_1 - 2RM—1 is mainly comprised of two steps, permutation and measure-

. o ment. A 2D signalX € RM*¥ s firstly reshaped into
where the scalay/2/ K is for normalization purpose. One camp signal {z (i)};", which is then permuted in accordance

take the initial conditiorzy as a key, since different sensingyiip, {Index (z‘)}f‘?}],described below. The permuted signal

matrices are obtained from different initial conditionshel 2 (i)}?ijlv is converted back to the 2D formxt* ¢ RMxN .

adoption of chaos can further enhance the security due Q. ihe permutation, the signa* is sampled column by

its pseudo-random behavior and high sensitivity to theahit .o, mn using the sam’e measurement makix.e., Y* [j] =

condition. . ®X* [j], whereY* € REXN and X* [j] represents thgth
Frunzeteet al. [2€] further constructed chaotic measurementy| ,mn of X*. In the decoding phas&* can be recovered

matrix by introducing the one-dimensional skew tent map,y the receivedy* and is then processed by the reverse

given by permutation to derive the sign& of interest, as shown in
Fig. 2. The whole process is controlled by chaos, specificall
) ifo<z(k)<p the skew tent map with four keyg, z (0), x' and 2’ (0).
Z(/f+1)—T[Z(k);/L]—{ 12 Fu<z(k) <1
o ez

1—
(10) A. Generating the Permutation Order
where the control parameter € (0,1) and the initial state

z2(0) € (0,1). In terms of RIP, Frunzetet. al. [29] proved
the following theorem.

There are a number of classic methods in realizing the
permutation operatior(e) from one or more keys using

Theorem 2: [2€] A chaotic sequenceb € R**" con- Chgtcr):\; i?frgr?/vgrfdvz?;rs]f;rri Séit:c;gsc;(zlci\izstzransforms such
structed by the skew tent map satisfies RIP for constant 9 '

5. > 0 with overwhelming probability providing that < as Arnold map to directly project the indices of the 2D signal
s - e.g.,[39].

O (K /log (M/s)). . . .
For PCS, we can immediately infer the result describeﬂ Matrlx_ rotat|on._ Employ the chaptlc sequence to construct
below. the rotation matrix acting on 1D signal, e.d..![40].

Indices sorting. Sort the chaotic sequence to generate the
index matrix, applying to the indices of the 1D signal, e.g.,
[41].

Here, we apply the method “indices sorting” to perform
the permutation. According to [41], a permutation sequéesce
for some constant’, then it will satisfy the RIP of ordeffs|| .,  produced by using the skew tent map by the following steps:
with overwhelming probability. a. Set the keys: and z (0) to iterate the skew tent map

Unlike the Logistic map, the probability density functionM/ N + m times, then discard the first values to get rid of
of skew tent map follows the uniform distribution, whichthe transient effect.

Corollary 1: If the sensing matrixp € RX*M is constructed
by a chaotic sequence with

K> C-ls| log (M/lls]|) (11)
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Fig. 3. Four encoded images at differefitRs. (a) CR = 0.8; (b) CR = 0.6; (¢) CR =0.4; (d) CR =0.2.

Fig. 4. Four decoded images corresponding to the four edcodages in Fig[13 for differenCRs. (&) CR = 0.8; (b) CR = 0.6; (c) CR = 0.4; (d)

CR=0.2.
(@ (b) (d)

(©

Fig. 5. The test of key sensitivity (R = 0.2). (a) z (0) = 0.33 + 10~ 16; (b) u = 0.63 + 10~ 16; (c) 2’ (0) = 0.73 4 10~16; (d) p/ = 0.28 4+ 10~16.

b. Sort the remaining/ N values{z (i)}ﬁfnﬂﬁv

{z ()M

to obtain B. Generating the Measurement Matrix

N N Following the idea of@g], the chaotic measurement matrix
c. Search the valugs Qf.z (i.)};f;ﬂ in {i/[(]iv)}?jm1 ,and s constructed by the following steps:
store the corresponding indic¢gndex (i)};—; . a. Define the chaotic sequenc& (d,k,u, 2 (0)) :=

, . k . . .
Apparently, {Index (z‘)}i]\i];’ indicates an order of the in- 12/ (n+4 x d)};_o, Which is extracted from the chaotic se-

tegers from 1 toMN. The above steps have been Widel)guence generated by the skew tent map with sampling distance

used to generate the permutation order in image encrypt%r‘?‘nd keysu’ andz’ (0). M1

schemes. However, the complexi€y (n?logn) is high. A b. Introduce a new transform{v (k)},—, =

novel algorithm, whose complexity is reduced@{nlogn), {=2xA(dk,p/,2"(0)) + 1}, _xpr-1-

was designed in [42]. The procedures are: c. Create the measurement matrix column by column using
a. Initialize a flag sequenc@flag(k)},i\il\{ and a permuta- the sequenced (k)},— . as given by

tion sequence Index (k)}1—) to 0 and set = 1, j = 1.

b. Calculate z(k+1) = T[z(k);u] and x = 9 (0) o 9(KM - K)
[MN x z (k+1)]. & % : : (12)
c. If flag(x) = 0, then setindex (i) = x, flag(x) =1 9K -1) ... I9(KM-1)

andi =i + 1; otherwise, letj = j + 1 and go to Step b.
d. Ifi< MN, setj =35+ 1 and go to Step b. where the scalax/2/K is used for normalization.



V. SIMULATION

40

An image can be considered as a 2D signal, which
sparsified by 2D discrete cosine transform (DCT2) to obtain
2D sparse sign&. The best-term approximation is acquired
by keeping thes largest DCT2 coefficients and setting the
remaining to zeros. Four images of size 5BA2, Peppers, o=
Lena, Boat and Baboon, are used in the simulations. Thebe & | _— e~ ..
pursuit algorithm in the CVX optimization toolbox [43] is
employed to realize the PCS reconstruction. Apart from tt —a e

35

PSNR(dB)

basis pursuit, other reconstruction algorithms can alsased. ST g paboont
The reconstruction performance is evaluated by peak sign g Boary
to-noise ratio (PSNR). Four session keys (0), ¢/ andz’ (0) N ppe
are chosen fronf0, 1), satisfyingu # z (0) and ' # 2’ (0). i Al
With respect to the construction of the measurement matr 02 03 o 05 06 07 08
the sampling distance is chosends- 15 according tol[29]. oR

T Fig. 6. PSNR versu¢’R for different images with/without encryption.
A. Compressibility 9 9 yp

TABLE Il

The encoded (or encrypted) image can have various sizes PSNROF DIFFERENT SETTINGS AT VARIOUSCRS.

depending on the compression rati0 {), i.e., the ratio of

the number of measurements to the total number of entriesCR 0.2 0.4 0.6 0.8
in the DCT2 coefficient matrix. Figuf@ 3 shows four encoded PCSNE1) 20.0800 252575 20.4243  34.0949
, - . X PCS-E(#2) 25.7507 30.0071 33.4539  37.7431
images for the or_|g|na_1l Peppers image corresponding /o= Iy —Ty 56707 4.7496  4.0296  3.6482
0.8,0.6, 0.4, 0.2 with given key valueg = 0.63, z (0) = 0.33, PCS-AGWN-N(Z'3) 20.0899 25.2382 29.3072 33.0931
p' = 0.28 and 2/ (0) = 0.73. In order to investigate the = PCS-AGWN-E('4) 257405  29.9143  33.0547  35.8942
. Iy — T3 5.6506  4.6761  3.7475  2.8011
effect of encryption onC'R, we plot PSNR versug’R for PCS-CA-N(5) 13.7827 132879 11.8456  9.0193
different images with/without encryption in Fi§l 6, where PCS-CA-E(Z%) 16.1730 15.9257 13.7208  9.5178
“E” represents encryption while “N” means no encryption. _s —I's 2.3903 26378 1.8752 0.4985

No encryption refers to the case that a 2D sparse signal is

sampled column by column with the same measurement matrix

drawn from Gaussian ensembles, which are replaced by %Ids zer.o-met:;m lr<10mtwal dlsm.bl';[t'gn ;Nt'rt]h vanar:jcz:_[ while t
chaotic sequences in our experiment. As observed from Fge Ccropping attack cuts one-eignth of the encoded image a

B, encryption helps to improve the PSNR of all images by YPPef left corner. Observings and Iy, or I's and I's
around 2.6 dB at the sam&@R. In other words, at the same’ > Tablelll, we can see that at a channel with both AGWN
PSNR, encryption makeS R smaller. In comparison with the and_ CA'_ encryption IMproves the_ P.SNR at the safig.
general joint compression and encryption schemes in whi individually comparing the "af'a“"” trends of, — I,
encryption always compromises the compression performanc* — I's andl's B I, the tendency |s.t_hat the s_maller tﬁ%ﬁ,

the proposed approach embedding encryption in PCS redu esgreaterthe improvement. In addition, vertl_cally casting

CR, while maintains the same reconstruction quality. This fgese three rows of data reveals that PSNE improvements are

mainly due to the fact that random permutation can relax th ilar with a_nd without AGWN. With respect to CA’. the

RIP for 2D sparse signals with high probability in PCS aMmprovementis reduced. Thus, we come to the conclusion that

justified by Theorem 1 " “the proposed approach possesses a stronger robustness agai
' AGWN than CA. It is worth mentioning that similar results

are obtained using other images.
B. Robustness

Introducing encryption into PCS makes it still possess VI. SECURITY ANALYSIS
high reconstruction robustness, even for a small amount ofin this section, we investigate the security of the pro-
encoded data. This can be visually verified by the four dedodgosed scheme embedding bi-layer encryption in PCS using
images, as shown in Fidl 4. The decoded (or decryptezhaos. Assume that Alice sends an encrypted mes¥ége
images contain most of the visual information of the orifjinaPP (X) = ®X* to Bob, who decrypts the message by solving
images, even aC’R = 0.2. A significant requirement in the the following convex optimization problem
transmission process is the robustness of a coding system (o
cryptosystem) against imperfection such as additive Gaiss
while noise (AGWN) and cropping attack (CA). These two
capabilities are quantified in Taklg 1l for the Peppers imagand soX = P~!(X*). An eavesdropper, Eve, attempts to
In particular, the encoded images at differétits are affected recover the plaintexX or the encryption key® and P(e)
by these imperfections and the PSNRs of the corresponditgtermined by the initial values of the chaotic system after
decoded images are calculated. Additive Gaussian whilgenointercepting the ciphertexy *.

min [|X* [j]]ly st Y* [j]= ®X" [j], j € [L,N]  (13)



A. Asymptotic Spherical Secrecy that for Eve to recover the plaintext from the ciphertextwiit

Considering Shannon’s definition of perfect secrecy that t1€ Correct keys is equivalent to solving a computationabpr
probability of a message conditioned on the cryptogram @M thatis assumed to be extremely difficult (e.g., NP-hdrd)
equal to thea priori probability of the message, the proposel!® Proposed schemX, is a 2D sparse signal with sparsity

scheme does not achieve perfect secrecy, as stated in LerhnfaVTong keyu, z (0), u' or 2’ (0), which is almost identical
3 to the correct key, is used by Eve in attempting to rec&er

Lémma 3: Let X be a random varible, whose probability idhe resultis unsuccessful due to the high key sensitivayest
Py (X) > 0,¥X € RM*N and® be a]'{x M measurement the sensitivity of the four keys, a tiny perturbation 1f ¢
matrix. Witr; respect to th,e encryption modgl = &P (X) is added, respectively, and the decoded images are depicted

we havel (X;Y) > 0, and so perfect secrecy is not achieved? Fig. [5. Their indistinguishability justifies the high key
The proof is given in Appendix B. sensitivity of the proposed approach. In fact, this is goteed

By the RIP, Y provides information about the norm ofby the inherent property of chaos, i.e., high sensitivity to

X. The fact that thds-norm of a vector can be considereditidl conditions. The key space is at leaxt'. Moreover,
as its energy has been utilized by Cambaetral. [25] in the unsuccessful recovery of the signal using a wrong key can

introducing the notion of asymptotic spherical secrecy@g 20 be justified by the following theorem. _ _
encoding in which the measurement matrix serves as a key,"€0rem 4:[1€] Let & and® be K x M matrices with entries
Definition 3: [25] (asymptotic spherical secrecy). Let) — denerated by different keys. Let be s-sparse and = ®x.
(20,21, ) € R" be a plaintext sequence of increasina\/hens > s+ 1 the_lo orily opt_|m|zat|on used will yield an
lengthn andy(™ be the corresponding ciphertext sequencé:SParse solution with probability one.

Assume that the power of the plaintext is positive and finite, ON the contrary, once ar-sparse solution is obtained
ie. using some keys, Eve easily realizes that it must be the

correct key. Computational secrecy can be achieved if Eve

o1 L is computationally bounded; otherwise, the cryptanalysis
Wi = nlgrolo n Zk:l iy 0 < Wae < oo (14) succeed. However, in practical applications, the keys Ishou

A cryptosytem is said to have asymptotic spherical secrefE? at Ieasﬂli4 bits and are updated periodically to resist brute-
if orce attack.

Sy o xm (y,x) ngMWx (y), (15) VIl. CONCLUSION
o This paper is firstly dedicated to the design of TLPM for
where— denotes the convergence in distributionas» oo.  gcs. Some connections between CS and symmetric-key cipher
This definition implies that it is impossible for Eve to infergre analyzed. Some cryptographic features are embedded in
the plaintextx but its power from the statistical properties oCS, as summarized in Tab@ I. We hope the connections
the random measuremengs Although not achieving perfect petween CS and symmetric-key cipher will lead to a new
secrecy, the proposed scheme satisfies asymptotic sphefigant of view and stimulate further research in both areas. |

Secrecy. the second part of this paper, an encryption scheme for PCS
Theorem 3: (asymptotic spherical secrecy of the proposegas been proposed. Simulations using images as 2D signals
scheme) show that at the same compression ratio, encryption imgrove

Let the PSNR by 26 dB for all images. For a channel suffered

1) X" = (X;;) € RM*N pe a bounded-value plain-from both additive Gaussian white noise and cropping aftack
text with power0 < Wx < +oo, defined asWx = encryption still improves the PSNR when the compression
nli_{I;o 1 PO Z;V:l X7, wheren = MN; ratio is fixed. It is found that the proposed approach possess

2) x*n) P(X(n)) _ (X;*») € RMXN with power & higher rpbustness against add_itive Gaussian Whitg noise
Wxe = lim 1 ZM Zzy (X*) i than cropping attack. The encryption also possesses high ke

n—oo M Ai=l £j=1 A"/ sensitivity and security. In our further work, we will fugh

3) Y™ = (v};) € RE*M be the corresponding ciphertextexplore and design some other SCS schemes by virtue of

whereY;; = 2{:1 i Xj;- Asn — oo, we have TLPM.
Yij 2 N (0, MWx/K). (16) APPENDIXA

PROOF OFTHEOREM 1
The derivation of this result can be found in Appendix C. )
Proof: If |s*[|, < [Is|l. i.€., Pr{P(e) is acceptable} = 0,

. meaning that each column & tends to have similar sparsity
B. Computational Secrecy levels, P(e) does not work. However, such & has relaxed
Cryptosystems relying on computation-secrecy such as R8#% RIP condition for PCS without permutation. Thus, we
are practical and widely used. In contrast to informaticgoth consider theX where the distribution of the sparsity level
retic secrecy which is an ideal encryption requirement,mom in each column is not sufficiently uniform, which, more
tational secrecy allows the ciphertext contains the cotaple importantly, accords with the feature of a nature signathea
partial plaintext information, which is common. This erssir element inX will be randomly located at any index a€*,



that is, this transition of all the indices frok to X* yields the
uniform distribution. Each non-zero element Xfappears in

coding,”|[EEE Trans. Multimedia, vol. 8, no. 5, pp. 905—
917, Oct. 2006.

each column oX* with equal probability%. This has a strong [3] J. Wen, H. Kim, and J. D. Villasenor, “Binary arithmetic

resemblance to the classical probability problems b&lls and
N boxes. The probability that the random permutati®»)
is an acceptable permutation is calculated as

P {P (o) isacceptable} = P {[|s*| . <|sll}
* N *
=1-P{lIs"ll = Isllc} =1 = 2iys)_ PAIIs™lloc = 4}

_ N C]lv _ N 1 NN+1*\|SHOO,1
=1- Zk:”s” =1 o7 @ TS ® TyRTITeL
1 NN+ sToe _q S NNF1I-fs/NT

= (fV—l)NN = (N—D)NVN

=1- NTs/NT*

(17)
This completes the proof.

APPENDIXB
PROOF OFLEMMA 3

Proof: We prove this lemma by contradiction. Apparently,

I(X;Y) > 0 if and only if X and Y are statistically
independent. In the context i¥ = 0, Y = ®P(X) =
®P(0) = -0 = 0 and thusPy|x (Y =0[X =0) = 1.
On the other hand, onlX in the null space of® which

coding with key-based interval splitting/EEE Sgnal
Process. Lett., vol. 13, no. 2, pp. 69-72, Feb. 2006.

H. Kim, J. Wen, and J. D. Villasenor, “Secure arithmetic
coding,” IEEE Trans. Sgnal Process., vol. 55, no. 5,
pp. 2263—-2272, May 2007.

R. Bose and S. Pathak, “A novel compression and en-
cryption scheme using variable model arithmetic coding
and coupled chaotic systemEEE Trans. Circuits Syst.
[-Regul. Pap., vol. 53, no. 4, pp. 848-857, Apr. 2006.
K.-W. Wong, Q. Lin, and J. Chen, “Simultaneous arith-
metic coding and encryption using chaotic map&FEE
Trans. Circuits Syst. |1-Express Briefs, vol. 57, no. 2,
pp. 146-150, Feb. 2010.

K.-W. Wong and C.-H. Yuen, “Embedding compression
in chaos-based cryptography2EE Trans. Circuits Syst.
[1-Express Briefs, vol. 55, no. 11, pp. 1193-1197, Nov.
2008.

[8] J. Chen, J. Zhou, and K.-W. Wong, “A modified chaos-

based joint compression and encryption scherteE
Trans. Circuits Syst. 11-Express Briefs, vol. 58, no. 2,
pp. 110-114, Feb. 2011.

is a new transform® = ®P(e) are mapped to¥ = 0;
whereas, we havé®y (Y =0) < 1 due to the assumption
that Px (X) > 0, VX € RM™*N_ As a result, we conclude
that Py x (Y = 0|X =0) # Py (Y = 0), meaning thatX
andY are statistically dependent.

[9] C.-H. Yuen, O.-Y. Lui, and K.-W. Wong, “Application of
chaotic maps for simultaneous lossy image compression
and encryption,” inProc. |IEEE Int. Symp. Circuits Syst.
(ISCAS), Seoul, Korea, May 2012, pp. 393-396.

[10] Q.-Q. Chen and Z.-J. Zhang, “New video compression

and encryption algorithm based on hyper-chaosPrioc.

9th Int. Conf. Fuzzy Syst. Knowledge Discovery (FSKD),

Sichuan, China, May 2012, pp. 1869-1873.

J. Zhou and O. C. Au, “Comments on “a novel com-

pression and encryption scheme using variable model

arithmetic coding and coupled chaotic systenTEEE

Trans. Circuits Syst. |I-Regul. Pap., vol. 55, no. 10,

pp. 3368-3369, Nov. 2008.

E. J. Candés, J. Romberg, and T. Tao, “Robust un-

certainty principles: Exact signal reconstruction from
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~ fim 1YV ZD];H;;?_ W (18) Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.

nyoo M A=l Luj=17"4] X [13] D. L. Donoho, “Compressed sensingEEE Trans. Inf.
Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.

[14] E. J. Candés and M. B. Wakin, “An introduction to com-
pressive samplingJEEE Sgnal Process. Mag., vol. 25,
no. 2, pp. 21-30, Mar. 2008.

[15] E. J. Candés and T. Tao, “Near-optimal signal re-
covery from random projections: Universal encoding
strategies?,1EEE Trans. Inf. Theory, vol. 52, no. 12,
pp. 54065425, Dec. 2006.

[16] Y. Rachlin and D. Baron, “The secrecy of compressed
sensing measurements,” Proc. 46th Annual Allerton
Conf. Comm. Control Comput., Urbana-Champaign, IL,
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APPENDIXC
PROOF OFTHEOREM 3

Proof: Permutation does not affect the power and thJ%ll
Wx- = Wx. After the random permutation, the energy is
approximately uniformly dispersed to each colummof™.

In other words, the power of each column converges to that
for the whole plaintext in distribution, i.e., [12]

The measurement matri® is sub-Gaussican with i.i.d. ele-
ments [29]. We calculate

B[v3) - B[ (S eaxy,) |
= % Zkle (Xl:j)2 ? %WX'

thereby yielding the result stated in Theorem 3.

(19)
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