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Abstract

In today’s society where audio-visual content is ubiquitous, violence detection in
movies and Web videos has become a decisive functionality, e.g., for providing
automated youth protection services. In this paper, we concentrate on two impor-
tant aspects of video content analysis: Time efficiency and modeling of concepts
(in this case, violence modeling). Traditional approaches to violent scene detec-
tion build on audio or visual features to model violence as a single concept in the
feature space. Such modeling does not always provide a faithful representation of
violence in terms of audio-visual features, as violence is not necessarily located
compactly in the feature space. Consequently, in this paper, we target to close this
gap. To this end, we present a solution which uses audio-visual features (MFCC-
based audio and advanced motion features) and propose to model violence by
means of multiple (sub)concepts. To cope with the heavy computations induced
by the use of motion features, we perform a coarse-to-fine analysis, starting with
a coarse-level analysis with time efficient audio features and pursuing with a fine-
level analysis with advanced features when necessary. The results demonstrate
the potential of the proposed approach on the standardized datasets of the latest
editions of the MediaEval Affect in Multimedia: Violent Scenes Detection (VSD)
task of 2014 and 2015.

Keywords: Event Detection, Violence Concept, Ensemble Learning, Feature
Space Partitioning, Coarse-to-Fine Violence Analysis, Support Vector Machine
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1. Introduction

The amount of multimedia content accessible to consumers becomes more and
more abundant. This creates a need for automatic multimedia analysis solutions
which can be used to find relevant semantic search results or to identify illegal
content present on the Internet. In parallel, the developments in digital media
management techniques have simplified delivering digital videos to consumers.
As a consequence, gaining access to online film productions offered on platforms
such as Video-On-Demand (VOD) services has literally become a child’s play,
with the risk that children be exposed to movies or reality shows which have not
been checked by parents. Thus, these might contain inappropriate content, as one
cannot expect that parents constantly and precisely monitor what their children
are viewing. Violence constitutes one typical example of such inappropriate con-
tent, whose negative effects have been evidenced [1]. Consequently, a need for
automatically detecting violent scenes in videos (e.g., movies, Web videos) has
appeared.

Nowadays, movies receive different ratings in different countries (e.g., age
of 0, 12, etc.). Even if there is an agreement between different national rating
institutes, the perception of violence can still differ from person to person, even
within a group of persons of identical age. Due to the subjective nature of the
“violence” concept, one of the challenges is to adequately delimit the boundaries
of what can be designated as a “violent” scene. Therefore, one preliminary step is
the adoption of a definition of violence to work with. We adhere to the definition
of violence as described in [2]: subjective violence. According to [2], subjective
violent scenes are “those which one would not let an 8 years old child see because
they contain physical violence”.

In this context, the MediaEval Affect in Multimedia: Violent Scenes Detec-
tion (VSD) task [3], held yearly since 2011, has provided a consistent evalua-
tion framework to the research community and enabled various approaches to be
evaluated and compared by using the same violence definition and a standard-
ized dataset. Interested readers will find a comprehensive description of the task,
dataset, ground truth and evaluation criteria in [3]. The task stems from a use case
attributed to the company Technicolor'. The French producer of video content
and entertainment technologies adopted the aim of helping users to select movies
that are suitable to watch with their children. This helps them decide if, according
to their own criteria, the movie is adequate to be watched by their child.

'https://research.technicolor.com/rennes/
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For the reasons we stated above, an effective violence detection solution,
which is designed to automatically detect violent scenes in movies (or in videos in
general), is highly desirable. Such an automated solution requires working with
a proper representation of data which is an essential processing step. Recently,
solutions using mid-level feature representations have gained popularity. These
solutions shifted away not only from the traditional approaches which represented
videos using low-level features (e.g., [4, 5]) but also from the use of state-of-the-
art detectors designed to identify high-level semantic concepts (e.g., “a killing
spree”’). The earlier solutions could not carry enough semantic information, and
the latter ones have not reached a sufficient level of maturity. Hinted by these
recent developments, we adopt here mid-level audio and motion representations
as they may help modeling video segments one step closer to human perception.
As a basis for the mid-level audio and motion representations, we employ MFCC
and dense trajectory features, respectively. Using simultaneously audio and visual
information is computationally expensive. We approach this issue by exploiting
audio and visual information in a coarse-to-fine setup to reduce computations and
boost the velocity of violence detection. In addition, this can be used for designing
scalable solutions, i.e., adjustable depending on the processing power or accuracy
requirements.

In parallel to the progress in feature representation, machine learning tech-
niques are constantly improved in order to effectively use features. A development
in this direction is feature space partitioning [6]. A classifier is usually trained on
a given dataset to detect a unique class (e.g., the concept of violence). However,
such a class might not be expressed in a “‘compact” manner in the feature space.
Partitioning the feature space to build multiple models that correspond to the same
concept might help in properly recognizing a given concept. Therefore, instead
of building a unique model to detect violence, we use feature space partitioning.
This presents several advantages. It enables a faithful modeling of “violence”. It
also constitutes a data-driven operation, as it does not require defining manually
several “violence” concepts (e.g., there is no need to have a separate concept for
“explosion”, “fire” or other similar concepts), as it directly builds on the data. Fi-
nally, this aspect is not hardwired to “violence” only, but can be extended to other
concepts.

The paper is organized as follows. Section 2 explores the recent developments
by reviewing video violent content detection methods which have been proposed
in the literature, and presents the contributions of the paper. In Section 3, we
introduce our method and the functioning of its various components. We provide



and discuss evaluation results obtained on the latest MediaEval datasets of 2014
and 2015 in Section 4. Concluding remarks and future directions to expand our
current approach are presented in Section 5.

2. Related Work and Contributions

2.1. Related Work

Although video content analysis has been extensively covered in the literature,
violence analysis of movies or of user-generated videos does not enjoy a compa-
rable coverage and is restricted to a few studies. We present here a selection of
the most representative ones, from a machine learning and classification perspec-
tive. As a preliminary remark, we would like to emphasize that, with respect to
prior art studies, the definition of violence poses a difficulty. In some of the works
presented in this section, the authors do not explicitly state their definition of vi-
olence. In addition, nearly all papers in which the concept is defined consider a
different definition of violence; therefore, whenever possible, we also specify the
definition adopted in each work discussed in this section.

One popular type of approach adopted in the literature is classification based
on SVM models. An illustration to SVM-based solutions is the work by Gian-
nakopoulos et al. [7], where violent scenes are defined as those containing shots,
explosions, fights and screams, while non-violent content corresponds to audio
segments containing music and speech. Frame-level audio features both from the
time and the frequency domain are employed and a polynomial SVM is used as the
classifier. In [8], de Souza et al. adopt their own definition of violence, and des-
ignate violent scenes as those containing fights (i.e., aggressive human actions),
regardless of the context and the number of people involved. Their SVM approach
is based on the use of Bag-of-Words (BoW), where local Spatial-Temporal Inter-
est Point Features (STIP) are used as feature representations. They compare the
performance of STIP-based BoW with SIFT-based BoW on their own dataset,
which contains 400 videos (200 violent and 200 non-violent videos). Hassner et
al. [9] present a method for real-time detection of breaking violence in crowded
scenes. They define violence as sudden changes in motion in a video footage.
The method considers statistics of magnitude changes of flow-vectors over time
using the Violent Flows (ViF) descriptor. ViF descriptors are then classified as
either violent or non-violent using a linear SVM. In [10], Gong et al. propose a
three-stage method. In the first stage, they apply a semi-supervised cross-feature
learning algorithm [11] on the extracted audio-visual features for the selection of
candidate violent video shots. In the second stage, high-level audio events (e.g.,
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screaming, gun shots, explosions) are detected via SVM training for each audio
event. In the third stage, the outputs of the classifiers generated in the previous two
stages are linearly weighted for final decision. Although not explicitly stated, the
authors define violent scenes as those which contain action and violence-related
concepts such as gunshots, explosions and screams. Chen et al. [12] proposed a
two-phase solution. According to their violence definition, a violent scene is a
scene that contains action and blood. In the first phase, where average motion,
camera motion, and average shot length are used for scene representation and
SVM for classification, video scenes are classified into action and non-action. In
the second phase, faces are detected in each keyframe of action scenes and the
presence of blood pixels near detected faces is checked using color information.
Aiming at improving SVM-based classification, Wang et al. [4] apply Multiple
Instance Learning (MIL; MI-SVM [13]) using audio-visual features in order to
detect horror. The authors do not explicitly state their definition of horror. There-
fore, assessing the performance of their method and identifying the situations on
which it properly works is difficult. Video scenes are divided into video shots,
where each scene is formulated as a bag and each shot as an instance inside the
bag for MIL. In [14], Goto and Aoki propose a violence detection method which
is based on the combination of visual and audio features extracted at the segment
level using multiple kernel learning.

Next to SVM-based solutions, approaches which make use of other types of
learning-based classifiers exist. Yan et al. [15] adopt a Multi-task Dictionary
Learning approach to complex event detection in videos. Based on the obser-
vation that complex events are made of several concepts, certain concepts useful
for particular events are selected by means of combination of text and visual in-
formation. Subsequently, an event oriented dictionary is learnt. The experiments
are conducted on the TRECVid Multimedia Event Detection dataset. The same
authors have experimented Multi-task Learning in other situations. For instance
in [16], Yan et al. employ a variant of Linear Discrimant Analysis (LDA — used to
find a linear combination of features capable of characterizing or discriminating
several classes) called Multi-task LDA to perform multi-view action recognition
based on temporal self-similarity matrices. More recently, Yan et al. [17] have
developed a Multi-task Learning approach for head-pose estimation in a multi-
camera environment under target motion. Giannakopoulos et al. [5], in an attempt
to extend their approach based solely on audio cues [7], propose to use a multi-
modal two-stage approach based on k nearest neighbors (k-NN). In the first step,
they perform audio and visual analysis of segments of one second duration. In the
audio analysis part, audio features are used to classify scenes into one of seven



classes (violent ones including shots, fights and screams). In the visual analysis
part, motion features are used to classify segments as having either high or low ac-
tivity. The classifications obtained in this first step are then used to train the k-NN
classifier. Another work based on k-NN is the one by Derbas and Quénot [18],
where they explore the joint dependence of audio and visual features for violent
scene detection (they actually compare k-NN and SVMs and report superior re-
sults for k-NN). They first combine the audio and the visual features and then
determine statistically joint multi-modal patterns. The proposed method mainly
relies on an audio-visual BoW representation. The experiments are performed
in the context of the MediaEval 2013 VSD task. The obtained results show the
potential of the proposed approach in comparison to methods which use audio
and visual features separately, and to other fusion methods such as early and late
fusion. In [19], Ionescu et al. address the detection of objective violence in Hol-
lywood movies using Neural Networks, where objective violence is defined as
“physical violence or accident resulting in human injury or pain” in [2]. The
method relies on fusing mid-level violence-related concept predictions inferred
from low-level features. The authors employ a bank of multi-layer perceptrons
featuring a dropout training scheme in order to construct 10 violence-related con-
cept classifiers. The predictions of these concept classifiers are then merged to
construct the final violence classifier. The method is tested on the dataset of the
MediaEval 2012 VSD task and ranked first among 34 other submissions, in terms
of precision and F-measure. Using Bayesian networks, Penet et al. [20] propose to
exploit temporal and multi-modal information for objective violence detection at
video shot level. In order to model violence, different kinds of Bayesian network
structure learning algorithms are investigated. The proposed method is tested on
the dataset of the MediaEval 2011 VSD Task. Experiments demonstrate that both
multimodality and temporality add valuable information into the system and im-
prove the performance in terms of the MediaEval cost function [21]. Lin and
Wang [22] train separate classifiers for audio and visual analysis and combine
these classifiers by co-training. Probabilistic latent semantic analysis is applied in
the audio classification part. Audio clips of one second length are represented with
mid-level audio features with a technique derived from text analysis. In the visual
classification part, the degree of violence of a video shot is determined by using
motion intensity, the (non-)existence of flame, explosion and blood appearing in
the video shot. Violence-related concepts studied in this work are fights, murders,
gunshots and explosions. Ding et al. [23] observe that most existing methods
identify horror scenes only from independent frames, ignoring the context cues
among frames in a video scene. In order to consider contextual cues in horror
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scene recognition, they propose a Multi-view MIL (M?IL) model based on a joint
sparse coding technique which simultaneously takes into account the bag of in-
stances from the independent view and from the contextual view. Their definition
of violence is very similar to the definition in [4]. They perform experiments on
a horror video dataset collected from the Internet and the results demonstrate that
the performance of the proposed method is superior to other existing well-known
MIL algorithms.

2.2. Addressed Research Questions and Contributions of this Paper

Based on an in-depth analysis of the literature, we identified two research
questions (RQs) that we aim to address with the work presented in this paper.

(RQ1) — The first question is how to model the concept of violence given the
data. This question has been qualified as an interesting research direction by the
organizers of the VSD challenge [24]. We remarked that, in nearly all of the works
mentioned above, a single model is employed to model violence using audio or
visual features. In other words, the samples constituting the training set are taken
as a whole to train a unique “violence” classifier. Two types of improvements can
be envisaged to better model violence. Both are based on the fact that violence
can be expressed in very diverse manners. For instance, two distinct events (e.g.,
“explosion” and “fight””) may be both intensely violent in the eyes of a consumer
and, nevertheless, be located in different regions of the feature space. In addition,
two events of the same type (e.g., “fight”) might be characterized by distinct au-
dio or visual features (fight between two individuals vs. brawl of 50 people). The
first type of improvement is using manually designed multiple violence models,
1.e., one model for each possible type of violence (e.g., one for “explosion”, one
for “fight”). The work by Ionescu et al. [19] is an example. However, such ap-
proaches do not solve the latter problem and are hardwired to the violence concept.
The second type is deriving subconcepts from the data to build multiple models.
Partitioning the feature space, where each “partition” (i.e., cluster) is used to build
a separate model, is an illustration. It enables deriving multiple violence models,
and can be extended to other concepts.

To the best of our knowledge, the sole work on violent scene detection per-
forming feature space partitioning is the one by Goto and Aoki [14]. Feature
space partitioning is achieved through mid-level violence clustering in order to
implicitly learn mid-level concepts. However, their work is limited in two as-
pects. First, they cluster violent samples only. The inclusion of non-violent sam-
ples in the training process is done by a random selection. Such an approach
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presents the drawback of not taking into account the proximity of some violent
and non-violent samples. For instance, if a violent sample and a non-violent one
are closely located in the feature space, this is an indication that they are difficult
to discriminate. Therefore, in order to obtain optimal classification boundaries,
such particularities should be considered when building the models. Second, they
use motion features, which are computationally expensive. This does not pose a
problem for training. However, such a solution might introduce scalability issues,
and might hinder the execution of violence detection in a real-world environment.

(RQ2) — The second question is how to efficiently use powerful motion fea-
tures. In many of the existing works, next to audio or static visual cues, motion
information is also used in the detection of violent scenes. Employed motion fea-
tures range from simplistic features such as motion changes, shot length, camera
motion or motion intensity [5, 12, 20, 22], to more elaborated descriptors such as
STIP, ViF [8, 9] or dense trajectories, which have recently enjoyed great popu-
larity. Dense trajectory features [25] have indeed received attention even among
the VSD participants (e.g., [26, 27, 28]). Both types of motion approaches have
drawbacks and advantages. Simplistic ones do not induce heavy computations
but are likely to fail when it comes to efficacy; elaborated ones constitute power-
ful representations but result from computationally expensive processes. To cope
with the heavy computations induced by the use of motion features, we perform a
coarse-to-fine analysis, starting with coarse-level analysis with time efficient au-
dio features and pursuing with fine-level analysis with advanced features when
necessary. To the extent of our knowledge, none of the studies addressing the de-
tection of violent scenes in videos solve the issue of computational expense using
such a staged approach.

To sum up, the contributions of this paper can be summarized as follows: (1)
a modeling of violence with feature space partitioning, which reliably models
violence in the feature space without extensive supervision, and can be easily
transposed for the detection of other concepts; and (2) a coarse-to-fine analysis
approach which paves the road for time efficient and scalable implementations.

3. The Proposed Method

In this paper, we address the problem of violence detection at the segment
level. This means that no video shot boundaries are available for the videos that we
analyze. Therefore, we start our analysis by partitioning all videos into fixed-size



segments of a length of 0.6 second. This length of video segments is determined
according to the pre-evaluation runs.
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Figure 1: The general overview of our approach illustrating the two main phases of the sys-
tem. The upper part of the figure gives the main steps performed during training (i.e., coarse
and fine-level model generation), while the lower part shows the main steps of testing (i.e., ex-
ecution). (DT: Dense Trajectory, BOAW: Bag-of-Audio-Words, BOMW: Bag-of-Motion-Words,
CSC: Coarse Sub-Concept, FSC: Fine Sub-Concept).

As can be seen in Figure 1, our violence detection approach consists of training
and testing phases. The training task involves the extraction of features from the
raw video data, which are used to build audio and visual representations, the set
of which constitutes a feature space. As indicated earlier, we do not wish to con-
struct a single model obtained with these features, but a plurality of models (i.e.,
plurality of “subconcepts”), as we argue that “violence” might not be expressed
in a “compact” manner in the feature space.

For most machine learning methods, testing would follow training, i.e., it
would involve extraction of both audio and visual features followed by classifi-



cation. However, because the extraction of motion features is computationally
heavy, our testing does not exactly follow training. Instead, for the execution of
our system, a coarse-to-fine approach is adopted, which explains the parallel con-
struction of the testing scheme in Figure 1, where coarse-level violence detection
is always performed while fine-level analysis is optional.

Therefore, in order to present in more detail each of these steps, the remainder
of this section is organized as follows. Section 3.1 deals with video representation.
Feature space partitioning is explained in Section 3.2. Section 3.3 details the
generation of the subconcepts subsequent to partitioning. The audio or visual
violence detections are based on combining the outputs of the models, which is
presented in Section 3.4. Temporal smoothing and merging which are designed to
further enhance performance are introduced in Section 3.5. Section 3.6 presents
the coarse-to-fine analysis.

i MFCC - .
S (13-dimensional) __ 5 | Searse coding of audio — 'lzczt:emde::ii‘gn
content
Audio sparse
dictionary

COARSE REPRESENTATION

FINE REPRESENTATION

-
|
|
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|
|
1
I

dynamic visual content (1024-dimensional each)

Visual sparse
dictionaries

Figure 2: The generation process of audio and visual representations for video segments (upper
part: coarse-level analysis features, lower part: fine-level analysis features). Each video segment
is of length 0.6 second. Separate dictionaries are constructed and used for MFCC, HoG, HoF,
MBHXx and MBHy to generate 1024-dimensional representations. Each HoG, MBHx and MBHy
descriptor is 96-dimensional, whereas the HoF descriptor is 108-dimensional. (SC: Sparse Coding,
BoAW: Bag-of-Audio-Words, BoMW: Bag-of-Motion-Words).

3.1. Representation of Video Segments

In this section, we start introducing our framework by outlining the repre-
sentation of audio-visual content of videos and present features that we use for
coarse-level (Section 3.1.1) and fine-level (Section 3.1.2) video content analysis.
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Figure 3: The generation of audio and visual dictionaries with sparse coding. Each video segment
is of length 0.6 second. Low-level features are MFCC and dense trajectory features (HoG, HoF,
MBHx and MBHy descriptors).

3.1.1. Mid-level Audio Representations

Sound effects and background music in movies are essential for stimulating
people’s perception [29]. Therefore, the audio signals are important for the repre-
sentation of videos. Mid-level audio representations are based on MFCC features
extracted from the audio signals of the video segments of 0.6 second length as il-
lustrated in Figure 2. We experimentally verified that the 0.6 second time window
(i.e., 15 visual frames) was short enough to be computationally efficient and long
enough to retain sufficient relevant information. In order to generate the mid-level
representations for audio segments, we apply an abstraction process which uses
an MFCC-based Bag-of-Audio Words (BoAW) approach with sparse coding (SC)
as the coding scheme. We prefer SC over vector quantization in the context of this
research as SC was shown to provide more discriminative representations [30].
We employ the dictionary learning technique presented in [31]. The advantage
of this technique is its scalability to very large datasets with millions of training
samples which makes the technique well suited for our work. In order to learn the
dictionary of size k (k = 1024 in this work) for sparse coding, 400 x kK MFCC fea-
ture vectors are sampled from the development data (experimentally determined
figure). The construction of the SC-based audio dictionary is illustrated in Fig-
ure 3, where the steps are illustrated. In the coding phase, we construct the sparse
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representations of audio signals by using the LARS algorithm [32] due to its ef-
ficiency in preliminary evaluations. Given an audio signal and a dictionary, the
LARS algorithm returns sparse representations for MFCC feature vectors. In or-
der to generate the final sparse representation of audio segments which are a set
of MFCC feature vectors, we apply the max-pooling technique.

3.1.2. Mid-level Dynamic Visual Representations

Dynamic visual content of videos provides complementary information for
the detection of violence in videos. The importance of motion in edited videos
(e.g., movies and Web videos) motivated us to incorporate motion information to
our framework. To this end, we adopt the work of Wang et al. on dense trajec-
tories [25]. Improved dense trajectories are dynamic visual features which are
derived from tracking densely sampled feature points in multiple spatial scales.
Although initially used for unconstrained video action recognition [25], dense
trajectories constitute a powerful tool for motion or video description, and, hence,
are not limited to action recognition.

Our dynamic visual representation works as follows. First, dense trajecto-
ries [25] of length 15 frames are extracted from each video segment. The sam-
pling stride, which corresponds to the distance by which extracted feature points
are spaced, is set to 20 pixels due to time efficiency concerns. Dense trajectories
are subsequently represented by a histogram of oriented gradients (HoG), his-
togram of oriented optical flow (HoF) and motion boundary histograms in the z
and y directions (MBHx and MBHy). The sparse dictionary learning and cod-
ing phases are performed similarly to the audio case. For each dense trajectory
descriptor (i.e., each one of HoG, HoF, MBHx and MBHy), we learn a separate
dictionary of size k (k = 1024 in this work) by sampling 400 x k feature vectors
from the development data. Finally, sparse representations are constructed using
the LARS and max-pooling algorithms. The construction of the SC-based motion
dictionaries is also summarized in Figure 3.

3.2. Feature Space Partitioning

As discussed before, “violence” is a concept which can be expressed in diverse
manners. For instance, in a dataset, both explosions and fight scenes are labeled as
violent according to the definition that we adopted. However, these scenes might
highly differ from each other in terms of audio-visual appearance depending on
their characteristics of violence. Instead of learning a unique model for violence
detection, learning multiple models constitutes a more judicious choice. There-
fore, in the learning phase, a “divide-and-conquer” ( “divide-et-impera”) approach
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is applied by performing feature space partitioning. The first step of learning mul-
tiple violence subconcept models is to partition the feature space into smaller
portions. We perform partitioning by clustering the set of video segments of 0.6
second length in our development dataset. Moreover, we employ the Approximate
Nearest Neighbor (ANN) k-means algorithm [33] which is a variant of Lloyd’s al-
gorithm [34] particularly suited for very large clustering problems [35]. The ANN
algorithm computes approximated nearest neighbors to speed up the instance-to-
cluster-center comparisons. We use the Euclidean metric for distance compu-
tations, initialize cluster centers with the k-means++ algorithm [36] and repeat
k-means clustering several times before determining data clusters. The number
of iterations represents a trade-off between clustering quality and time efficiency.
We observed that after 8 iterations stable clusters were obtained; increasing this
number did not improve significantly the quality of the obtained clusters. By ap-
plying feature space partitioning, we infer (sub)concepts in a data-driven manner
as opposed to approaches (e.g., [19]) which use violence-related concepts as a
mid-level step.

3.3. Model Generation for Subconcepts

For the generation of subconcept models, we apply the following procedure.
After clusters are generated (Section 3.2), they are distinguished as atomic and
non-atomic clusters as in [37]. A cluster is defined as atomic, if it contains pat-
terns of the same type, i.e., patterns which are all either “violent” or “non-violent”.
No model generation is realized for atomic clusters and their class labels are stored
for further use in the test phase. Non-atomic clusters are clusters which include
patterns from both the violent and non-violent classes. For those non-atomic clus-
ters, a different model is built for each violence subconcept (i.e., cluster). As the
base classifier in order to learn violence models, we use a two-class SVM. An
overview of the generation of the violence models is presented in Figure 4.

In the learning step, the main issue of the two-class SVM is the problem of
imbalanced data. This is caused by the fact that the number of non-violent video
segments is much higher than the number of violent ones in the development
dataset. This phenomenon causes the learned boundary being too close to the vio-
lent instances. Consequently, the SVM has a natural tendency towards classifying
every sample as non-violent. In order to cope with this bias, different strategies to
“push” this decision boundary towards the non-violent samples exist. Although
more sophisticated methods dealing with the imbalanced data issue have been pro-
posed in the literature (see [38] for a comprehensive survey), we choose, in the
current framework, to perform random undersampling to balance the number of
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Figure 4: The generation of violence detection models with feature space partitioning through k-
means clustering. Each video segment is of length 0.6 second. Feature vectors (i.e., either coarse
or fine features) of the training segments are given as input to the combination process. (FV:
Feature Vector).

violent and non-violent samples (with a balance ratio of 1:2). This method pro-
posed by Akbani et al. [39] appears to be particularly adapted to the application
context of our work. In [39], different under and oversampling strategies are com-
pared. According to the results, SVM with the undersampling strategy provides
the most significant performance gain over standard two-class SVMs. In addition,
the efficiency of the training process is improved as a result of the reduced devel-
opment data and, hence, training is easily scalable to large datasets similar to the
ones used in the context of our work.

3.4. Combining Predictions of Models

In the test phase, the main challenge is to combine the classification results
(i.e., probability outputs) of the violence models. In order to achieve the com-
bination of classification results, we perform one of two different combination
methods, namely classifier selection and classifier fusion, which are alternative
solutions. Normally, in a basic SVM, only class labels or scores are output. The
class label results from thresholding the score, which is not a probability measure.
The scores output by the SVM are converted into probability estimates using the
method explained in [40].

An overview of the combination methods is presented in Figure 5. Both meth-
ods follow the main canvas of Figure 5, i.e., they get feature vectors as input and
return a violence score; the dotted frames highlight the specificities of each of
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them. In order to determine the clip-level violence score of a video sample (i.e.,
to assign one violence score per video), we use the maximum violence score of
the video segments in the sample.

Classifier Selection

—> Perform violence detection
Final violence score of l Intermediate score(s)

the segment | memmmmmm - ——
I Classifier Fusion
maximum i |

Fuse violence scores of

|
Violence score of a whole | classifiers
video sample 1

Figure 5: An overview of the classifier decision combination phase of our method. Each video
segment is of length 0.6 second. Feature vector (i.e., either coarse or fine features) of the test
segment is given as input to the combination process. (FV: Feature Vector).

3.4.1. Classifier Selection

In the classifier selection method, we first determine the nearest cluster to a test
video segment using the Euclidean distance measure, i.e., the cluster minimizing
the following Euclidean distance is identified:

d(ci, v5) = |lei — x| (1)

where c; represents a given cluster center, and x; a video segment. If the nearest
cluster is an atomic cluster, then the test video segment is labeled with the unique
label of the cluster and the probability measure is set to 1.0. For the non-atomic
cluster case, once the best fitting classifier for the video sample is determined, the
probability output of the corresponding model is used as the final prediction for
that video sample.

3.4.2. Classifier Fusion

In the classifier fusion method, we combine the probability outputs of all clus-
ter models (i.e., both atomic and non-atomic clusters). As in the classifier selection

15



method, the probability measure is set to 1.0 for atomic clusters. The classifiers
that we adopt are all SVMs. Hence, we are in the presence of homogeneous
“learners” (i.e., all of the same type) according to the terminology of [6]. In such
a situation, it is advised to directly fuse the violence probabilities (h;(x;)) gen-
erated by each of the classifiers (i.e., “learners”) using the weighted soft voting
technique [6]:

T
i=1

As shown in Equation 2, a classifier-specific weight (w;;) is dynamically as-
signed to each classifier for each test video segment (z ;) using the Euclidean dis-
tance of the segment to the cluster centers. The weights assigned to the clusters
are determined such that they always sum up to 1.

3.5. Temporal Smoothing and Merging

As mentioned earlier, we split videos into small segments of length 0.6 sec-
ond. However, a violent scene may be composed of several continuous segments.
While some of these segments can easily be identified as violent, others might
be more challenging to detect. Previous findings support that, if a segment con-
tains violence, its neighboring segments are likely to contain violence as well and
that, consequently, temporal score smoothing is likely to boost the performance.
Therefore, we perform the post-processing steps of (1) temporal smoothing and
(2) segment merging, in order to further improve the performance of the system.

The temporal smoothing technique we adopt consists in applying a simple yet
efficient score smoothing, where the smoothed violence prediction score of a seg-
ment is determined as the average of the scores in a window of three consecutive
segments.

Our segment merging method is based on the use of a threshold value (Ty;p1ence)
which is determined experimentally on the development dataset. We merge two
neighboring segments, if they are both identified as violent or non-violent (i.e.,
both of their violence scores are above or below T);,ence) and set the new vio-
lence prediction score as the average of the related segments.

3.6. Coarse-to-Fine Violence Analysis

The inclusion of a coarse-to-fine analysis in the whole process originated from
the observation that the extraction of dense trajectory features [25] is a computa-
tionally expensive process, as it involves computing and tracking features over
several frames.
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Various precautions could be taken to cope with this issue. Some straightfor-
ward solutions include for instance: Resizing frames; tuning parameters, i.e. using
an increased step size; considering only a subset of the dense trajectory features.
However, the gain in computation time obtained through such measures comes at
the expense of decreased accuracy. We therefore developed an alternative solution
in the form of coarse-to-fine classification.

We observed that, for the task of violence detection, audio is an extremely
discriminative feature. A violence detection approach for video analysis based
solely on audio features (e.g., MFCC) will normally fail only if the video contains
no sound or if the volume is low. When, according to audio features, a segment
is classified as violent, we can realistically assume that this “violent” label is cor-
rect. However, if it is classified as non-violent, then a verification by the use
of “advanced” visual features (i.e., dense trajectory based Bag-of-Motion-Words)
would be necessary to confirm the absence of violence.

From a practical point of view, the implementation of violence detection (i.e.,
execution of the system during test) follows the scheme under the lower part of
Figure 1 (testing). First of all, coarse detection based on audio features is per-
formed. MFCC features are extracted and converted to mid-level features as de-
scribed under Section 3.1. Coarse-level analysis is further performed in line with
the teachings of Sections 3.4 and 3.5. During coarse analysis, a segment is as-
signed a score (S.) which is compared to a threshold 7o (coarse-to-fine analy-
sis threshold). If S. exceeds this threshold 7o, the segment is labeled as violent
with the score S.. If not, the fine analysis based on advanced visual features is
initiated. The fine-level visual features are extracted and converted to mid-level
features and visual feature analysis is run. The outcome is a score Sy, which is
compared to the threshold 7;pience (threshold mentioned in Section 3.5) to deter-
mine if the segment is violent.

4. Performance Evaluation

The experiments presented in this section aim at comparing the discrimina-
tive power of our method based on feature space partitioning (referred hereafter
as “FSP”) against the method employing a unique model and also at highlight-
ing the advantages brought by the coarse-to-fine analysis. We also evaluate the
performance of audio and visual features at the different levels (coarse and fine)
described in Section 3.1. Because of potential differences in the definition of *“vi-
olence” adopted in published works discussed in Section 2, a direct comparison
of our results with those works is not always meaningful. Nevertheless, we can
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compare our approach with the methods which took part to the MediaEval 2014
and 2015 VSD tasks (segment-level detection for 2014, and clip-level detection
for 2015), where the same “violence” definition and datasets are employed.

Using the evaluation framework provided by the MediaEval VSD task is an
opportunity to test our algorithms in a standardized manner on a standardized
data corpus. Although running since 2011, the MediaEval VSD task reached a
certain level of maturity only in 2014, when the organizers opted for the subjective
definition of violence, and for the use of the mean average precision metric. The
same definition and evaluation metric were kept for the 2015 edition. For these
reasons, we show our results on the latest two editions of the the MediaEval VSD
task (2014 and 2015). The 2015 dataset differs from the 2014 data in difficulty, as
can be seen from the results (see below).

The MediaEval 2014 VSD challenge is structured as two separate tasks: A
main task which consists in training on Hollywood movies only and testing on
Hollywood movies only; and a generalization task which consists in training on
Hollywood movies only and testing on Web videos only. The MediaEval 2015
VSD structure is slightly different than the task of 2014 in terms of dataset and
consists of only one task. In addition, violence detection is performed at the clip-
level (i.e., only one violence score is assigned for each video in the dataset).

4.1. Dataset and Ground Truth

For the evaluation within the context of the MediaEval 2014 VSD task, we
used two different types of dataset in our experiments: (1) a set of 31 movies
which were the movies of the MediaEval 2014 VSD task (referred hereafter as
the “Hollywood movie dataset™), and (2) a set of 86 short YouTube Web videos
under Creative Commons (CC) licenses which were the short Web videos of the
MediaEval 2014 VSD task (referred hereafter as the “Web video dataset”).

A total of 24 movies from the Hollywood set are dedicated to the develop-
ment process: Armageddon, Billy Elliot, Eragon, Harry Potter 5, I am Legend,
Leon, Midnight Express, Pirates of the Caribbean 1, Reservoir Dogs, Saving Pri-
vate Ryan, The Sixth Sense, The Wicker Man, The Bourne Identity, The Wizard of
0z, Dead Poets Society, Fight Club, Independence Day, Fantastic Four 1, Fargo,
Forrest Gump, Legally Blond, Pulp Fiction, The God Father 1 and The Pianist.
The remaining 7 movies — 8 Mile, Brave Heart, Desperado, Ghost in the Shell,
Jumanji, Terminator 2 and V for Vendetta — and the Web video dataset serve as
the test set for the main and generalization task, respectively.

Each movie and short Web video is split in a multitude of video segments,
where each video segment is of length 0.6 second as exposed in Section 3. The
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development set (24 movies) consists of 289,699 video segments, whereas the
movie test set (7 movies) consists of 83,350 video segments and the Web video
dataset consists of 15,747 such short video segments, where each segment is la-
beled as violent or nonviolent. The movies of the development and test sets were
selected in such a manner that both development and test data contain movies of
variable violence levels (ranging from extremely violent movies to movies with-
out violence) from different genres and production years ranging from 1939 (The
Wizard of Oz) to 2007 (I am Legend). On average, around 14.45% of segments
are annotated as violent in the whole dataset (i.e., the Hollywood movie and Web
video datasets).

The ground truth of the Hollywood dataset was generated by 9 human asses-
sors, partly by developers, partly by potential users. Violent movie and Web video
segments are annotated at the frame level. For the generalization task, the ground
truth was created by several human assessors> who followed the subjective defini-
tion of violence as explained in [2]. A detailed description of the Hollywood and
the Web video datasets, and the ground truth generation are given in [3].

In addition to the datasets provided by the MediaEval 2014 VSD task, we also
performed our evaluations on the dataset provided by the MediaEval 2015 VSD
task (referred hereafter as the “VSD 2015 movie dataset”). The development
and test sets are completely different from the dataset of the MediaEval 2014
VSD task. The VSD 2015 movie dataset consists of 10,900 video clips (each clip
lasting from 8 to 12 seconds approximately) extracted from about 199 movies,
both professionally edited and amateur movies. The movies in the dataset are
shared under CC licenses that allow redistribution. The VSD 2015 development
dataset contains 6,144 video clips, whereas the test set has 4,756 clips. As in the
MediaEval 2014 VSD evaluation, each movie clip is split in a multitude of video
segments, where each video segment is of length 0.6 second. On average, around
4.61% of segments are annotated as violent in the whole dataset (i.e., development
and test sets). The ground-truth generation process of the VSD 2015 movie dataset
is similar to the VSD task of 2014. The details of the ground-truth generation are
explained in [41].

2 Annotations were made available by Fudan University, Vietnam University of Science, and
Technicolor.
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4.2. Experimental Setup

We employed the MIR Toolbox v1.6.1° to extract the MFCC features (13-
dimensional). Frame sizes of 25 ms with a step size of 10 ms are used. Audio-
visual features are extracted as explained in Section 3.

The SPAMS toolbox* is employed in order to compute sparse codes which are
used for the generation of the mid-level audio and dynamic visual representations.
The VLFeat® open source library is used to perform k-means clustering (k ranging
from 5 to 40 in this work).

The two-class SVMs were trained with an RBF kernel using libsvm® as the
SVM implementation. Training was performed using audio and visual features
extracted at the video segment level. SVM parameters were optimized by 5-fold
cross-validation on the development data. All video segments belonging to a spe-
cific video were always either in the training set or in the test set during cross-
validation. Zero mean unit variance normalization was applied on feature vectors
of development dataset.

We used the average precision (AP) as the evaluation metric which is the offi-
cial metric of the MediaEval 2014 and 2015 VSD tasks. The mean of AP (MAP)
values on the MediaEval 2014 and 2015 datasets are provided in the results.

4.3. Results and Discussion

The evaluation of our approach is achieved from different perspectives: ()
comparison to unique concept modeling; (if) comparison to MediaEval 2014 par-
ticipants; (iit) comparison to MediaEval 2015 participants; and (iv) added-value
of the coarse-to-fine analysis. The experiments (i) and (iv) pertain to the research
questions (RQ1, RQ2) identified in Section 2 (assessment of FSP and coarse-to-
fine analysis, respectively), while (ii) and (iii) provide a benchmark of our vio-
lence detection framework against existing solutions.

Experiment (i) reviews the gain in classification performance brought by FSP.
In this case, the baseline method for comparison is the approach using single a
SVM classifier trained with the same data, i.e., a single model for violence. The
results are summarized in Tables 1, 2 and 3 which provide a comparison of the

Shttps://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/
materials/mirtoolbox

‘http://spams—devel.gforge.inria.fr/

Shttp://www.vlfeat.org/

Shttp://www.csie.ntu.edu.tw/~cjlin/libsvm/
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FSP method against the unique violence detection model (no FSP) in terms of
MAP metric on the Hollywood movie dataset (Table 1), on the Web video dataset
(Table 2) and on the VSD 2015 movie dataset (Table 3), respectively. For the FSP
method, evaluated k values for the MediaEval 2014 datasets are 10, 20 and 40,
whereas these values range from 5 to 20 for the MediaEval 2015 dataset. The
conclusions which can be drawn from Table 1 are as follows:

The highest MAP value of 0.52 is achieved with a visual-analysis method
for the situation where the feature space is split in £ = 20 clusters and
classifier scores are fused.

Another observation is that the MAP values of the FSP method are usually
higher, when classifier fusion is the score combination method.

One final observation about the results is about the choice of the number of
clusters for the FSP method. When considering classifier fusion, reducing
the number of clusters from 20 to 10 reduces performance. This shows that
a lower number of clusters does not provide a faithful representation of the
development dataset. Increasing the number of clusters to 40 does not help
in obtaining a better accuracy either. This is an indication that an excessive
number of clusters results in clusters containing a limited number of training
samples, which prevents them from correctly representing the data.

The important observations from Table 2 are summarized as follows:

We observe that generally the results show little variability. For Web videos,
FSP methods outperform unique SVM-based solutions, when comparing
approaches using the same modality (i.e., audio or visual).

More importantly, for Web videos, selection based combinations perform
better than fusion based combinations, in general. This differs from the re-
sults obtained on Hollywood movies (Table 1), where fusion based com-
binations provided better outcomes. A plausible explanation is that, in
movies, violent scenes are long, and often correspond to several subcon-
cepts, while user-generated Web videos are short, and, therefore, are likely
to correspond to a single subconcept.

The conclusions which can be drawn from Table 3 are as follows:
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Table 1: The MAP of the FSP method with coarse and fine representations, k clusters (k = 10,
20 and 40) and different classifier combination methods (classifier selection and classifier fusion)
and an SVM-based unique violence detection model (without feature space partitioning) on the
Hollywood movie dataset. (MAP: mean average precision).

Method MAP
FSP method (visual, fusion, k = 10) 0.40
FSP method (visual, fusion, k = 20) 0.52
FSP method (visual, fusion, k = 40) 0.39
FSP method (audio, fusion, k = 10) 0.36
FSP method (audio, fusion, k = 20) 0.43
FSP method (audio, fusion, k = 40) 0.34
FSP method (visual, selection, k = 10) 0.42
FSP method (visual, selection, k = 20) 0.31
FSP method (visual, selection, k = 40) 0.29
FSP method (audio, selection, k = 10)  0.36
FSP method (audio, selection, k = 20) 0.29
FSP method (audio, selection, k =40) 0.28
Unique model (visual) 0.32
Unique model (audio) 0.29

e The highest MAP value of 0.2947 is achieved with a visual-analysis method
for the situation where the feature space is split in & = 10 clusters and
classifier scores are fused.

e Globally, for the videos in the VSD 2015 movie dataset, selection-based
combinations perform better than fusion-based combinations as in the Web
videos (Table 2). This differs from the results obtained on Hollywood
movies (Table 1). A possible explanation is that, in the VSD 2015 movies,
violent scenes correspond to single events (e.g., a fight) rather than compli-
cated events, and, therefore, are likely to correspond to a single subconcept.

e When compared to the MAP values reported in Table 1 and 2, the MAP
values are lower. This characteristic is independent from our approach.
While the best runs of the VSD 2014 participants could reach a MAP of
0.6, those of 2015 could not exceed 0.3. The 2015 dataset is, hence, more
difficult. We think that the extra difficulty of the 2015 dataset is caused by
two factors. First, the VSD 2015 movie dataset is not originally selected
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Table 2: The MAP of the FSP method with coarse and fine representations, k clusters (k = 10, 20
and 40) and different classifier combination methods (classifier selection and classifier fusion) and
an SVM-based unique violence detection model (without feature space partitioning) on the Web
video dataset. (MAP: mean average precision).

Method MAP

FSP method (visual, fusion, k = 10) 0.61

FSP method (visual, fusion, k = 20) 0.62

FSP method (visual, fusion, k = 40) 0.61

FSP method (audio, fusion, k = 10) 0.63
FSP method (audio, fusion, k = 20) 0.59
FSP method (audio, fusion, k = 40) 0.58

FSP method (visual, selection, k = 10) 0.64
FSP method (visual, selection, k =20) 0.64
FSP method (visual, selection, k = 40)  0.63
FSP method (audio, selection, k =10) 0.64
FSP method (audio, selection, k =20)  0.61
FSP method (audio, selection, k = 40)  0.56
Unique model (visual) 0.56
Unique model (audio) 0.42

for violence concept analysis; the violence level of the dataset is, therefore,
quite low (around 4% of the clips). Second, the violence concept is less
“emphasized” by the film editing rules which are usually used in the 2014
Hollywood movies.

Experiment (i) aims at comparing our approach with the MediaEval submis-
sions of 2014 [42]. Table 4 provides a comparison of our best performing FSP
method with the best run of participating teams (in terms of MAP) in the MediaE-
val 2014 VSD task. If we look at the results, we notice that there is a pattern: all
the solutions perform better for the generalization task, except Fudan-NJUST. For
a fair evaluation, we compare our results only against the teams who submitted
results for both tasks; in this case, the best systems were the ones from Fudan-
NJUST and FAR. Fudan-NJUST and FAR ranked first for the main task (with a
MAP of 0.63) and for the generalization task (with a MAP of 0.664), respectively.

For the main task, our FSP solution (visual with classifier fusion and k = 20)
achieves results close to run4 of Fudan-NJUST, i.e., our results are competing
with state of the art results. However, a closer look at the short paper describing
the Fudan-NJUST system [48] reveals that the Fudan-NJUST team used more
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Table 3: The MAP of the FSP method with coarse and fine representations, k clusters (k =5, 10
and 20) and different classifier combination methods (classifier selection and classifier fusion) and
an SVM-based unique violence detection model (without feature space partitioning) on the VSD
2015 movie dataset. (MAP: mean average precision).

Method MAP
FSP method (visual, fusion, k = 5) 0.1114
FSP method (visual, fusion, k = 10) 0.1832
FSP method (visual, fusion, k = 20) 0.0916
FSP method (audio, fusion, k = 5) 0.1121
FSP method (audio, fusion, k = 10) 0.1036
FSP method (audio, fusion, k = 20) 0.0897
FSP method (visual, selection, k = 5) 0.2496
FSP method (visual, selection, k = 10) 0.2947
FSP method (visual, selection, k = 20) 0.1236
FSP method (audio, selection, k = 5) 0.1605
FSP method (audio, selection, k = 10) 0.1913
FSP method (audio, selection, k = 20)  0.0932
Unique model (visual) 0.2068
Unique model (audio) 0.1868

Table 4. The MAP for the best run of teams in the MediaEval 2014 VSD Task [42] and our best
performing method on the Hollywood movie and Web video datasets. * = at least one participant
member of the MediaEval VSD organizing team. ** = provided by the organizing team. (NA: Not

Available)
Team MAP - Movies MAP - Web
Fudan-NJUST* [26] 0.63 (run4) 0.604 (run2)
NII-UIT* [28] 0.559 NA
FSP (visual, fusion, k = 20) 0.52 0.62
FAR* [43] 0.451 (runl) 0.664 (run3)
FSP (visual, selection, k = 10) 0.42 0.64
MIC-TJU [44] 0.446 0.566
RECOD [27] 0.376 0.618
ViVoLab-CVLab [45] 0.178 0.43
TUB-IRML [46] 0.172 0.517
Random run (baseline) ** 0.061 0.364
MTM [47] 0.026 NA
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features than our system: not only the 4 visual and 1 audio features that we used
here, but also 6 additional ones (STIP; Fisher-encodings of HoG, HoF, MBHXx,
MBHy and trajectory shape). Hence, we argue that the performance difference
can be explained by the inclusion of more features, which also results in larger
complexity; there also seems to be strong evidence in the literature supporting our
belief that the performance difference is caused by the different feature set. In
a paper by members of the Fudan-NJUST team [49], the accuracy obtained with
larger feature sets is reported to be better. In addition, the MAP of 0.63 of run4
was achieved by fusing SVM with deep learning methods (the one-classifier-type
runs 1 and 2 were below 0.454). In contrast, we used only one type of classifiers
(SVM).

For the generalization task, our solutions (visual with classifier selection and
k = 10 or 20, audio with classifier selection and k£ = 10) achieve results extremely
close to run3 of the FAR team, which ranked first. We achieved 0.64 while their
run3 achieved 0.664.

The comparison to other MediaEval participants outlined above clearly demon-
strates excellent results already. However, when considering the aggregated re-
sults of a given run (i.e., the MAP on the main task and the MAP on the gen-
eralization task for a given run), our FSP solution with visual analysis, fusion
and k£ = 20 (0.52 - 0.62) outperforms runs 2 (0.454 - 0.604) and 4 (0.63 - 0.5)
of Fudan-NJUST and runs 1 (0.45 - 0.578) and 3 (0.25 - 0.664) of FAR. The
conclusion which can be drawn from this aggregated comparison is that our best
performing setup (visual analysis, fusion and £ = 20) provides more stable re-
sults, i.e., the performance in real-world scenarios will be more predictable.

Experiment (iii) aims at comparing our approach with the MediaEval sub-
missions of 2015 [50]. Table 5 provides a comparison of our best performing FSP
method with the best run of participating teams (in terms of MAP) in the MediaE-
val 2015 VSD task (i.e., Affective Impact of Movies — including Violence — task).
The following conclusions can be drawn from the results in Table 5.

e Our FSP solution (visual with classifier selection and k£ = 10) achieves re-
sults on par with run5 of Fudan-Huawei, i.e., our results are state of the
art level. The Fudan-Huawei team employs learned spatio-temporal and
violence-specific representations using convolutional neural network archi-
tectures.

e The FSP solution where we employ only MFCC-based audio representa-
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tions achieves also very promising results (with a MAP of 0.1913) com-
pared to the participating teams of the MediaEval 2015 VSD task. In addi-
tion, all solutions are above the baseline methods (i.e., random and trivial)
provided by the MediaEval VSD organizing team in terms of MAP.

Table 5: The MAP for the best run of teams in the MediaEval 2015 VSD Task [50] and our best
performing method using visual and audio representations on the VSD 2015 movie dataset. * =
at least one participant member of the MediaEval VSD organizing team. ** = provided by the
organizing team.

Team MAP
Fudan-Huawei [51] 0.2959 (runs)
FSP method (visual, selection, k = 10) 0.2947
MIC-TJU* [52] 0.2848 (runl)
NII-UIT* [53] 0.2684 (runb)
RUCMM [54] 0.2162 (run4)
FSP method (audio, selection, k =10) 0.1913
ICL-TUM-PASSAU [55] 0.1487 (run4)
RFA* [56] 0.1419 (run4)
KIT [57] 0.1294 (run5)
RECOD [58] 0.1143 (runl)
UMons [59] 0.0967 (runl)
TCS-ILAB [60] 0.0638 (run2)
Random (baseline)** 0.0511

Trivial (baseline)** 0.0486

Experiment (iv) provides results for the coarse-to-fine analysis on the Medi-
aEval datasets of 2014 and 2015 (Figure 6). As mentioned in detail in Section 3.6,
coarse-level analysis is run for a given segment, and if the violence score for that
segment is below a threshold (7¢2r), fine-level analysis is also run. We repeat
the experiment with different values for the threshold, ranging from 0.1 to 0.9 (a
threshold of 0 is equivalent to coarse-level analysis only, while a threshold of 1
is equivalent to fine-level analysis only). We select the best detectors according
to experiment (i), where the coarse detector is audio-based and the fine detector
is visual-based. For higher threshold values, visual analysis is run on a higher
number of segments. Conversely, for lower threshold values, visual analysis is
run on a lower number of segments. We drew the following conclusions on the
coarse-to-fine analysis on different MediaEval datasets.
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Figure 6: (a) Plot of the coarse-to-fine analysis threshold (Tc2r) vs MAP. The numbers indicated
next to the points in the graph correspond to the percentage of segments for which visual analysis
is performed. (b) Average computational time per video segment of coarse-to-fine analysis with
respect to the threshold (T¢2r), where the computational time includes raw feature extraction,
feature encoding and classification. (Movie-14: the Hollywood movie dataset, Web: the Web
video dataset, Movie-15: the VSD 2015 movie dataset).

e On the Hollywood movie dataset, we see that setting a threshold value equal

to 0.4 provides a MAP of 0.49. In other words, running coarse audio anal-
ysis with a threshold of 0.4, helps in drastically reducing the total computa-
tions for visual analysis; for such a threshold, we indeed observe that visual
analysis is executed on only 67.6% of the segments. Such a result means
that running audio and visual analysis on 67.6% of the segments, provides
results which are almost as good as visual analysis running independently.
Threshold values between 0.5 and 0.7 also return very accurate classifica-
tions, but for these values the gain in computation time is rather limited.

For Web videos, the gain is even more pronounced: From Figure 6(a), we
also observe that setting a threshold value equal to 0.1 provides a MAP of
0.628 on the Web video dataset, while the visual analysis is performed only
on 10.02% of the segments.

Concerning the results on the VSD 2015 movie dataset, as shown in Fig-
ure 6(a), in order to achieve MAP values closer to the highest MAP value
of the proposed framework (i.e., 0.2947), we need to run visual analysis
in addition to the audio analysis on more than 90% of the segments. We
can realistically assume that this is due to the expression of violence in the
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movies of the VSD 2015 dataset which is mainly in terms of visual features
other than special audio effects which are usually used in the Hollywood
movies.

e Finally, we observe from Figure 6(b) that, on average, coarse-to-fine anal-
ysis can provide a significant gain in execution time, especially for Web
videos (with a threshold of 0.1, 5 times faster and quasi-identical perfor-
mance, when compared to fine analysis).

4.4. Computational Complexity

In this section, we provide an evaluation of the time complexity and computa-
tional time of our system. We present measures for the two main components of
the system: (1) feature generation, and (2) model learning. All the timing evalu-
ations were performed with a machine with 2.40 GHz CPU and 8 GB RAM. For
feature generation, Figure 7 presents average computational times calculated on
the MediaEval 2014 and 2015 development datasets for raw feature extraction,
sparse dictionary learning and feature encoding. The raw feature extraction part is
the most time-consuming part of the whole component. Especially, the extraction
time of dense trajectory feature descriptors is 14 times higher than that of MFCC
descriptors.

Average computational time on MediaEval 2014 and 2015 development datasets
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Figure 7: Average computation times (in hours) of coarse-level (i.e., MFCC-based BoAW) and
fine-level (i.e., DT-based BoMW) features on the development datasets of MediaEval VSD 2014
and 2015. Raw feature extraction: extraction of raw descriptors from audio and visual signals.
Dictionary learning: the generation of sparse dictionaries. Encoding: the feature encoding phases
for coarse and fine features (BoAW: Bag-of-Audio-Words, BOMW: Bag-of-Motion-Words).

Concerning model learning, Figure 8 provides a computational time com-
parison of the FSP method against unique modeling whose classification perfor-

28



mances are discussed in detail in the previous section (Section 4.3). For the Me-
diaEval 2014 dataset, the k value used for FSP model generation is 20, whereas k
is 10 for the MediaEval 2015 dataset. As presented in Figure 8, the model gener-
ation time is drastically reduced by using the FSP method. In simple words, this
shows that training multiple SVMs (with RBF kernels) using different parts of the
training data is faster than training a single one with the whole data. In conclusion,
besides improved accuracies, FSP provides an advantage in training time.

Average computational time for modeling on MediaEval 2014 and 2015 datasets
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Figure 8: Average computation times (in hours) of coarse-level and fine-level model generation
with unique concept modeling and FSP method, using the development datasets of MediaEval
VSD 2014 and 2015. (FSP: Feature Space Partitioning)

5. Conclusions and Future Work

In this paper, we introduced an efficient approach for the detection of violent
contents in movies and Web videos. We adopted mid-level audio and visual fea-
tures in a Bag-of-Words fashion. To boost performance, feature space partitioning
was included. This was applied on audio and on visual feature spaces, for dif-
ferent number of clusters, and each cluster was used to build a model designed
to detect a particular violence subconcept. The combination of the classification
results was realized under the selection and fusion mechanisms.

The results obtained on the standardized MediaEval dataset of 2014 demon-
strated that our system competes with state of the art detectors for the main and
generalization tasks taken separately. When evaluating a given solution on both
tasks simultaneously, we outperform state of the art detectors, which implies that
our solutions constitute more stable violence detectors (i.e., their performance
can be better predicted in real world situations). The results obtained on the latest
MediaEval dataset of 2015 also demonstrated that our approach is on par with the
state-of-the-art.
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Finally, in an attempt to develop a solution which can execute promptly, a
coarse-to-fine analysis was introduced. This has shown that an important gain in
computation time can be achieved, without sacrificing accuracy.

We plan to further investigate the feature space partitioning and coarse-to-fine
components to enhance the classification performance. An interesting research
question is to assess whether augmenting the coarse analysis feature set by includ-
ing computationally efficient audio-visual representations brings a further gain in
computation time while keeping comparable accuracy. Another research direc-
tion is automating the selection of the number of clusters in the modeling based
on feature space partitioning. Finally, we intend to evaluate the performance of
classifiers other than SVM as base classifiers.
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