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Abstract

Kernel methods are considered an effective technique for on-line learn-
ing. Many approaches have been developed for compactly representing the
dual solution of a kernel method when the problem imposes memory con-
straints. However, in literature no work is specifically tailored to streams
of graphs. Motivated by the fact that the size of the feature space repre-
sentation of many state-of-the-art graph kernels is relatively small and thus
it is explicitly computable, we study whether executing kernel algorithms
in the feature space can be more effective than the classical dual approach.
We study three different algorithms and various strategies for managing the
budget. Efficiency and efficacy of the proposed approaches are experimen-
tally assessed on relatively large graph streams exhibiting concept drift. It
turns out that, when strict memory budget constraints have to be enforced,
working in feature space, given the current state of the art on graph kernels,
is more than a viable alternative to dual approaches, both in terms of speed
and classification performance.
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1. Introduction

The amount of data generated in different areas by computer systems is
growing at an extraordinary pace, mainly due to the advent of technologies
related to the web, ubiquitous services and embedded systems that aim at
monitoring the environment in which they are immersed in. Data are, in
some cases, generated at a constant rate by sources that can potentially
emit an unbounded sequence of elements, i.e. data streams. The processing
of data streams requires special care from a computational point of view,
since only bounded time and memory resources might be available. Indeed,
online algorithms may be required to scale linearly with the number of data
items and use a constant, a priori determined, amount of memory (budget).
An example of a learning task on streams is binary classification, where the
goal is to approximate a function f : X → {−1, 1} which partitions the
input domain X into two classes. When dealing with streams, it was early
recognized that they tend to evolve with time, giving rise to the well known
concept drift phenomenon [1], which consists in the function f() changing
over time.

In this paper, we focus on graph streams, which involve a large range
of application tasks such as chemical compound or image classification (see
Sections 4.1.1 and 4.1.2, respectively), as well as malware detection [2], where
executables codes represent graph nodes and control flow instructions and
API calls represent edges, and Fault Diagnosis in Sensor Networks [3]. Note
that we assume that the source generating the stream emits one graph at a
time (i.e., we do not have an edge stream as, for example, in [4]).

The traditional approach when dealing with structured data is to trans-
form the data into a suitable vectorial representation. When the examples
are graphs, the mapping is commonly referred to as graph embedding [5].
The drawbacks of this approach are that the embedding is task-dependent,
and generally computationally expensive. Moreover, the dimensionality of
the vector in which the mapping is performed has to be fixed a-priori (see
e.g. [6]), and it is the same for all examples ignoring the differences in the
intrinsic complexity of each graph.

A viable alternative to graph embedding is the application of graph kernel
methods, which is the approach we consider in this paper. Kernel methods
are considered state of the art techniques for classification tasks [7, 8, 9, 10].
The class of kernel methods comprises all those learning algorithms that
do not require an explicit representation of the inputs but only information
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about the similarity between them. The primal version of a kernel method
maps the data onto a vectorial feature space (possibly infinite-dimensional):
the similarity can be expressed as a dot product in such space. Any kernel
method has a correspondent dual version in which each dot product in feature
space is replaced by the evaluation of a correspondent kernel function defined
on the input space. The great advantage of kernel methods is the fact that
the space and time complexity depends on the kernel function and not on the
size of the corresponding feature space. Consequently, the size of the model,
i.e. the space needed by the learning algorithm for representing its current
solution, is defined in terms of a subset of input examples instead of a subset
of features. It is recognized that, when the model is expressed as a set of
examples, its size tends to grow proportionally to the number of instances
emitted by the stream [11]. Various approaches have been defined to limit
the size of the model [12, 13, 14]. However, their application to graph data
has been practically limited due to the fact that kernels for graphs tend to
be computationally very expensive [15, 16, 17]. Recently a few kernels for
graphs have been defined which are both efficient and have very competitive
performances on many benchmark datasets [18, 19, 10]. Their complexity
ranges from linear in the number of edges [18] to a logarithmic factor above
linear in the number of nodes [10], thus they might be ideal candidates for
being employed on data streams. One of their key characteristics is that they
lead to models that can be represented compactly in the primal space. Thus,
for these kernels, both techniques defined for the primal and dual space can
be effectively exploited.

The main goal of the paper is to study which of the two approaches is best
suited for graph streams. We empirically study the behavior of three different
algorithms defined in the primal or in the dual space, using the state-of-the-
art graph kernels described in [18, 19, 10] and with multiple techniques for
managing the budget. We show experimental results on reasonably large
real-world datasets and in the presence of a (controlled) concept drift. The
results suggest that, under specific budget constraints, working in the primal
space is faster and leads to better or comparable results with respect to the
classic dual approach.

The paper is organized as described in the following. Section 2, after
introducing some notation, recalls important background notions for under-
standing the paper: graph kernels, online learning algorithms on a budget
defined in primal or dual space. Section 3 extends the previously presented
online learning algorithms to graph data and discusses several model-pruning
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strategies to ensure that strict budget constraints are satisfied. Section 4
studies the performances of the learning algorithms on a budget with respect
to the various model strategies and kernel functions. Finally, Section 5 draws
conclusions.

2. Background

This section introduces the concepts and algorithms used in the remain-
der of the paper. We start by introducing some notation in Section 2.1.
Section 2.2 briefly reviews kernel functions for graphs outlining the fact that
some of the state-of-the-art ones have both low computational complexity
and a compact representation as a set of features. Motivated by this last ob-
servation, we describe state-of-the-art kernel methods for online learning and
budget management techniques working in the dual space, in Section 2.3, and
online learning algorithms working directly in feature space, in Section 2.4.

2.1. Notation

A graph G(V,E, L) is a triplet where V is the set of vertices, E the set
of edges and L() a function mapping nodes to a set of labels A. A proper
subgraph G2 = (V2, E2, L) of G1 = (V1, E1, L) is a graph for which V2 ⊆ V1,
E2 = E1 ∩ (V2×V2). A directed acyclic graph (DAG) is a graph where edges
are directed and no directed cycle is present. A proper rooted substructure of a
DAG D is defined in this paper as a subgraph of D obtained by considering a
node v of D and all the nodes which can be reached from v using the directed
edges of D. A tree is a directed acyclic graph where each node has at most
one incoming edge. A proper subtree rooted at node v comprises v and all
its descendants. We denote with ρ the maximum outdegree of a graph.

2.2. Graph Kernels

In order to apply a kernel method to graph data, an appropriate kernel
function must be provided. Such function, defined on any pair of instances
of a domain must be symmetric positive semidefinite. Various similarity
measures can be exploited to define a kernel for graphs. For example, a
similarity score can be given by the number of subgraphs that two graphs G1

and G2 share. Unfortunately, the implementation of this simple idea is very
expensive from a computational point of view since recognizing if a subgraph
g1 of G1 is isomorphic to a subgraph g2 of G2 requires to solve a subgraph
isomorphism problem, which is known to be NP-Complete [15].
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Most of the research on graph kernels proceeded by focusing on a re-
stricted class of substructures for which the membership to a graph can be
decided in polynomial time (e.g., walks [15, 20, 21], shortest paths [16, 22],
subtree patterns [17], small-sized subgraphs [23]) with the aim of obtaining
a feature space as large as possible. However, the complexity of the cited al-
gorithms spans from O(n3) to O(n6)1, where n is the size (number of nodes)
of the graphs, which make them hardly applicable to on-line learning tasks
with strict time constraints.

Recently, a few kernels with complexity O(m), where m is the number of
edges, or O(n log n), have been defined [18, 19, 10]. Despite their low com-
plexity their performance is considered state of the art on many benchmark
datasets. Moreover, their low complexity allow them to be applied to very
large datasets. The Weisfeiler-Lehman subtree kernel [18] considers the num-
ber of subtree patterns (subtrees where every node in the original graph may
appear multiple times) up to a fixed height h. This kernel can be computed
in O(hm) time on a pair of graphs G1 and G2, where m = max(|E1|, |E2|).
Note that the h is a kernel parameter and the authors always use a constant
value, so the complexity practically is O(m). The Neighborhood subgraph
pairwise distance kernel (NSPDK) [19] decomposes a graph into pairs of
small subgraphs of radius at most h, up to a maximum distance d: every fea-
ture in the explicit feature space represents two particular subgraphs being
at a certain distance. Here d and h are kernel parameters which, in order
to reduce the computational burden of the kernel evaluation, in practice are
kept constant [19]. Finally, the ODDST kernel, a member of the Ordered
Decompositional DAGs Kernel family for graphs [10], decomposes a graph
of n nodes into n DAGs. Each DAG is obtained performing a breadth first
visit of the graph, up to a fixed height h set by the user, and removing the
nodes inducing a cycle. The features associated with a graph are the proper
rooted substructures of each DAG.

The set of non-zero features related to the Weisfeiler-Lehman subtree, the
Neighborhood subgraph pairwise distance and the ODDST kernels, and conse-
quently the associated models, tend to have a compact representation. The
number of features generated for a graph is at most: nh for the Weisfeiler-

1The kernel in [23] can be computed in O(nρk−1), where k is the size of the considered
subgraphs, on unlabeled graphs. However, in this paper we deal with labeled graphs and
the complexity of the kernel for this case is O(nk).
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Figure 1: Cumulative number of (different) features generated over the Chemical stream
according to the ODDST , NSPDK and FS kernels, for diferent h parameter values.

Lehman subtree kernel [18]; hnρd

2
for NSPDK, where nρd

2
is an upper bound on

the number of pairs of nodes that are at most at distance d; nρh for ODDST

[10].
Note that the kernel parameters h, d are assumed to be constant [18, 19,

10] and that, in many practical applications, ρ can be considered constant
as well, thus the number of features generated by the different kernels is
practically linear. This property will be exploited by the online learning
algorithms described in Section 2.4.

Nonetheless, if we consider the size of the feature space induced by the
kernels on a whole dataset, the number of different features that are generated
may be very high. Figure 1 shows the size of the induced feature space for
one of the datasets we will adopt in the experimental part of the paper
(see Section 4.3), for different values of the h parameter, for the considered
kernels.

2.3. Dual Online Kernel Methods On a Budget

The majority of online kernel methods on a budget are a variant of the
perceptron [24] and thus share a common structure. Let us assume the input
stream is formed by pairs et = (xt, yt), where xt ∈ X is an input instance and
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yt = {−1, 1} is its label2. The goal is to find a hypothesis h : X → {−1, 1}
such that the expected value of the adopted error measure on the stream
is minimized. In the version of the perceptron we introduce here, which we
call Dual since it is expressed in the kernel dual space (input space), the
hypothesis is represented by a subset M of the input instances [12]. M is
commonly referred to as the model. The following is a general scheme of the
Dual version of the perceptron:

Algorithm 1 A general Dual perceptron-style algorithm for online kernel
learning on a budget.

1: Input: β (algorithm dependent), B (budget size)
2: Initialize M : M = {}
3: for each round t do
4: Receive an instance xt from the stream

5: Compute the score of xt: S(xt) =
∑|M|
i=1 yiτiK(xi, xt)

6: Receive the correct classification of xt: yt
7: if ytS(xt) ≤ β (xt incorrectly classified) then
8: while |M |+ |xt| > B do
9: select an element xj ∈M for removal

10: M = M \ {xj}
11: end while
12: update the hypothesis: M = M ∪ {(ytτt, xt)}
13: end if
14: end for

In Algorithm 1, |M | represents the size of the model, i.e. the sum of the
size of the instances in M . In the same way |xt| is the size of xt. If the
input instances are vectorial data, their size is constant, thus in order to add
an element to M , it is sufficient to remove only one instance from M , i.e.
the while loop in Algorithm 1-line 8 is executed exactly once. As it will be
detailed in Section 3, this is not the case in our scenario where the input
instances are graphs and their size is not constant. Note that Algorithm 1
tries to use as much memory as it is allowed to (without exceeding the limit
B): line 8 shows that one example would be removed from the model only
if the algorithm, by inserting a novel example in the model, exceeded the
memory limit B. In all other cases, any new erroneously-classified example
is inserted in the model (line 12). All we shall see, the same observation will
apply to the two other algorithms presented in this paper.

Many online algorithms can be seen as instances of Algorithm 1. For ex-

2As in the standard online setting, we assume that the target value yt is observed only
after the system has predicted an output for xt.
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ample, by setting B =∞, τ = 1, β = 1, we obtain the dual perceptron [12].
The Online Passive-Aggressive algorithm [13] tries to select an hypothesis
with a unit margin on the examples. It is obtained with B = ∞, β = 1,

τi = min
{
C, 1−S(xi)

K(xi,xi)

}
, where C is a user-defined non-negative parameter.

In [14] it is described an update rule which tries to project the new instance
onto the span of the current support set M . The resulting hypothesis is com-
pared to the one obtained by inserting the whole instance into the model: if
the difference between the two hypotheses is not greater than a user-defined
threshold, then only the projected instance is added to the model. Comput-
ing the projection requires quadratic time and space with respect to the size
of the support set, thus severely limiting the application to graph streams.
Since the three algorithms assume B = ∞, no elements are removed from
M . Thus, even if they try to minimize the size of the model, they do not
provide any strategy to ensure that such size will not exceed any a priori
given budget.

When the problem setting imposes a budget B on the size of the model,
various strategies can be employed for selecting which elements should be re-
moved from M . In [25] the elements to be removed are chosen randomly. The
Forgetron removes the oldest example in M [26]: a decay factor is applied
to the τ values in such a way that the oldest examples in M have lower and
lower impact on the computation of S(). Crammer et al. [27] proposed to
remove from M any redundant example, i.e. the example with least impact
on the margin of the hypothesis. This approach, however, is computation-
ally expensive and thus it is not suitable for processing high dimensional
data streams. In [28] the Online Passive-Aggressive algorithm [13] has been
extended to handle budget constraints. The idea is to modify the update
rule such that the resulting hypothesis, after decreasing the model size such
that the budget constraint is respected, has a small loss on the new example
and it is similar to the current hypothesis. They describe three algorithms of
increasing complexity and efficacy: BPA-S, BPA-NN, BPA-P. Among these,
BPA-S has linear space and time complexity with respect to the model size.

2.4. Primal Algorithms for Online Learning On a Budget

By the properties of kernel functions, each kernel evaluation corresponds
to a dot product in an associated feature space. Then Algorithm 1 has a
corresponding version in feature space in which the examples are represented
by their projection in feature space φ(xt) ∈ Rs (with s being the size of the
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feature space). The hypothesis is represented by a vector w ∈ Rs [24], where
the elements of M are replaced by their sum:

w =
∑

φ(Gj)∈M
yjτjφ(Gj). (1)

The score is computed as S(xt) = wt · φ(xt) and the hypothesis is updated
as wt+1 = wt + τtytφ(xt). Given the fixed size of w, the standard perceptron
does not take into account budget constraints. We refer to such version as
Primal.

An algorithm, similar to the one just described, has been presented in [29]:
the update step is a stochastic gradient descent rule followed by a rounding
step in which the small coefficients are set to zero. Since zero features may
not be explicitly represented, the rounding phase allows to reduce the model
size. In [30] a framework for minimizing a convex loss function together with
a convex regularization term is presented. The update rule is constituted
by two phases: the first one is a subgradient step with respect to the loss
function and the second one looks for a vector which maximizes the similarity
to the one obtained in the first phase while minimizing the regularization
term. Various instantiations are discussed: among these, the one making use
of the `1 norm as a regularization term is interesting for this paper, since
it promotes sparse solutions. Note that the literature on online learning
algorithms working directly in feature space is incredibly vast, but here we
are interested in algorithms corresponding to state of the art dual approaches.
Indeed, our purpose is to assess the viability of primal approaches in the
context of kernel methods.

As for the algorithms discussed in Section 2.3, a drawback of the algo-
rithms listed in this section is that, they do not provide any strategy to ensure
that the size of the model w will not exceed any a priori given budget.

3. Budget-aware Algorithms for Structured Data

In this paper, we study three algorithms, together with different strategies
for managing the budget, for graph streams. Our first proposal, Algorithm 1,
needs a few adaptations before it can applied to graph data. Given the vari-
able size of graph data we make use of the following measure for computing
the size of the model in Algorithm 1:

|M | =
∑

Gj∈M
(|VGj |+ |EGj |+ 1), (2)
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where the constant term 1 takes into account the occupancy of the value τtyt.
The removal rule in Algorithm 1 is modified as follows: when Gt has to be
inserted, instances are removed from M until |M | + |VGt | + |EGt | + 1 < B,
where |M | is computed according to eq. (2).

The time complexity of an online algorithm depends on the number of
graphs in M and the complexity of the kernel function employed. In those
settings in which the number of features associated with a kernel is not
significantly greater than the size of the input, the evaluation of the kernel
function may be greatly speeded up if it is performed as dot product of the
corresponding feature vectors. Examples of kernels having such property
are [18, 19, 10]. In the remainder of the section our observations will be
restricted to this class of kernels. The actual size of vectors φ(G) can be
much less than s if only non-null elements of φ(G) are represented in sparse
format. We will refer to the number of non-null features of φ(G) as |φ(G)|.
These observations lead to the Primal/Dual algorithm (referred to as mixed
in the following):

Algorithm 2 Mixed perceptron-style algorithm for online learning on a bud-
get.

1: Input: β (algorithm dependent), B (budget size)
2: Initialize M : M = {}
3: for each round t do
4: Receive an instance Gt from the stream
5: Compute the score of Gt: S(Gt) =

∑
φ(Gj)∈M yjτjφ(Gj) · φ(Gt)

6: Receive the correct classification of Gt: yt
7: if ytS(Gt) ≤ β (Gt incorrectly classified) then
8: update the hypothesis:
9: while 1 + σ|φ(Gt)|+

∑
φ(Gj)∈M 1 + σ|φ(Gj)| > B do

10: select an element φ(Gj) ∈M and remove it: M = M \ {φ(Gj)}
11: end while
12: M = M ∪ {ytτtφ(Gt)}
13: end if
14: end for

Note that the model size is computed as
∑

φ(Gj)∈M 1 + σ|φ(Gj)|, where
the constant 1 accounts for the ytτt value and σ is the memory occupancy of
a feature: if φ(G) is represented in sparse format as pairs (i, φi(G)), where
φi(G) is the value of the i-th feature of G, then σ = 2. As we will see in
Section 3.1, while σ might be influenced by the budget management strategy
employed, in all the experiments performed in this paper with Algorithm 2
the value σ will remain unchanged.

Since in Algorithm 2 the projection φ(G) is not computed for every kernel
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evaluation, Algorithm 2 is expected to be faster than Algorithm 1. However,
if |φ(G)| > |VGj |+ |EGj |, which generally holds, it uses more memory.

Finally, we introduce a budget online algorithm working in feature space.
The idea is to replace all elements of M with their sum as in eq. (1). However,
by so doing, we lose the connection between features and the instances they
belong to. As a consequence, during the update of the hypothesis it is no
more possible to select a whole vector φ(G) for removal. Thus we propose to
remove single features from w when |w| > B (here |w| is the total number of
non-null features appearing in any example added to the model).

Algorithm 3 Primal perceptron-style online learning on a budget.
1: Input: β (algorithm dependent)
2: Initialize w: w0 = (0, . . . , 0)
3: for each round t do
4: Receive an instance Gt from the stream
5: Compute the score of Gt: S(Gt) = wt · φ(Gt)
6: Receive the correct classification of Gt: yt
7: if ytS(Gt) ≤ β (Gt incorrectly classified) then
8: while σ|w + φ(Gt)| > B do
9: select a feature i and remove it from w

10: end while
11: update the hypothesis: wt+1 = wt + τtytφ(Gt)
12: end if
13: end for

The total memory occupancy of the model in Algorithm 3 reduces to
σ|w|.

Note that the elimination of the set M allows Algorithm 3 to save a
significant amount of memory while still being faster than Algorithms 1 and
2.

3.1. Budget Management

We have left unspecified how to select the examples/features to be re-
moved when the budget is full in Algorithms 1-3. As we briefly discussed in
Section 2.3, complex strategies, which would require to solve an optimization
problem, are usually expensive from the computational point of view [27, 28].
This is especially true for the graph domain for two main reasons. Graph
data are generally high-dimensional thus making the solution of the opti-
mization problems even more computationally expensive. The second reason
is that, for instance the problem solved in [28] (eq. 7) assumes that remov-
ing one example frees enough space for the novel example to be inserted,
which does not hold for graphs since they are of variable size. Modifying
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the optimization problem to account for the removal of a subset of exam-
ples would increase the complexity of the problem, and the resulting method
would not respect the constraint of linear processing time imposed by the
setting considered in this paper. For such reasons, we focus in this paper on
heuristics for selecting the elements to be removed from the model. Given
the differences in how the model is represented in the three algorithms, dif-
ferent strategies for pruning the model can be applied. We have explored the
following strategies for Algorithms 1 and 2:

• “random”, examples are removed randomly with uniform probability;

• “oldest”, the oldest examples are removed;

• “τ”, the examples with lowest τ values are removed. If more than one
example has such τ value, the candidate is randomly selected.

Note that the implementation of the three strategies does not increase the
memory occupancy of the model.

Since any kernel method using the kernel functions in [18, 19, 10] can
be performed in the primal space, it is possible to apply feature selection
techniques, i.e. deleting non-informative features, in order to reduce noise in
the data and the size of the model [31]. A typical approach is to compute a
statistical measure for estimating the relevance of each feature with respect
to the target concept, and to discard the less-correlated features. Before de-
scribing the strategies for pruning the model for Algorithm 3, we introduce
an example of such measure, the F-score [31]. In the traditional batch sce-
nario, the F-score of a feature i is defined for binary classification tasks as
follows:

Fs(i) =
(AV G+

i − AV Gi)
2 + (AV G−i − AV Gi)

2

∑

j∈Tr+
(f ji − AV G+

i )2

|Tr+| − 1
+

∑

j∈Tr−
(f ji − AV G−i )2

|Tr−| − 1

(3)

where AV Gi is the average value of feature i in the dataset, AV G+
i (AV G−i )

is the average value of feature i in positive (negative) examples, |Tr+| (|Tr−|)
is the number of positive (negative) examples and f ji is the value of feature i
in the jth example of the dataset. Features that get small values of F-score are
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not very informative with respect to the binary classification task 3. Eq. (3)
cannot be applied as is to a stream since instances arrive one at time. As
a minor contribution, we rewrite an incremental version of the F-score. Let
I+
t (I−t ) be the set of positive (negative) instances which have been observed

from the stream after having read t instances, then the F-score Fs(i, t) can
be rewritten by using the following quantities:

n+
t = |I+

t |, f+
i (t) =

∑

j∈I+t

f ji , f 2,+
i (t) =

∑

j∈I+t

(f ji )2

n−t = |I−t |, f−i (t) =
∑

j∈I−t

f ji , f 2,−
i (t) =

∑

j∈I−t

(f ji )2.

In fact, we have:

AV G+
i,t =

f+
i (t)

n+
t

, AV G−i,t =
f−i (t)

n−t

AV Gi,t =
f+
i (t) + f−i (t)

n+
t + n−t

and

Fs(i, t) =
(AV G+

i,t − AV Gi,t)
2 + (AV G−i,t − AV Gi,t)

2

D+
t +D−t

(4)

where

D+
t =

f 2,+
i (t)− 2AV G+

i,tf
+
i (t) + n+

t (AV G+
i,t)

2

n+
t − 1

,

D−t =
f 2,−
i (t)− 2AV G−i,tf

−
i (t) + n−t (AV G−i,t)

2

n−t − 1
.

By defining δ+(t + 1) = 1 if the (t + 1)th instance is positive; otherwise
δ+(t + 1) = 0, and δ−(t + 1) = 1 − δ+(t + 1), the quantities of interest can
be updated incrementally as follows:

n+
t+1 = n+

t + δ+(t+ 1), f+
i (t+ 1) = f+

i (t) + δ+(t+ 1)f ji ,

f 2,+
i (t+ 1) = f 2,+

i (t) + (δ+(t+ 1)f ji )2.

3Even though F-score is known not to take into accout correlation between features,
we select that measure for computational reasons.

13



n−t+1 = n−t + δ−(t+ 1), f−i (t+ 1) = f−i (t) + δ−(t+ 1)f ji ,

f 2,−
i (t+ 1) = f 2,−

i (t) + (δ−(t+ 1)f ji )2.

In order to incrementally compute the F-score, we need to keep track, for
each feature i, of the following quantities: f+

i (t), f−i (t), f 2,+
i (t), f 2,−

i (t).
We have explored the following strategies for Algorithm 3:

• random strategy: features are removed randomly with uniform proba-
bility. This strategy does not affect the size of the model, which is thus
obtained setting σ = 2 in Algorithm 3.

• weight : first, all the features of the example which are already present
in the model, are inserted. This maximizes the information of the al-
gorithm without increasing memory occupation. Next, for each feature
left f of the example, the feature of the model with lowest absolute
wi value (the weight associated with feature fi), is selected. Note that
if all the features in the model have their wi higher than f , then f is
not inserted. The size of the model when this strategy is employed is
obtained setting σ = 2 in Algorithm 3.

• oldest strategy: similar to the weight strategy, but in this case we
remove the least recently used feature. We need to associate to each
feature the time in which that feature has been last inserted/modified.
The size of the model is obtained setting σ = 3.

• F-score: it is similar to the weight strategy, the only difference being
that the wi value is replaced by the F-score, computed according to
eq. (3). By using the incremental version of the F-score, the correct
size of the model is obtained by setting σ = 5 in Algorithm 3, since
we need to keep track of the index i and the four valued neessary to
incrementally update the F-score.

Note that the F-score strategy has no correspondence for Mixed and Dual
algorithms. This strategy removes from the model the features with the low-
est associated F-score. F-score measures the correlation of a feature with
the target (+1 or -1). Indeed, a feature can appear in different examples,
some positive and some negative. If there is a strong correlation with either
class, the F-score of a feature will be high. On the contrary, Mixed and Dual
algorithms remove whole examples from the budget. Since an example have
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a single label associated, that can be +1 or -1, it is not possible to compute
correlation measures in this case.

4. Experimental results

In this section, we empirically compare Algorithms 1-3 with state-of-the-
art kernel functions for graphs described in Section 2.2 and various budget
management strategies on two graph datasets: the first one is composed of
chemical compounds and the second one is composed of images. Our purpose
in this section is to study the performances, both in terms of prediction
accuracy and running times, of the three algorithms as the memory budget
varies, and to determine which algorithm is more appropriate for each setting.

We start by describing in Section 4.1 how the datasets were obtained.
Then, in Section 4.2, we introduce the experimental setup and the adopted
evaluation measure. Finally, the obtained results are illustrated and dis-
cussed in Section 4.3.

4.1. Dataset Description

4.1.1. Chemical Dataset

We have created graph streams combining two graph datasets available
from the PubChem website (http://pubchem.ncbi.nlm.nih.gov). PubChem is
a source of chemical structures of small organic molecules and their biological
activities. It contains the bioassay records for anti-cancer screen tests with
different cancer cell lines. Each dataset belongs to a certain type of cancer
screen. For each compound an activity score is reported. The activity score
for the selected datasets is based on increasing values of -LogGI50, where
GI50 is the concentration of the compound required for 50% inhibition of
tumor growth. A compound is classified as active (positive class) or inactive
(negative class) if the activity score is, respectively, above or below a specified
threshold. By varying the threshold we were able to simulate a drift on
the target concept. Our dataset is a combination of the “AID: 123” and
“AID: 109” datasets from PubChem. In “AID:123”, growth inhibition of
the MOLT-4 human Leukemia tumor cell line is measured as a screen for
anti-cancer activity. The dataset comprises 40, 876 compounds, each one
represented by a graph, tested at 5 different concentrations. The average
number of nodes for each graph in this dataset is 26.8, while the average
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Number of graphs
164,55882,2790

AID:123 t=40 AID:109 t=41 AID:123 t=47 AID:109 t=50

Figure 2: Composition of the stream of graphs on chemical data. Four different target
concepts are obtained by using different threshold values (t) on the activity scores of the
compounding datasets.

number of edges is 57.68. In “AID:109”, growth inhibition of the OVCAR-8
human Ovarian tumor cell line is measured as a screen for anti-cancer activity
on 41, 403 compounds. The average number of nodes for each compound is
26.77, while the average number of edges is 57.63. For each dataset, we used
two different threshold values to simulate the concept drift: the median of the
activity scores and the value such that approximately 3/4 of the compounds
are considered dataset to be inactive (negative target). Finally, the stream
has beeen obtained as the concatenation of “AID: 123” with threshold 1,
“AID: 109” with threshold 1, “AID: 123” with threshold 2, “AID: 109” with
threshold 2 (Figure 2). We call this stream Chemical. Note that the stream is
composed by four different concepts and comprises a total of 164, 558 graphs.
Overall, the maximum number of nodes in a graph of the stream is 229, the
maximum node outdegree is 6 and the alphabet size is 202. In order to assess
the dependency of the results from the order of concatenation of the datasets,
we created a second stream as:“AID: 123” with threshold 1, “AID: 123” with
threshold 2, “AID: 109” with threshold 1, “AID: 109” with threshold 2. Since
the results were very similar to the ones obtained for the first dataset, for
the sake of space, we do not report here the results for this second stream.
It should be stressed that the selected datasets represent very challenging
classification tasks, independently of the value selected as the activity score
threshold.

4.1.2. Image Dataset

We created a stream of graphs from the LabelMe dataset4. The dataset
comprises a set of images whose objects are manually annotated via the
LabelMe tool [32]. The images are divided into several categories. We have
removed those images having less than 3 annotations. We have selected six

4http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
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Figure 3: An example of graph construction from an annotated image.

categories amongst the ones having the largest number of images: “office”
(816), “home” (928), “houses” (1, 294), “urban city” (865), “street” (1, 069),
“nature” (370). In total we considered 5, 342 images.

We then transformed each image into a graph: the annotated objects
of the image become the nodes of the graph. The edges of the graph are
determined according to the Delaunay triangulation [33]. The basic idea
of the Delaunay triangulation is to connect spatially neighbouring nodes.
Figure 3 gives an example of the construction of a graph from an image. The
average number of nodes per graph is 14.37 and the average number of edges
is 63.61.

The stream is made up of six parts (each part representing a different
concept), for each of them one of the categories is selected as the positive class
while the remaining ones represent the negative class; in order to simulate
concept drifts each one of the 5, 342 images appears six times in the stream:
once with a positive class label, and 5 times with negative class label. The
total number of examples composing the stream is 32, 052, the maximum
number of nodes of a graph is 201, the maximum node degree is 46 and the
alphabet size is 65.
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4.2. Experimental setup

For all the considered algorithms (Primal, Mixed and Dual), the β and

τ values were instantiated as β = 1, τi = min
{
C, 1−S(xi)

K(xi,xi)

}
, as described

in [28] for the BPA-S algorithm. We chose BPA-S among the three BPA
algorithms presented in [28], because: i) the results in the original paper
show that, while being the fastest algorithm, the accuracy with respect to
the other BPA versions does not degrade significantly; ii) using (also) BPA-P
or BPA-NN would have increased significantly the total time required for the
experimentation.

The C parameter has been tested in the set {0.01, 0.1, 1.0} for both
Chemical and Image datasets. By varying the C value, the results of the
comparison between the three algorithms do not change. Therefore we report
here only the results related to C=0.01. In order to increase the robustness of
the results, the three algorithms have been tested with three different graph
kernels:

• the Weisfeiler-Lehman subtree kernel (FS) [18] with parameter values
h = {0, 1, 2, 3, 4, 5, 6, 7, 8};

• the Neighborhood subgraph pairwise distance kernel (NSPDK) [19] with
parameter values h = {1, 2, 3, 4}, d = {1, 2, 3, 4, 5, 6}.

• the ODDST kernel [10] with parameter values λ = {0.8, 1, 1.2, 1.4, 1.6, 1.8},
h = {1, 2, 3, 4};

All the proposed algorithms have the same upper bound B on memory usage
(budget), and the memory occupancy of the algorithms is calculated for
Dual as in eq. (2), for Mixed as of line 9 of Algorithm 2 and for Primal
as described in line 8 of Algorithm 3 (note that the size of the model for
Primal also depends on the budget management strategy). We experimented
with budget values between 10, 000 and 50, 000 memory units (assuming each
memory unit can store a floating point or integer number) for the Chemical
dataset, and between 1, 000 and 100, 000 for the Image dataset. Higher
values, for both datasets, were not tested since the time needed for the Dual
Algorithm to terminate became excessive (more than 48 hours).

As for the strategies for managing the budget, we focused on the “oldest”
and “τ” ones for Dual and Mixed algorithms. We focused on the “oldest”
and “weight” strategies for Primal algorithm (where we recall that “weight”
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is similar in spirit to “τ” in the Primal setting). Moreover, we considered
also the “F-score” strategy for the Primal algorithm.

The random strategy has not been implemented because it tends to have
worse performances [28].

The class distribution on the streams is unbalanced, therefore the Area
Under the Receiver Operating Characteristic (AUROC) and the Balanced
Accuracy [31] were adopted as performance measure. The AUROC measure
is equal to the probability that a classifier will rank a randomly chosen pos-
itive instance higher than a randomly chosen negative one, thus it avoids
inflated performance estimates on imbalanced datasets. Since the results
computed with Balanced Accuracy are very similar to the ones computed
with the AUROC, we report only the latter, being the AUROC more popu-
lar than the Balanced Accuracy.

The plots in Figures 4-9, Figures 12-17 and Table 1 regarding the AUROC
measure are obtained as follows: for each run (Dataset/Kernel/parameters
combination) the AUROC measure is sampled every 50 examples. Then we
compute the average over all samples and obtain a single value. We chose
not to show the behavior of each algorithm during a single run because we
have performed more than 300 runs. The running times are computed on a
machine with two Intel(R) Xeon(R) CPU E5-4640@ 2.40GHz equipped with
256GB of RAM. Notice that the executions use a single core and a very
limited amount of RAM.

4.3. Results and discussion

The aim of the experiments is to compare correspondent budget man-
agement strategies for Primal, Dual and Mixed : i) oldest for the three algo-
rithms; ii) weight for Primal and τ for Mixed and Dual. For each of the above
correspondent budget strategies, we observe the performances of the three
algorithms, for each combination of kernel function and kernel parameters,
as the budget varies. Section 4.3.1 reports the experiments on the Chem-
ical Dataset. Section 4.3.2 reports the experiments on the Image Dataset.
Finally, section 4.3.3 draws general conclusions on the experiments.

4.3.1. Experiments on the Chemical Dataset

The Figures 4-10 report the results for one kernel, one specific budget
management policy, two budget values, B = 10k and B = 50k. Each Figure
is divided into 4 subfigures: the ones on the left side refer to budget B = 10k,
the ones on the right refer to budget B = 50k; the two figures on top report
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Oldest policy, Chemical dataset, FS kernel
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Figure 4: Average AUROC value computed over all stream instances for memory budgets
B = 10k (top left) and B = 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the FS kernel parameter. Below each of the plots there is a second
one with the corresponding running times. The plots refer to the Chemical stream and
the oldest budget maintainance policy.
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Weight/τ policies, Chemical dataset, FS kernel
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Figure 5: Average AUROC value computed over all stream instances for memory budgets
B = 10k (top left) and B = 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the FS kernel parameter. Below each of the plots there is a second
one with the corresponding running times. The plots refer to the Chemical stream and
the weight/τ budget maintainance policies.
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Oldest policy, Chemical dataset, NSPDK kernel
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Figure 6: Average AUROC value computed over all stream instances for memory budgets
B = 10k (top left) and B = 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the NSPDK kernel parameters. Below each of the plots there is a
second one with the corresponding running times. The plots refer to the Chemical stream
and the oldest budget maintainance policy. Missing values indicate that the corresponding
execution has not terminated in 48 hours.
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Weight/τ policies, Chemical dataset, NSPDK kernel
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Figure 7: Average AUROC value computed over all stream instances for memory budgets
B = 10k (top left) and B = 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the NSPDK kernel parameters. Below each of the plots there
is a second one with the corresponding running times.The plots refer to the Chemical
stream and the weight/τ budget maintainance policies. Missing values indicate that the
corresponding execution has not terminated in 48 hours.
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Oldest policy, Chemical dataset, ODDST kernel
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Figure 8: Average AUROC value computed over all stream instances for memory budgets
B = 10k (top left) and B = 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the ODDST kernel parameters. Below each of the plots there is a
second one with the corresponding running times. The plots refer to the Chemical stream
and the oldest budget maintainance policy. Missing values indicate that the corresponding
execution has not terminated in 48 hours.
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Weight/τ policies, Chemical dataset, ODDST kernel
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Figure 9: Average AUROC value computed over all stream instances for memory budgets
B = 10k (top left) and B = 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the ODDST kernel parameters. Below each of the plots there
is a second one with the corresponding running times. The plots refer to the Chemical
stream and the weight/τ budget maintainance policies. Missing values indicate that the
corresponding execution has not terminated in 48 hours.
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Figure 10: Average computational times of algorithms Primal, M ixed and Dual on the
Chemical dataset for the ODDST kernel.

the AUROC measure, while the two on the bottom report running times.
One point in a plot represents the AUROC/running time over all Chemical
dataset for one configuration of the kernel parameters. Note that running
times are in logarithmic scale.

Figures 4-5 refer to the FS kernel with oldest and weight budget man-
agement policy, respectively. Note that, by increasing h, the representation
in memory of an example does not change for Algorithm 1, whilst it requires
more memory for Algorithms 2-3 since the number of features increases.
Figures 6-7 refer to the NSPDK kernel (with the same budget values). Each
point refers to a combination of the h and d parameters of the kernel (the
values are grouped with respect to the h parameter). Figures 8-9 are similar
but show the results referring to the ODDST kernel (values are again grouped
with respect to the h parameter). Consider that, on this dataset and with
no memory budget constraint on the model, the ODDST kernel generates a
model with a total of 91, 467 features with h = 3 (the higher the h parameter,
the more features are generated). Such number is the size of w (||w||) and
thus the size of the vectorial representation of the model.

Table 1 reports, for each combination of dataset, algorithm, kernel, policy
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Table 1: Best AUROC value (± standard deviation) for each dataset, algorithm, policy,
kernel for 10k and 50k budget values.

kernel Alg. Policy Chemical Image
10k 50k 10k 50k

F
S

Primal
weight .681 ±.094 .746 ±.096 .914 ±.094 .913 ±.095
oldest .626 ±.092 .659 ±.093 .917 ±.092 .918 ±.090

F-score .644 ±.096 .669 ±.096 .916 ±.090 .919 ±.091

Mixed
τ .554 ±.124 .561 ±.114 .908 ±.099 .901 ±.095

oldest .513 ±.096 .533 ±.097 .907 ±.103 .912 ±.096

Dual
τ .547 ±.127 .582 ±.115 .907 ±.093 .906 ±.094

oldest .507 ±.098 .538 ±.098 .884 ±.117 .915 ±.090

N
S
P

D
K Primal

weight .707 ±.091 .762 ±.092 .907 ±.095 .907 ±.095
oldest .641 ±.092 .693 ±.092 .909 ±.093 .910 ±.092

F-score .674 ±.092 .691 ±.090 .914 ±.091 .912 ±.094

Mixed
τ .588 ±.126 .600 ±.114 .894 ±.100 .882 ±.113

oldest .519 ±.101 .532 ±.102 .899 ±.106 .907 ±.091

Dual
τ .583 ±.121 .581 ±.103 .892 ±.105 .890 ±.105

oldest .520 ±.102 .571 ±.083 .877 ±.115 .918 ±.093

O
D

D
S
T

Primal
weight .685 ±.094 .735 ±.097 .919 ±.088 .919 ±.088
oldest .620 ±.092 .674 ±.094 .919 ±.088 .919 ±.088

F-score .661 ±.098 .693 ±.097 .919 ±.088 .919 ±.088

Mixed
τ .572 ±.125 .574 ±.125 .909 ±.093 .905 ±.107

oldest .513 ±.098 .527 ±.095 .910 ±.098 .917 ±.085

Dual
τ .558 ±.134 .562 ±.129 .907 ±.096 .910 ±.095

oldest .504 ±.097 .518 ±.097 .883 ±.120 .907 ±.098

and budget values 10k and 50k, the best AUROC value among the tested
parameters. The table allows to easily compare different policies and different
algorithms.

If we consider the Chemical dataset, the highest value for Primal algo-
rithm is 0.762 (NSPDK, weight policy, budget 50k), while the best AUROC
value for Algorithm Dual and Mixed are 0.583 and 0.600 respectively. Con-
cerning the F-score policy of the Primal algorithm, since it does not have
corresponding policies for Mixed and Dual algorithms, we decided to omit all
F-score plots. However, we report the results related to this policy in Table 1.
In the Chemical dataset, this policy does not improve the predictive perfor-
mance of the Primal algorithm, where the weight policy is consistently the
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best performing one. Analyzing the plots we can see that the Primal algo-
rithm (Algorithm 3) is not only competitive but it always outperforms Dual
and Mixed in both the weight and oldest policies. Table 1 shows that, prac-
tically in all cases, a higher budget increases the classification performance
on the Chemical dataset, implying that Dual and Mixed would probably
need a significantly higher budget to reach the performances of Primal with
B = 10k.

Unfortunately, setting B > 50k for these algorithms on the Chemical
dataset is unfeasible because of computational times, as it is possible to see
from Figure 10 reports the average time in seconds needed for the three
considered algorithms, instantiated with the ODDST kernel, to process the
Chemical dataset with B = 10k and 50k.

The figure shows that there is a clear gap between the computational
times of Algorithms Primal, Mixed and Dual. Similar considerations can
be drawn for NSPDK and FS kernels. With budget 10k, the time needed
by the Primal algorithm to process a single example is on average (h =
{0 . . . 4}) 0.004 seconds, while for the Dual algorithm the required time is
0.2 seconds. The gap grows when setting the budget to 50k. In this case
the Primal algorithm needs on average 0.006 seconds, while for the Dual
algorithm already with h = 0 the required time per example is 0.05 seconds
(almost ten times slower than Primal), with h=1 it is 0.39 seconds. With
h = 3 and 4 the experiments did not complete in 48 hours, meaning that
the processing of each example required more than 1 second on average. The
Mixed algorithm has computational times similar to the Primal ones, but
with considerably worse predictive performance.

To summarize the results, Figure 11 shows, for each algorithm, the clas-
sification performance in relation to the running time, for budget 10k and
50k. The plots report one point for each algorithm, kernel and parameters
combination. We can see that the Primal algorithm has many points in the
upper/left part of the plot, meaning that it is able to achieve high predictive
performances in a relatively small amount of computational time. Mixed and
Dual algorithms are all over the lower part of the plot, meaning that they
have worse predictive performances and higher running times than Primal.

4.3.2. Experiments on the Image Datasets

The same experimental setting described for the Chemical dataset is repli-
cated here for the Image dataset. Figures 12-17 show, for each set of corre-
sponding management policies, the performance of the kernels with respect
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Figure 11: Comparison among computational times and AUROC of algorithms Primal,
Mixed and Dual on the Image dataset with budget 10k and 50k for all the considered
policies and kernels.

to their parameters. We tested different values for the budget size, ranging
from 1k to 100k. In Figure 12 we can see that, for small budget values, the
Primal algorithm is the best performing one with the oldest budget manage-
ment policy. When the budget grows (i.e. for B = 100k) Mixed and Dual
perform slightly better than Primal. Figure 13, referring to the same kernel
with weight policy, depicts a similar scenario. In this case, Primal performs
slightly better than Dual and Mixed in all the considered budget sizes.

In Figures 14 and 15 we started from a budget value of B = 2.5k, since
the NSPDK generates more features than FS (as detailed in Section 2.2).
When considering the oldest policy, Primal performs best for budget values
up to 10k. In the case of weight policy, Primal always performs better than
Dual and Mixed. More in general, it is possible to see that the performance
of Dual and Mixed increase proportionally to the budget, while Primal per-
forms best with budget 10k, thus its performance do not improve if more
budget is available (note nonetheless that the performance do not decrease
significantly). Apparently, in the case of FS and NSPDK kernels, the clas-
sification performances of the different algorithms depend critically on the
budget size. Figure 16 analyzes the situation with ODDST kernel and oldest
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Oldest policy, Image dataset, FS kernel
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Figure 12: Average AUROC value computed over all stream instances for memory budgets
B = 1k (top left), B = 10k (top right), B = 50k (bottom left) and B = 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the FS kernel
parameter. Below the first set of plots there is a second one with the corresponding running
times. Plots refer to the Image dataset and the oldest budget maintainance policy.
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Weight/τ policies, Image dataset, FS kernel
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Figure 13: Average AUROC value computed over all stream instances for memory budgets
B = 1k (top left), B = 10k (top right), B = 50k (bottom left) and B = 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the FS kernel
parameter. Below the first set of plots there is a second one with the corresponding running
times. The plots refer to the Image dataset and the weight/τ budget maintainance policies.
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Oldest policy, Image dataset, NSPDK kernel
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Figure 14: Average AUROC value computed over all stream instances for memory budgets
B = 2.5k (top left), B = 10k (top right), B = 50k (bottom left) and B = 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the NSPDK
kernel parameters. Below the first set of plots there is a second one with the corresponding
running times. The plots refer to the Image dataset and the oldest budget maintainance
policy. Missing values indicate that the corresponding execution has not terminated in 48
hours.
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Weight/τ policies, Image dataset, NSPDK kernel
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Figure 15: Average AUROC value computed over all stream instances for memory budgets
B = 2.5k (top left), B = 10k (top right), B = 50k (bottom left) and B = 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the NSPDK
kernel parameters. Below the first set of plots there is a second one with the corresponding
running times. The plots refer to the Image dataset and the weight/τ budget maintainance
policies.
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Oldest policy, Image dataset, ODDST kernel
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Figure 16: Average AUROC value computed over all stream instances for memory budgets
B = 2.5k (top left), B = 10k (top right), B = 50k (bottom left) and B = 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the the ODDST

kernel parameters. Below the first set of plots there is a second one with the corresponding
running times. The plots refer to the Image dataset and the oldest budget maintainance
policy. Missing values indicate that the corresponding execution has not terminated in 48
hours.
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Weight/τ policies, Image dataset, ODDST kernel
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Figure 17: Average AUROC value computed over all stream instances for memory bud-
gets B = 2.5k (top left), B = 10k (top right), B = 50k (bottom left) and B = 100k
(bottom right) for algorithms Primal, Mixed and Dual with respect to the values of the
the ODDST kernel parameters. Below the first set of plots there is a second one with
the corresponding running times. The plots refers to the Image dataset and the weight/τ
budget maintainance policies.
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Running Times, NSPDK kernel, Image dataset
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Figure 18: Average computational times of algorithms Primal, Mixed and Dual on the
Image dataset for the NSPDK kernel.

policy. Also in this case, Primal algorithm is the better performing one with
every budget value. However, with higher budgets, the other algorithms show
comparable performances. Also in this case, the higher the budget the better
the predictive performances of Mixed and Dual. The scenario is similar when
cosidering the weight/τ policies in Figure 17.

The running times of the different kernels on the Image dataset are in
general lower with respect to the Chemical one. Figure 18 reports the run-
ning time required by the FS kernel with budget 10, 000. As for the Chemical
dataset the Primal and Mixed algorithms are way faster that the Dual algo-
rithm.

Figure 19 shows the predictive performance in relation to the computa-
tional time required from the different algorithms in the Image dataset. The
Primal algorithm is the fastest, with some points at the leftmost margin of
the plots. Also from a predictive performance point of view, we see that the
algorithm with the highest AUROC is Primal for both budget values .With
B = 50k the Mixed and Dual algorithms achieve similar performances, al-
though with a higher runtime.

To summarize, given a budget management policy, under a certain budget
size Primal algorithm is the best performing one, and over that size Dual and
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Figure 19: Comparison among computational times and AUROC of algorithms Primal,
Mixed and Dualon the Image dataset with budget 10k and 50k for all the considered
policies and kernels.

Primal (and in some cases Mixed) show very similar performances. However,
there is a significant difference in the computational times required by the
different algorithms, with Primal and Mixed being considerably faster than
Dual.

4.3.3. Discussion

We can draw some final remarks concluding our experimental analysis.
First it is worth to point out that our analysis refers only to those kernels
which allow for an explicit feature space representation. Such kernels are only
a subset of the existing graph kernels. However, they are the ones currently
having state-of-the-art predictive performances. While the Dual algorithm
can represent more compactely the model than the Primal approach when
the feature space associated to the kernel is very large, this implies a loss
in efficiency when computing the score for a new graph: the kernel value
between the input graph and all the graphs in the model have to be com-
puted from scratch. As the values of Figures 10 and 18 indicate, that makes
the application of the Dual algorithm to graph streams practically infeasi-
ble, especially when strict time constraints have to be satisfied. The Mixed
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algorithm is able to significantly speed up the score computation by storing
the explicit feature space representation of each graph in the model. As a
consequence, the size of the model may increase significantly, thus reducing
the total number of graphs that can be kept in it: Dual algorithm is able
to store in memory approximately 250 graphs of the chemical datasets with
budget 10, 000, while Mixed algorithm only 100 graphs. On the contrary, Pri-
mal algorithm keeps in the model only the most informative features, and
thus it is able to retain information of all graphs inserted in the model while
preserving a very good efficiency. According to our experiments, there is a
budget value which determines whether the Primal or the other approaches
are preferable. While such threshold value can be observed in our experi-
ments for the Image dataset, due to the inefficiency of Dual and Mixed, we
were not able to identify it for the Chemical dataset (where Primal always
outperforms the other approaches).

5. Conclusions and Future Work

In this work we analyzed the trade-off between efficiency and efficacy of
various versions of online margin kernel perceptron algorithms when dealing
with graph streams and under the assumption of fixed memory budgets. One
of them efficiently exploits the explicit representation of the feature space
(via hash tables) of different state-of-the-art graph kernels recently defined
in literature.

Experimental results on real-world datasets show that, under a threshold
budget size, working in feature space is preferable both in terms of classifi-
cation performance and running times. In a future work we will investigate
the dependency between such budget value and the size of the feature space
associated to the kernel, the policy for pruning the model and the nature of
the dataset.
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Supplementary material.

The Balanced Accuracy (BAC) that is defined as the arithmetic mean of
sensitivity and specificity, or the average accuracy obtained on either class:

BAC =
1

2

(
tn

tn + fp
+

tp

fn + tp

)
,

where tp, tn, fp and fn are, respectivey, true positive, true negative, false
positive and false negative predictions. The results reported here adopt this
measure.
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Figure 1: Comparison among computational times and BER of algorithms Primal, Mixed
and Dual on the Image dataset with budget 10k and 50k for all the considered policies
and kernels.
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Image dataset

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 10  100  1000  10000  100000

B
A

C

sec

B=10k

Primal F-score
Primal weight
Primal oldest
Mixed oldest

Mixed τ
Dual oldest

Dual τ

 10  100  1000  10000 100000 1e+06

sec

B=50k

Figure 2: Comparison among computational times and BER of algorithms Primal, Mixed
and Dual on the Image dataset with budget 10k and 50k for all the considered policies
and kernels.
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Table 1: Best BAC value for each dataset, algorithm, policy, kernel and budget.

kernel Algorithm Policy Chemical Image
10k 50k 1k 2.5k 10k 50k 100k

FS

Primal
weight 0.646 0.698 0.823 0.827 0.821 0.802 0.801
oldest 0.600 0.623 0.798 0.825 0.843 0.841 0.801

F-score 0.612 0.635 0.798 0.819 0.839 0.842 0.838

Mixed
τ 0.519 0.531 0.808 0.839 0.849 0.827 0.811

oldest 0.513 0.530 0.738 0.794 0.831 0.849 0.857

Dual
τ 0.525 0.548 0.782 0.827 0.850 0.823 0.812

oldest 0.514 0.537 0.604 0.701 0.806 0.854 0.854

NSPDK

Primal
weight 0.663 0.704 0.807 0.814 0.812 0.812 0.814
oldest 0.611 0.652 0.805 0.831 0.842 0.835 0.814

F-score 0.637 0.652 0.791 0.828 0.837 0.837 0.835

Mixed
τ 0.524 0.535 0.796 0.825 0.827 0.805 0.785

oldest 0.525 0.537 0.721 0.780 0.830 0.852 0.856

Dual
τ 0.538 0.544 0.800 0.819 0.829 0.811 0.792

oldest 0.529 0.548 0.586 0.696 0.818 0.866 0.849

ODDST

Primal
weight 0.644 0.684 0.850 0.850 0.851 0.850 0.851
oldest 0.595 0.636 0.823 0.850 0.855 0.851 0.851

F-score 0.629 0.657 0.826 0.843 0.853 0.853 0.853

Mixed
τ 0.527 0.536 0.823 0.843 0.837 0.829 0.840

oldest 0.516 0.524 0.761 0.812 0.840 0.847 0.851

Dual
τ 0.541 0.534 0.797 0.820 0.845 0.831 0.838

oldest 0.516 0.520 0.638 0.748 0.823 0.849 0.856
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