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Abstract

The goal of this work is to automatically collect a large number of highly
relevant images from Internet for given queries. A novel automatic image
dataset construction framework is proposed by employing multiple query ex-
pansions. In specific, the given queries are first expanded by searching in
the Google Books Ngrams Corpora to obtain a richer text semantic descrip-
tions. Secondly, the visually non-salient and less relevant expansions are fil-
tered. Thirdly, after retrieving images from Internet with filtered expansions,
we further filter noisy images through clustering and progressively Convolu-
tional Neural Networks (CNN) based methods. To evaluate the performance
of our proposed method for clean image dataset constructions, we build an
image dataset with 10 categories. We then run object detections on our im-

age dataset with three other image datasets which were constructed by weak
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supervised, web supervised and full supervised learning, the experimental re-
sults indicated that the effectiveness of our new image dataset construction
method is superior to weak supervised and web supervised state-of-the-art
methods. In addition, we do a cross-dataset classification to evaluate the per-
formance of our dataset with two publically manual labelled dataset STL-10

and CIFAR-10.

Keywords: image dataset construction, multiple query expansions,

web-supervised

1. Introduction

Labelled image datasets have played a critical role in high-level image
understanding. For example, ImageNet [1] has acted as one of the most
important factors in the recent advance of developing and deploying visual
representation learning models (e.g., deep CNN). However, the process of
constructing ImageNet is both time consuming and labor intensive. It is
consequently a natural idea to leverage image search engine (e.g., Google
Image) or social network (e.g., Flickr) to construct the desired image dataset.
Generally, Google Image search engine has a relatively higher accuracy than
social network like Flickr. However, directly constructing image dataset with
the retrieved images from image search engine is not practical. It is mainly
due to the number of images downloaded from image search engine for each
query (e.g., Google image search engine is 1000 [§]) and the unsatisfactory
accuracy of ranking relatively rearward images.

In order to improve the overall accuracy, some authors proposed to re-rank

the images returned from image search engine [2][3][4][5]. [2] re-ranked images



by taking into account of the text contents on the original page from which
the images were obtained. [3] involved visual clustering of the images using
probabilistic Latent Semantic Analysis (pLSA) [6] on a visual vocabulary. [4]
used multiple instance learning and iteratively methods to learn the visual
models. [B] proposed an incremental learning strategy to learn the visual
models. However, all of these methods have a restriction on the total number
of images which can be downloaded from the image search engine.

In order to overcome the restriction of downloading number, [7][8] pro-
posed to use web search to obtain a large pool of images instead of image
search engine. The method in [7] can be mainly divided into two steps: First,
train a classifier with manual intervention. Then, the classifier is used to re-
rank the downloaded images. The advantages of this method are overcoming
the restriction of downloading number, as well as avoiding the problem of
polysemy and providing relatively high accuracy images for the given query.
However, due to the needs of manual intervention, the cost of this method is
high which results in the scale problem. [8] adopt text information to re-rank
images retrieved from web search and used these top-ranked images to learn
visual models to re-rank images once again. The advantage is eliminating
the need of manual intervention. The accuracy of image dataset constructed
by this method is relatively low. The main reason is the low accuracy of
images returned from web search.

In order to leverage the high accuracy as well as overcome the download-
ing restrictions of image search engine, we propose a novel image dataset
constructing framework, through which a large of highly relevant images are

automatically extracted from the Internet. The framework can be divided



into three major steps: namely, the step 1: query (text) expanding, the step
2: noisy query (text) expansions filtering and the step 3: noisy images (e.g.,
the incorrect image contents from the semantic point of view) filtering. The
critical technical challenges are in the step 2 and 3. Specifically, by searching
in the Google Books Ngrams Corpora (GBNC), the given query is firstly
expanded to a set of text semantically rich expansions, the noisy query ex-
pansions are then filtered by exploiting both the word-word and visual-visual
similarity. Secondly, candidate images are retrieved by using these filtered
expansions from image search engine. Thirdly, clustering and progressively
CNN based methods are applied to further filter those noisy images from the
semantic point of view.

To verify the effectiveness of our proposed method, we construct an image
dataset with 10 categories AutolmgSet-10. We evaluate the object detection
ability of our image dataset with three other image datasets which were
constructed by weak supervised, web supervised and full supervised learning
[9] [I0][11].In addition, the cross-dataset generalization ability was evaluated
on our dataset AutolmgSet-10 and two manually labelled image datasets
STL-10 and CIFAR-10.

Our contributions in these paper mainly are:

1. We are the first to use query expansions in the process of image dataset
constructions. By expanding query to a set of query expansions, we get

a richer text semantic descriptions for the given query. Using multiple

expansions to retrieve images can effectively overcome the restriction of

downloading number from image search engine.

2. We propose three different filtering mechanisms for three different kinds



of noisy images in the process of image dataset constructions. Using
these filtering mechanisms can effectively improve the overall accuracy
of image dataset.

3. Using multiple query expansions to retrieve images and construct the
image dataset can effectively reduces failure due to the statistical domain

adaptation problem.

The rest of the paper is organized as follows: In Section 2, a brief dis-
cussion of related works are given. The proposed algorithm including query
expanding, noisy expansions filtering and noisy images filtering is described
in Section 3. We evaluate the performance of the proposed algorithm with
several other methods in Section 4. Finally the conclusion and future work

are offered in Section 5.

2. Related works

To our knowledge, there are three principal methods of constructing image
dataset: manual annotation, semi-automatic method and automatic method.
Manual annotation has a high accuracy but is labor intensive. For example,
it has taken several years to construct the ImageNet[I]. In order to reduce
the cost of manual annotation, some works also focused on active learning
(a special case of semi-supervised method) [12][I3][14]. [12] randomly label
some images as seed images to learn visual classifiers. Then the learned vi-
sual classifiers are applied to do image classifications on unlabeled images
to find out images which have unconfident scores for manual labelling. The
process is iterated until sufficient classification accuracy is obtained. [13]

presented an active learning framework to simultaneously learn contextual



models for scene understanding tasks (multi-class classification). [14] pre-
sented an approach for on-line learning of object detectors, in which the
system automatically refines its models by actively requesting crowd-sourced
annotations on images crawled from the Web. However, both of manual an-
notation and active learning require pre-existing annotations which results
in one of the biggest limitations to construct a large scale image dataset.

To further reduce the cost of manual annotation, automatic methods have
attracted more and more people’s attention. [5] leveraged the first few im-
ages returned from image search engine to train image classifier (based on
the fact that the first few images returned from image search engine tend to
be positive), classifying images as positive or negative. When the image is
classified as a positive sample, the classifier uses incremental learning to re-
fine its model. With the increase of classifier accepting more positive images,
the trained classifier will reach a robust level for this query. [I5] proposed to
use clustering based method to filter noisy “group” images (e.g.; the incor-
rect image contents from the semantic point of view) and propagation based
method to filter relatively small noisy images.

Other works relate to the step of filtering noisy query expansions and fil-
tering noisy images. [16] is an unsupervised learning algorithm for obtaining
vector representations for words. Training is performed on aggregated global
word-word co-occurrence statistics from a corpus and achieves the state-of-
the-art performance on word-word similarity computing. [17] represented
images and annotations jointly in a low dimensional embedding space for
similarity evaluation, it’s limited by the used low level visual representations.

[18] mapped images into a semantic space via word embedding. However, the
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Figure 1: System overview.

semantic space constructed from text corpus is suitable for natural language
processing tasks while not fully reflects visual similarity.

Our method is largely inspired by the following works. A visual concept
learning system was recently proposed in [10] and achieved impressive perfor-
mance for object detection. It firstly find all the related parts of the object,
then train a mixture DPM [I1] detector for the object. The main difference
between us is that [10] is formulated for object detection while our method

is to automatic construct image datasets for the given queries.

3. System framework and methods

We are targeting at constructing image datasets in a scalable way while
ensuring accuracy. Fig.1 shows the process of our proposed method. In order
to overcome the number limitation of image downloading through image
search engine (e.g., Google Image), we expand the given text query to a set
of query expansions. Although, such expanding will bring useful expansions,
it brings some noisy text query expansions as well. We filter these noisy

expansions based on the similarity distance of the text query. Similarly,



due to the complexity of Internet, using filtered text query expansions to
download images from image search engine may also bring some noisy images
(e.g.; the incorrect image contents from the semantic point of view). To
further improve the accuracy of image dataset, we take clustering based and
progressively CNN based methods to filter noisy images in the raw image

dataset. The following subsections describe the details of our method.

3.1. Query expanding

Images returned from image search engine (e.g.: Google Image) tend to
have a higher accuracy than social network (e.g.: Flickr), but downloads are
restricted to a certain number. Besides, the accuracy of ranking relatively
rearward is also unsatisfactory. To overcome such restriction, synonyms are
often used to expand a query to a set of expansions for more image down-
loading from the image search engine. However, this method only works well
for queries defined from existing ontology such as WordNet [19]. In order to
get rid of existing ontology dependence and generalize to queries which have
not been compiled into existing ontology, we automatically expand query
by searching in the GBNC [20]. GBNC covers almost all related query ex-
pansions for any query at the text level. We use GBNC to discover query
expansions for the given query with Parts-Of-Speech (POS), specifically with
NOUN, VERB, ADJECTIVE and ADVERB. Using GBNC helps us cover
all expansions for any possible query the human being has ever written down
in books. In addition, POS tag helps us to partially purify these query ex-

pansions. Table 1 shows query expanding details for ten queries.



Table 1: Query expanding details for ten queries.

Found query expansions

Query Total Correct Noisy Precision
horse 811 446 365 0.55
bird 401 265 136 0.66
bus 347 212 135 0.61
airplane 696 480 216 0.69
sheep 276 218 58 0.79
train 314 132 182 0.42
cat 242 119 123 0.49
COwW 171 144 27 0.84
dog 437 293 144 0.67
motorcycle | 61 o1 10 0.84

3.2. Noisy query expansions filtering

Through query expanding, we get a text richer semantic descriptions for
the given query. However, query expanding also brings some noisy expan-
sions (e.g., “horse power”, “betting horse” and “sea horse”). These noisy
expansions can be mainly divided into two types: (1) visual non-salient and

(2) less relevant.

3.2.1. Visual non-salient expansions filtering
From the perspective of visual, we want to identify visual salient query
expansions and eliminate visual non-salient query expansions in this step.

The intuition is that visual salient expansions should exhibit predictable



Table 2: The average recall and precision for ten queries corresponding to S;

Si 0.9 0.8 0.7 0.6 0.5 0.4 0.3
Recall 0% 40.66% 87.85% 97.42%  100% 100% 100%
Precision 0% 87.06% 78.90% 71.18% 68.74% 65.60% 65.60%

visual patterns. We use image-classifier based filtering method.

For each query expansion, we directly download the first 100 images
from Google image search engine as positive images; then randomly split
these images into a training set (75 images) and validation set (25 images)
I; = {I},1'}, we gather a random pool of negative images (50 images) and
split them into a training set (25 images) and validation set (25 images)
1= {thv}; We train a linear SVM C; with I! and T’ using dense HOG
features and then use {I¥,T } as validation images to calculate the classifi-
cation results S;. The classification results and its corresponding recalls and
precisions are shown in Table 2. After considering the recall and precision,
we choose a query expansion ¢ to be visually salient if the classification re-

sults S; giving a relatively high score (0.7). The reason is that we want to

get a relatively higher precision while ensuring an acceptable recall rate.

3.2.2. Less relevant expansions filtering

From the perspective of relevance, we want to find both text semantic and
visual relevant expansions for the given query. The intuition is that relevant
expansions should exhibit a small text semantic distance and visual distance.
We use combined filtering methods based on similarities of word to word and

visual to visual.
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Words and phrases acquire meaning from the way they are used in society.
For computers, the equivalent of “society” is “database”, and the equivalent
of “use” is “a way to search the database”. Normalized Google Distance
(NGD) constructs a method to extract semantic similarity distance from the
World Wide Web (WWW) using Google page counts|21]. For a search term
z and search term y (just the name for a query rather than the query itself),
NGD is defined by:

NGD(z,y) — max{logf(x),logf(y)} — logf(z,y) (1)

logN — min{logf(x),logf(y)}

where f(z) denotes the number of pages containing z, f(z,y) denotes the

number of pages containing both z and y and N is the total number of
web pages searched by Google. We denote the text semantic distance of all
query expansions by a graph Gy = {N, D} where each node represents a
query expansion and its edge represents the NGD between two nodes. We
set the target query as center (x) and other query expansions have a score

(Dyy) which corresponds to the distance to the target query. It is defined as:

D. — NGD(z,y)+NGD(y,x
Ty — 2

), Similarly, we represent the visual distance of query
and expansions by a graph G, = {C, E} where each node represents a query
expansion and each edge represents the visual distance between query and
expansions. Each node has a center Cy which corresponds to k = 1 K-means
clustering center. The feature is 1000 dimensional Bag of visual words based
on SIFT features. The edge weight £, correspond to the Euclidean distance.

The text semantic distance and visual distance will be used to construct
a new 2 dimensional feature V = [D,,;E,,/. The label is 1 (positive) or 0

(negative). We select ny positive training examples from these expansions

which have small text semantic distance and visual distance, a subset of
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these positive examples may be “noisy”. However, to get the n_ negative
training samples, we chose these negative simples directly from the different
queries (e.g., “horse” and “cow”) rather than from the expansions in the
same query. The reason is that these expansions (in the same query) have
a higher probability to be positive than different queries. Then the problem
can be formulated to calculate the importance weight w for feature V to
determine whether the expansion is relevant or not. Given that (1) the
feature dimension and training data is relatively small, (2) the training data
still have some noises. We choose to use SVM in our experiment. The

training process can be formulated into the following optimization problem:

P
min 5y|w|‘2 +C. Z &+ O Z £ (2)
iy; =1 7:y;=0
s.t. ‘v’k:yk[w-\zf—Fb}Zl—fk (3)

where Vj, is the feature vector of example 7 and y; € {1,0} is the class
label. C'y and C_ are the false classification penalties for the positive and
negative expansions with ¢ being the corresponding slack variables.

We solve this optimization problem with publicly available SVM software
LIBSVM [22]. All experiments towards finding an appropriate representa-
tion were done on the training set using linear SVMs. Three parameters w,
Cy and C_ are optimized by using 10-fold cross validation on the training
set. Algorithm 1 shows the process of query expanding and noisy expansions
filtering. The images corresponding to the filtered query expansions are then

used to construct so-called the raw image dataset for the given query. As
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Algorithm 1 Query expanding and noisy expansions filtering

Input:
X = {0}, a given query

1: Expand given query in GBNC with POS and get a set of query expansions
X ={xg,x1,29... 700}

2: Delete visual non-salient z; from X if S; < 0.7

3: Calculate word-word similarity D,, and visual-visual similarity E,, be-
tween o and {z1, rg....x, }

4: Construct a new relevant feature V = [D,,;F,,| and train a relevant

Y
classification model based on feature V

5: Delete less relevant z; from X if x; is classified into negative category

Output:

A relatively clean expansion for the given query

shown in Table 3, our method is not able to remove the noisy expansions
thoroughly in most of the cases. Nevertheless, the raw image datasets con-
structed by those filtered expansions still achieves a much higher accuracy
than directly using the Flickr or Google image data. To have further puri-
fying on the raw image datasets, we will remove those noisy images in the

next section.

3.3. Noisy images filtering

Although Google image search engine has ranked the returned images,
some noisy images are still included. The reason is that Google image is a
text based search engine. In addition, a few unfiltered noisy expansions will

also bring some noisy images to the raw image dataset. As shown in Fig.2,
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Table 3: Query expanding and noise filtering details for ten queries.

after visual non-salient filtering after less relevant filtering
Query Total Correct Noisy Precision| Total Correct Noisy Precision
horse 545 398 147 0.73 285 272 13 0.95
bird 313 246 67 0.79 236 232 4 0.98
bus 250 183 67 0.73 167 157 10 0.94
airplane | 524 452 72 0.86 377 362 15 0.96
sheep 232 204 28 0.88 181 176 5 0.97
train 189 125 64 0.66 116 107 9 0.92
cat 175 110 65 0.63 113 106 7 0.94
COwW 140 132 8 0.94 130 130 0 1
dog 353 275 78 0.78 248 242 6 0.98
motorcyclg 57 ol 6 0.89 50 50 0 1

these noisy images can be divided into three categories: artificial images
(Type 1), noisy images brought by noisy expansions (Type 2) and noisy
images which don’t match query (Type 3).

3.3.1. Artificial images filtering
We remove artificial images as we are just interested in building natu-
ral images dataset. Artificial images contain: sketches, drawings, cartoons,
charts, comics and so on. All of these images tend to have a few colors in
large areas. Based on this motivation, we train a radial basis function SVM
using color histogram features. The artificial images were obtained by using
o

key words: “sketch”, “drawings”,“cartoons” and “charts” to download from

Google image search engine (1000), natural images were obtained by manual

14



Cat Bronze cat Bob cat

Type 2

Figure 2: Three types of noisy images in the raw image dataset.

selected (3000). When the SVM model was learned, it can be used to filter
out noisy artificial images on the entire raw image dataset.

In order to validate our ideas, we randomly select 1000 artificial images
and 1000 natural images from the raw image dataset. We separately select
nBins (16, 32, 64) for each color channel, so the dimension of color histogram

feature is nBins®

. We use the learned SVM model to do image classifica-
tion on these 2000 images which are selected from the raw image dataset.
Table 4 shows the loss of natural images and filtered artificial images. By
experimental observations, we choose 16 as the final nBins for each color

channel. Although it has a little higher loss of natural images, it can much

more effectively filter out artificial images than others.

Table 4: The loss of natural images and filtered artificial images

nBins 16 32 64

Loss of natural images  4.9% 38% 3.2%
Filtered artificial images 67.5% 54.7% 47.7%
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3.3.2. Clustering based noisy images filtering

In order to further purify Type 3 noisy images in Figure 2, we take clus-
tering based images filtering method. Our motivation is to focus on whether
a group of images are sharing similar visual patterns which is relevant to a
query. Then the problem can be converted to three mainly problems: feature
selecting, cluster number determining and relevant clusters choosing.

Feature selecting Generally speaking, the bigger clusters and visually
consistent clusters are, the higher probability will be relevant to the query.
In our data, since our images are downloaded from image search engine with
index number, clusters including those ranked as relatively rearward images
also have higher chance to be relevant to the query. Based on this motivation,
we add weight w; to each image according to their ranking index number.

Then the scores of each cluster can be calculated by:

k
Scores = Z w; 1 (4)
i=1

where w; represents the weight of ranking i, image, I; represents the i,
image and k represents the numbers of image in the cluster.

In summary, we use the following features to discover relevant clusters:
(1) scores of the cluster; (2) size and percentage of the cluster; (3) minimum,
maximum and average distances of images in the cluster.

Cluster number determining Due to the complexity of Internet data,
we can’t set a specific cluster number for all the images data which corre-
sponding to query expansions. We try to use automatic methods like Affinity
Propagation to get the cluster number £, but the results are not satisfactory.

Instead, we propose an automatically method to determine the cluster num-

16



ber k for different query expansions image data.

For each query expansion image data, we take spectral clustering and
start with cluster number £ = 1. We increase the cluster number when
the data appear not to meet Gaussian distribution. Each iteration of our
method splits into two cluster numbers. If the data currently assigned to
a k cluster center appear to meet Gaussian distribution, then we stop the
splitting. In our experiment, when k = 15 and the data still does not appear
to meet Gaussian distribution, we also stop the splitting. The hypotheses
test to verify whether the assigned data to a center is sampled from Gaussian

distribution is as follows:

e Hy: The d dimensions data X = {1, xs..., x4} around the center ¢ are

sampled from a Gaussian

e Hy: The d dimensions data X = {1, xs..., 1} around the center ¢ are

not sampled from a Gaussian

If the null hypothesis Hy is accepted, then it is believed that the one center
is sufficient for modelling its data. The center splitting is not necessary. and
we should not split the cluster into two sub-clusters. If Hj is rejected and
H, is accepted, the cluster will be spitted into two sub-clusters.

The test we use is based on the Anderson-Darling (AD) statistic [23].
As the AD statistic test is one-dimensional test, we need to transform d
dimensions data X into one dimension representation X = {xll, Ty ..., xk'}.
Given a subset of data X in d dimensions which belongs to center ¢, we firstly
assume k = 2 and run spectral clustering in X. Then we get two centers ¢; and

cs. We construct d dimensions vector v = ¢ - ¢ and project d dimensions

17



data X = {1, xs..., 21} onto vector v by [23]:

zi' = (23, v)/||vll’ ()

to get one dimension data X' = {x;, 2, ...,1;'} which has mean 0 and
variance 1. We let z; = F'(z;), where F is the N(0,1) cumulative distribution
function. Then the statistic is [23]:

AZ) = A(Z)(1 + 4/n — 25/ (n?)) (6)

where A?(Z) is defined as

n

A(2) = = 372 = Dliog (=) +log(1 = zas12)] — 7 (7)

In our experiments, if A%(Z) is in the range of non-critical values at confi-
dence level a (0.0001), then accept Hy, keep the original center and discard
{c1, c}. Otherwise, we reject Hy and keep {c1, co} in place of the original cen-
ter. The process of determining the cluster number are shown in Algorithm
2.

Relevant clusters choosing After choosing features and cluster num-
bers, we label a set of clusters to learn a SVM classifier that determine
whether the cluster is relevant to query or not. In our experiments, we
randomly select 1000 relevant clusters and 1000 less-relevant clusters as the
positive and negative training samples. The labelling work only need to be
done once for all queries and the learned classifier can be applied on all the
clusters. To verify the performance of our method, we then select 2500 rele-
vant clusters and 2500 less-relevant clusters as the test data. We compare our
method with K-means based clustering (as the baseline) and Affinity Prop-
agation (AP) based clustering. For K-means based clustering and Affinity

18



Algorithm 2 Cluster number determination process

Input:
X = {x1,29..., 21}, a set of images corresponding to query expansion

1: Let C as the initial set of centers for data X

2: C <« spectral clustering(C,X)

3: Let {z;|class(x;) = j} as the set of datapoints assigned to center c;

4: Use AD test to calculate if each {x;|class(x;) = j} meets the Gaussian
distribution at the confidence level v (0.0001)

5: If the data meets Gaussian distribution, keep ¢;. Otherwise, split ¢; with
two centers.

6: Repeat from step 2 until no more centers are added.

Output:

Cluster number k£ and corresponding images

Propagation, we use the same feature and relevant clusters choosing mecha-
nism. The difference is in the process of cluster number generating. Table 5

shows the loss of relevant clusters and filtered less-relevant clusters.

3.8.3. Progressively CNN based noisy images filtering

By observing the experimental results, we found that clustering based
images filtering method can not filter the Type 2 noisy images efficiently.
In order to further purify the image dataset, we take a purifying method
similar to [24]. The difference is that we do not train a CNN model from the
beginning, instead, we directly fine-tune a CNN model using filtered images
on a trained model “bvlc_reference_caf fenet” [25]. Then all of the filtered

images are used to do image classification using the fine-tuned model. We
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Table 5: The loss of relevant clusters and filtered less-relevant clusters

Method K-means AP  Spectral clustering
Loss of relevant clusters 16.4%  20.8% 12.3%
Filtered less-relevant clusters  78.6%  62.5% 83.4%

take the probabilistic sampling algorithm to select the new training sample
images according to the classification scores on the training data itself. The
intuition is we want to keep images with distinct sentiment scores between
classes with high probability. We use the new selected sample images to
further fine-tune the previous model, repeat the above steps until reach the
pre-set iteration value (in our experiment is 1000).

Let Scores(i) = (Vi1,Via) be the classification scores for the first two
classes of instance 7. We choose to select the training instance i as the new

selected training instance with probability P(i) given by:
P(i) =1—max(0,2 — exp(|Vi1 — Via|)) (8)

The training instance will be kept in the training set if the classification
scores of one training instance are large enough. Otherwise, the smaller the
difference between the classification scores, the large probability that this
instance will be removed from the training set. The process of filtering noisy
images are shown in Algorithm 3. In our experiments, we found that the
Type 2 noisy images can be effectively filtered through this CNN method.
The reason for this is that after the filtering process, the number of noisy
images in the raw image dataset are relatively small compared with the whole

image dataset for the particular target query.
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Algorithm 3 Noisy images filtering algorithm

Input:

6:

7

8:

X =A{l, L..., I}, a set of images corresponding to query expansion

. Filter artificial images ( Type 1) from X using the color histogram features

+ SVM framework
Filter Type 3 noisy images from X using clustering based filtering method

Fine-tune a learned CNN model with filtered images

: Calculate Scores as the sentiment scores for image I; using fine-tuned

model
for I, C X do

Keep I; as new training samples with probability P(7)
end for

Repeat from step 3 until reaching the pre-set iteration numbers

Output:

Return the remaining images X' C X as the final filtered images

4. Experiments

In this section, several state-of-the-art methods are compared with our

methods in the process of noisy query expansions filtering and noisy im-

ages filtering. We choose ten of twenty categories in PASCAL VOC 2007

dataset as the target queries, then we do the query expanding, noisy query

expansions filtering and noisy images filtering to construct the image dataset

AutolmgSet-10. Table 6 shows the detailed scale for each query in AutolmgSet-

10.
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Table 6: The scale of image dataset AutolmgSet-10.

Query  Data scale Query Data scale

Horse 22K Bus 13K
Bird 21K Sheep 14K
Dog 20K Train 8K
Cat 9K Cow 11K

Airplane 30K Motorcycle 49K

4.1. Performance evaluation on query expansions

The ground truth of query and expansions are similar if they are shar-
ing similar visual patterns, otherwise not. We carry a quantitative evalu-
ation for the nearest query expansions by comparing it with method [16].
The source code for method [I6] is obtained from the author’s website:
http://nlp.stanford.edu/projects/glove/.

For ten queries, we randomly select 100 query expansions from each query
(except query motorcycle). Table 7 shows the top 8 similar query expansions
found by our method and [I6] for each query.

Our method consider not only the text semantic similarity (Normalized
Google Distance), but also the visual semantic similarity (Euclidean distance)
in the process of similarity computing. We take the performance metric

proposed by [26] to do the comparison:

Y H{(wn w))
accQK = e 9)

where 1{-} is an indicator function, so that is equals to 1 if (wg,w) is

visually similar word pair and 0 otherwise. Obviously, our method achieves
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Table 7: Top-8 similar query expansions found by our method and method [16].

Query Found by our method Found by method [16]
Horso canter/walking/eating/running horse eating/young/sea/black horse
rear/young/brown/black horse grey/bet/sawing horse, horse stable
Train fast/modern/underground/metra train fast/evening/underground train, train station,
powered /tourist /long/electromagnetic train group/court/sweeping/overcrowded train,
Sheep grazing/marsh/australian/goat sheep grazing/goat/fat/gold sheep
breeding/desert/eating/fat sheep game/breeding/market/cooked sheep
Motorcycle honda/red/police/driving motorcycle racing/first/police motorcycle, motorcycle hat
white/fast /expensive/yamaha motorcycle japanese/honda/driving/fast motorcycle
Dog angry/wolf/fighting/home dog wolf/fighting/toys/paper dog
wild/hunt/smiling/little dog cartoon/pet/sitting/rough dog
Cow black/donor/young/bull cow black/donor/milk/breeding cow
walking/milk/lying/breeding cow cow milk, silver/jumping cow, cow steller
Cat brown/little/wild /rabbit cat missing/angry/funny/sand cat
bronze/napping/sand/funny cat tom/napping/brown cat, cat tails
Bus public/city /travels/tour bus city/travels/system/general bus
school/touring/airport/dual bus school/fast /monitor/airport bus
Bird swallow/flight /black/seagull bird sing/seagull/small/bee bird
swan/silver/eagle/small bird bird nest, bat/flapping/angry bird
Airplane 737 /france/a320/united airplane jet/latest /war/f16 airplane
p3/british/airbus/flying airplane 737 /france/british/airbus airplane

a higher precision. The reason is that we filter noisy query expansions with
combined text semantic distance and visual semantic distance which is much
more efficient than just using context constraints. Thus our method is more
suitable to expand queries for image dataset construction. Fig.3 shows the

average accuracy of Top-K query expansions for method [16] and ours.

4.2. Performance evaluation on image dataset precision

Due to both of the size and the species included in the datasets are differ-
ent, we can’t directly compare the precision of a particular category. Instead,
we compare the average precision of the constructed dataset with three other
automatic methods [5][8][15] in Fig.4. [5] use an iterative framework that si-
multaneously collect object image datasets. The framework use Bayesian

incremental learning as its theoretical base. The disadvantage of this ap-
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Figure 3: Average accuracy of Top-K similar query expansions.

proach is overly dependent on the accuracy of the initial training data. [§]
take text information to re-rank images retrieved from web search and use
these top-ranked images to learn visual models to re-rank images once again.
[15] use clustering based method to filter noisy “group” images and prop-
agation based method to filter relatively small noisy images. However, the
accuracy of image dataset constructed by all of these three methods is still
unsatisfactory. The main reason is the raw image dataset constructed by only
one query contains too much noise. Our method has a higher precision than
previous methods mainly because we use multiple query expansions and the
high accuracy of ranking forward images returned from image search engine

in the process of dataset construction.

4.3. Performance evaluation on object detection ability

To compare the object detection ability with three other state-of-the-art
baseline methods [9][10][11], we train the DPM detector for object detection.
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Figure 4: Comparison of the average precision of the four methods of dataset construction.

The code for DPM is obtained from the author’s website:

http://www.cs.berkeley.edu/rbg/latent/ [I1]. We take the same image pre-
processing methods: resize images to a maximum of 500 pixels, discard all
near-duplicates, and ignore images with extreme aspect ratios (aspect ratio
> 2.5 or < 0.4). We initialize our bounding box to a sub-image within the
image that ignores the image boundaries. By doing this, we can avoid the
two-stage training procedure used in [27]. Then the detector is trained using
the default parameters of [11]. We evaluate the performance of our trained
detection model for the 10 queries in the PASCAL VOC 2007 test set [2§].
We pick this dataset as recent state-of-the-art weakly supervised methods
have been evaluated on it. Table 8 displays the results using our own image
dataset AutolmgSet-10 and compares them with state-of-the-art baselines

(9] [10] [11].

Compared to [9] which uses weak supervision and [I1] which uses full su-
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Table 8: Results (Average Precision) on Pascal VOC 2007 (test) object detection

Method Supervised bird train cat cow dog horse sheep plane bus mbike average
)] weak 3.1 34.2 7.1 9.3 1.5 29.4 0.4 13.4 31.2 38.3 16.79
[10] web 12.5 23.5 8.4 17.5 12.9 30.6 18.8 14.0 35 27.5 16.62
our web 12.3 25.5 10.7 18.7 14.2 32.7 15.3 14.6 36.7 28.5 20.92
a1 full 10.3 45.2 22.5 24.3 12.6 56.5 20.9 33.2 52.0 48.5 32.6

pervision, our newly proposed method performs better as even the training
set does not need to be labelled manually. Nonetheless, our results substan-
tially surpass the previous best results in weakly supervised object detection.
Compared to [10] which also uses web supervision, our method surpasses their
results in most of the cases. The main reason for this is that our training
data generated from the Internet contains much richer and accurate visual
descriptions in images. By observing the binding data in Table 3 and Table
8, we found that those concepts which have good performance tend to have
sufficient and accurate query expansions for the query. In other words, our
approach discovers query expansions that have much more useful linkages to

the visual patterns in the corresponding image set.

4.4. Performance evaluation on cross-dataset generalization ability

We compare our dataset the cross-dataset generalization ability with two
publicly available dataset STL-10 and CIFAR-10. Cross-dataset generaliza-
tion measures the performance of classifiers learned from one dataset and
tested on the other dataset [29]. It indicates the efficiency and robustness of
our proposed method for clean image dataset construction.

To be fair, we only choose the five same categories (horse, bird, airplane,

cat and dog) which are included in three datasets to verify their cross-dataset
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generalization ability with STL-10 and CIFAR-10. Specifically, we randomly
select 500 training images and 500 testing images for each category in STL-10,
CIFAR-10 and our dataset (because the maximum number of training data
in STL-10 is 500). We resize all images to [64,64] and convert all images
to grayscale images. When training the image classification model, we set
the same options for three datasets. Setting the type of SVM to be C-SVC,
the type of kernel to be radial basis function and all other options to be the
default LIBSVM options [22]. Then datasets are used to learn the image
classification model based on same feature (HOG[30]) and learning method
(SVM). We use the learned model to do image classification on these three
image datasets. The results are shown in Fig. 5.

In two of three cases, with the same number of training images, the best
performance of classification is achieved by using the dataset AutolmgSet-10.
Since the dataset STL-10 has only 500 training images per category, we com-
pare the performance of three different dataset at the point of 500 training
images, it shows that the generalization ability of these three datasets is very
close and our dataset performs slightly better than STL-10 and CIFAR-10. In
addition, our dataset is much larger than the other two datasets, it achieves
the best performance on two testing sets when all training images are used.
Note, our dataset was constructed automatically while other datasets were
manually labelled. In addition, the image datasets STL-10 and CIFAR-10
constructed by one query for image collection tend to have the domain adap-
tation problem [31]. However, our method using multiple query expansions

can effectively ease the domain adaptation problem.
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Figure 5: Cross-dataset generalization of HOG+SVM trained on STL-10, CIFAR-

10 and AutolmgSet-10, then tested on: (a) AutolmgSet-10, (b) CIFAR-10 and (c)
STL-10.

5. Conclusion and future work

In this work, we presented a new framework for automatic web-supervised
image dataset construction. Three successive modules were employed in the
framework including query expanding, noisy expansions filtering and noisy
images filtering. To verify the effectiveness of our proposed method, we con-
struct an image dataset AutolmgSet-10 with 10 categories. Through our
experiments, we found our image dataset constructed by automatically has
a higher average precision than automatic methods [5], [§] and [I5]. Besides,
we evaluate the object detection ability with methods [9] [T0][IT]. The results
shows our method can surpass [9][I0] in most of the cases. Finally, we evalu-
ate the cross-dataset generation ability of our dataset with manually labeled
dataset STL-10 and CIFAR-10, it shows our image dataset can surpasses the
manually labeled dataset STL-10 and CIFAR-10 in terms of both scale and
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cross-dataset generalization ability.

Although good results were obtained in this work by the attempt to make

use of multiple query expansions in the process of constructing image dataset,

there is still room to improve our approach. For example, we can potentially

use more sophisticated approaches to purify noisy images and that will be

the focus of our future work.
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