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Abstract—We introduce a methodology to implement the
physiological transition between distinct neuronal spiking modes
in electronic circuits composed of resistors, capacitors and
transistors. The result is a simple neuromorphic device organized
by the same geometry and exhibiting the same input–output prop-
erties as high-dimensional electrophysiological neuron models.
Preliminary experimental results highlight the robustness of the
approach in real-world applications.

I. INTRODUCTION

Nature offers spectacular examples of energy-efficient,
lightweight control architectures. Flight control in an animal
like a honeybee outperforms the latest robotic architectures
in terms of energy consumption, adaptability, robustness, and
dimensions. Neuromorphic engineering aims at emulating the
way in which biological neuronal systems perceive and repre-
sent the outside world, take decisions and develop computa-
tions, and command motor outputs [1], [2].

In implementing the dynamical behavior of biological neu-
rons in electronic hardware we face the compromise between
fidelity of the reproduced behavior and complexity of the de-
signed circuit. Existing silicon neuron designs span a variety of
solutions: from detailed implementation of neuron biophysics
[3] to implementation of simple, abstract neuron models [4].
Both approaches have advantages and disadvantages, and it is
an active research area to determine which implementation to
use depending on the desired objective [5].

The possibility of robustly and rapidly switching between
distinct activity modes is one of the peculiarity of bio-
logical neurons, which allows them to adapt their input–
output response to internal and environmental conditions. Two
fundamental neuronal activity modes are tonic spiking and
bursting. Tonic spiking describes the slow, regular generation
of spikes in the neuron membrane potential. Bursting describes
the alternation between moments of low membrane potential
and moments of high oscillatory activity, in which spikes are
generated at very high frequency. The transition between tonic
spiking and bursting plays a major role in neuronal information
processing by modulating neuron input–output behavior [6],
[7], [8].

We showed [9], [10] that all biological neurons share
the same geometry at the transition between distinct spiking
modes. In particular, this transition can be described in a

simple, abstract model given by the normal form of an orga-
nizing singularity. Roughly speaking, a singularity describes
a highly degenerate and fragile situation that correspond
to the transition between distinct regimes [11]. There is a
direct correspondence between biophysical parameters and
mathematical parameters in the abstract model, which leads
to a novel mathematical understanding of robustness and
modulation of neuronal activity [12]. We further showed that
the same qualitative picture can be realized in simple input–
output circuits [13].

In this paper we follow the recipe provided in [13] to design
a neuromorphic circuit with the property of exhibiting the
same qualitative geometry, robustness, modulation capabilities,
and input–output behavior as biophysical neuron models. As
a first, biologically relevant illustration, we focus on the
transition between tonic spiking and bursting. The resulting
circuit solely uses six transistors and passive elements and
its robust real-world implementation in low-cost components
solely uses four additional transistors to overcome loading
effects.

The key contributions with respect to existing neuromorphic
design methods [5], [14], [15] are threefold. First, the equiva-
lence (from a geometric, dynamical systems, and input–output
perspective) of the designed circuit and high-dimensional bio-
physical neuron models close to the transition between distinct
spiking modes is a provable consequence of the used approach.
Second, the geometric nature of our methodology avoids
laborious and non-constructive parameter fitting procedures,
and, third, it also ensures robustness to components variability
in real-world applications.

In Section II we rapidly review the results in [9], [10],
[13]. Grounded in these works, we derive an implementation
of our neuromorphic device in Section III and simulate it in
ngspice [16] (the code can be found in the Appendix).
The actual implementation of this circuit and preliminary
experimental tests are reported in Section IV. Future directions
are discussed in Section V.

II. THE GEOMETRY OF NEURONAL BEHAVIORS AND ITS
BLOCK REALIZATION

Electrophysiological models of neurons are constructed
upon the seminal work of Hodgkin and Huxley [17]. They all
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Fig. 1: A. The RC circuit associated to a conductance-based
biophysical model of dopaminergic neuron (adapted from
[18]). B. Two activity modes in a conductance-based model.
Left: tonic spiking. Right: bursting. Membrane potential values
are in millivolts. Time is in millisecond.

share the physical interpretation of the nonlinear RC circuit
depicted in Fig. 1-A. The capacitor models the neuron lipidic
membrane and the other branches, containing a voltage source
and a variable resistance, model the flow of a specific ion
across the membrane.

Ion flow across the membrane is dynamically regulated
by the membrane potential via opening and closing of ion
channels, which makes the circuit in Fig. 1-A highly nonlinear.
As such, it can exhibit a rich variety of dynamical behaviors.
The present paper focuses on two fundamentals behaviors
shared by almost all neuron types: the tonic spiking behavior
of Fig. 1-B left and the bursting behavior of Fig. 1-B right.

Reproducing tonic spiking and bursting, as well as the
transition between these two modes, in an electrophysiological
model requires an empirical tuning of the many biophysical
parameters that usually ends up in an extensive brute-force
computational parameter search [19]. A different approach
relies on bifurcation theory [20].

Roughly speaking, bifurcation theory makes the ansatz that
the vector field associated to an electrophysiological model
undergoes some qualitative change at the transition between
two distinct activity modes.

We showed in [9], [10] that the bifurcation associated
to the transition between tonic spiking and bursting can be
algebraically tracked by exploiting the multi-timescale nature
of electrophysiological neuron models and by detecting a tran-
scritical singularity in the critical manifold of the associated
singularly perturbed dynamics. We refer the reader to [21] for
an introduction to geometric singular perturbation theory and
to [11] for singularity theory concepts.

The power of this analysis is that we can visualize the
geometry of the tonic spiking–bursting transition in a low-

dimensional normal form of the organizing singularity:

ẋ = −x3 − (λ+ y)2 + βx− (α+ u)− z (1a)
ẏ = εs(x− y) (1b)
ż = εu(x− z) , (1c)

where λ is called the bifurcation parameter, α, β are called
unfolding parameters, and 0 < εu � εs � 1 model timescale
separation between the three state variables x, y and z. The
system is driven by the external input u. The distinction
between bifurcation and unfolding parameters is instrumental
to the tools used in the construction of the normal form (1),
that is, singularity theory applied to bifurcation problems [11].

The main theorem in [10] provides constructive conditions
on the parameters in model (1) to enforce the existence of a
bursting attractor. This attractor exists for parameters close to
the same transcritical singularity organizing the transition be-
tween tonic spiking and bursting in biophysical conductance-
based models. As a corollary, the results in [10] therefore
provide a geometric way of exploring the transition between
bursting and tonic spiking.

Fig. 2-A shows the temporal traces and the projection onto
the phase plane of the slow–fast subsystem (1a)-(1b) of tonic
spiking and bursting behaviors in model (1). Due to timescale
separation, trajectories spend most of the time near the critical
manifold

Z := {(x, y, z) ∈ R3 : −x3−(λ+y)2+βx−α−z = 0} , (2)

that is, the x-nullcline composed of x steady states as y and
z vary.

The fundamental geometric shape underlying the transition
between tonic spiking and bursting is the mirrored hysteresis
bifurcation diagram introduced in [10] and sketched in Fig. 2-
B. In the tonic spiking mode, trajectories solely visit the right
branch of the mirrored hysteresis organizing the critical man-
ifold, whereas in bursting mode trajectories alternate between
the two branches.

The geometry of both behaviors is summarized in Fig. 2-
C. In tonic mode, for a fixed value of the ultra-slow variable
z, the slow–fast subsystem possesses a single attractor on the
right branch of the mirrored hysteresis: either a stable fixed
point, for a large value of z (left plot), or a stable limit cycle,
for a small value of z (right plot). For large initial values
of z the model is therefore at quasi-steady state. In this case
the ultra-slow dynamics (1c) forces z to decrease until the
steady state looses stability and a spike is emitted along the
newborn limit cycle. This in turn leads to a sharp increase of z,
which immediately lets the steady state recover stability, and
the model is forced back to quasi-steady state after a single
spike.

In bursting mode, there exists a large range of values of the
ultra-slow variable z in which the slow–fast subsystem exhibits
bistability between a stable steady state on the left branch of
the mirrored hysteresis and a limit cycle on the right branch
of the mirrored hysteresis (center plot). Bursting arises from
ultra-slow hysteretic evolution around this bistable region.
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Fig. 2: A. Top: temporal traces of mode (1) in tonic spiking and
bursting. Bottom: projection of the trajectory on the x−y phase
plane. The trajectory is in red. The critical manifold (2) is
drawn in black for a small value of z (that is, at the beginning
of spikes/bursts) and in gray for a large value of z (that is,
when the trajectory relaxes to rest). B. The mirrored hysteresis
bifurcation diagram. C. The geometry of tonic spiking and
bursting. The black dot denotes stable fixed point, the circle
unstable fixed points. Stable limit cycles are drawn in blue.

For a large initial value of z the sole attractor is a stable
steady state (left plot). The ultra-slow dynamics (1c) forces z
to decrease. However, once in the bistable region, the model
remains at quasi-steady state. Only for sufficiently small z the
steady state looses stability and the trajectory converges toward
the spiking limit cycle, which is now the sole attractor (left
plot). On the limit cycle the ultra-slow dynamics (1c) forces z
to increase. Again, all through the bistable region the system
remains in the oscillatory mode and only for z sufficiently
large the trajectory converges back to the quasi-steady state.

Normal forms are useful not only because they unmask
the geometry underlying a given dynamical behavior, but also
because they possess the minimum number of parameters to
reproduce a family of behaviors of interest. As such they
can also be implemented in physical devices more easily and
robustly than the original biophysical model, yet, preserving
the same geometric and input–output properties.

We showed in [13] that the mirrored hysteresis bifurcation
diagram at the core of model (1) can be realized in the input–
output diagram of Fig. 3. Its basic ingredients are a non-
monotone nonlinearity cascaded with a saturation nonlinearity
and a positive feedback loop around the saturation nonlinear-
ity. The positive feedback loop transforms the saturation into a
hysteresis [13, Proposition 1], the non-monotone block creates
a mirror of the resulting hysteretic characteristic.

Adding linear dynamical systems evolving on three sharply
different timescales (Fig. 4) transforms the static diagram in
Fig. 3 into a three-timescale dynamical system with the same
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Fig. 3: Block realization of a mirrored hysteresis nonlinear
characteristic (adapted from [13]).
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Fig. 4: Block realization of a neuron model (adapted from
[13]). The linear filters Hf,s,u(s) are first order filters with
sharply separated cut-off frequency: large for Hf , intermediate
for Hs, and small for Hu.

qualitative behavior of model (1). In particular, the diagram
in Fig. 4 exhibits the same geometric transition between tonic
spiking and bursting as model (1) [13, Theorem 3].

III. ELECTRONIC IMPLEMENTATION

In this section we derive an electronic implementation of
the diagram in Fig. 4. The main active component is an NPN
transistor. Its constitutive relations are given by Ebers-Moll
equations [22] but, to simplify the analysis, we will model
the transistor as a current source with current proportional to
that of a diode standing at the base (see Fig. 5). Furthermore,
we regard the diode as a perfect switch that opens whenever
the base–emitter voltage is lower or equal to 0.6 V, and closes

Fig. 5: NPN transistor model.



otherwise. Also, the minimal voltage between the collector and
the emitter is equal to 0.1 V, a point at which the proportional
relation among the base and emitter currents is lost.

A. Non-smooth analysis

The simplified transistor description leads to piecewise
linear models that are easily dealt with using non-smooth
analysis. To make the paper self contained, we recall some
definitions and results. See [23], [24] for further details.

Definition 1: [24, p. 27] Consider a function f : X → R
with X a Banach space. The generalized directional derivative
of f at x in the direction of ν, denoted fo(x; ν), is defined as

fo(x; ν) = lim sup
y→x
t↓0

f(y + tν)− f(y)

t
.

The generalized gradient of f at x, denoted ∂f(x), is a subset
of the dual space X∗ given by

{ξ ∈ X∗ | fo(x; ν) ≥ 〈ξ, ν〉 for all ν in X} .
Here we will set X = Rn and identify Rn with its dual, so

∂f(x) is taken as a subset of Rn. In this case we have:
Theorem 1: [24, p. 63] Let f be Lipschitz near x and let

Ωf be the set of points at which f fails to be differentiable.
Suppose that S is any set of Lebesgue measure 0 in Rn. Then,

∂f(x) = co {lim∇f(xi) | xi → x, xi /∈ S, xi /∈ Ωf} .
Theorem 2: [23, p. 38] If f is locally Lipschitz at x and

attains its extremum at x, then

0 ∈ ∂f(x) .

The smooth version of the implicit function theorem is a
common tool for finding singular points in classical bifurcation
theory. Let us present a non-smooth version for non-smooth
problems. Consider a Lipschitz function H : R × R → R
together with the equation

H(y, z) = 0 . (3)

Suppose there is a pair (ŷ, ẑ) that solves (3) and

0 /∈ ∂zH(ŷ, ẑ) ,

where ∂zH is the generalized gradient with respect to z. The
implicit function theorem [24, p. 256] states that there exists
a neighborhood Y of ŷ and a Lipschitz function ζ : R → R
such that ẑ = ζ(ŷ) and such that, for every y ∈ Y ,

H(y, ζ(y)) = 0 .

B. Voltage-controlled non-monotone characteristic

The non-monotone block of the circuit in Fig. 4 is realized
as the difference of two monotone nonlinearities [13]. A
common emitter NPN transistor configuration serves as a
simple, natural saturation monotone nonlinearity (see Fig. 6).
In view of the transistor model described above, the vy–v1
characteristic takes the piecewise linear form

v1 = vcc − ProjS(g1(vy − 0.6)) , (4)

Fig. 6: Basic saturation. Common-emitter configuration (left).
Piecewise linear approximation vs. exact solutions (right).

where vcc = 5 V is the voltage at the power source,

g1 =
βRC

RB + (β + 1)RE

is the voltage gain (the slope of the saturation), β ≈ 100 is
the transistor’s current gain and S1 = [0, vs] with

vs1 = (vcc − 0.1)
RC

RC +RE

the saturation voltage. Usually, one chooses RB � βRE so
that g1 ≈ RC/RE , that is, so that the dependence of g1 on β
is negligible.

ProjS1
is the operator that projects its argument into the set

S1, that is,

ProjS1
(v) = argmin

w∈S1

‖v − w‖ .

For our particular S1, the projection translates into

ProjS1
(v) =


0 if v ≤ 0

v if 0 ≤ v ≤ vs1
vs1 if vs1 ≤ v

.

The projection captures the fact that the diode does not conduct
when vBE is below 0.6 V and that iC saturates when vCE

reaches 0.1 V. To asses the quality of our estimation, we
choose a set of parameters and compare (4) against the simula-
tion obtained using ngspice (which implements Ebers-Moll
equations). The results are shown in Fig. 6.

The parallel interconnection achieving the non-monotone
behavior is shown in Fig. 7, left. Applying Kirchhoff’s laws
and the piecewise linear model for the transistor one obtains

v4 = g2(vcc − ProjS(g1(vy − 0.6))) + g3vy (5)

with

g2 =
RSRA2

RS (RA1
+RA2

) +RA1
RA2

g3 =
RSRA1

RS (RA1
+RA2

) +RA1
RA2

(see Fig. 7, right).
The characteristic (5) is non-monotone whenever strict

extrema are present. Recall that a necessary condition for the



Fig. 7: Non monotone characteristic. Parallel interconnection
of a saturation and a linear gain (left). Piecewise linear
approximation vs. exact solutions (right).

presence of extrema is 0 ∈ ∂v4, where ∂v4 is the generalized
gradient of v4 with respect to vy . Note that

∂ ProjS1
(v) = ΨS1(v) :=


{0} if v /∈ S1

[0, 1] if v ∈ ∂S1

{1} if v ∈ intS1

(6)

with intS1 and ∂S1 the interior and the boundary of S1,
respectively. Application of the chain rule to (5) gives

∂v4 = g3 − g1g2ΨS1(g1(vy − 0.6)) .

A necessary condition for 0 ∈ ∂v4 is

g1g2 ≥ g3 . (7)

This inequality imposes a set of conditions to be satisfied by
the resistors RA1 , RA2 , RS , RB , RC and RE .

When inequality (7) holds strictly (the equality does not
happen in practice), the inclusion 0 ∈ ∂v4 occurs at the
boundary of S1, that is, at the points vy that satisfy

g1(vy − 0.6) = 0 and g1(vy − 0.6) = vs1 .

We thus have the following points of interest for (5):

v4(0.6) = g2vcc + g30.6 (a local maximum)

v4

(
vs1
g1

+ 0.6

)
= g2(vcc − vs1)

+ g3

(
vs1
g1

+ 0.6

)
(a local minimum)

v4(0) = g2vcc (initial point)
v4(vcc) = (g2 + g3)vcc − g2vs1 (final point) .

The computation of such points is again useful for choosing
the appropriate resistors. The objective is to have the minimum
occur as close as possible to vy = vcc/2 = 2.5V , and to have
the largest possible excursion along the v4 axis.

In the block realization in Fig. 4, the output of the non-
monotone block is modulated by the unfolding parameter α.
Such modulation is necessary to transition along the three
possible characteristics in Fig. 2-C. The same modulation is
achieved here by cascading a differential amplifier with the
non-monotone characteristic. In this way, an external voltage

Fig. 8: The voltage-controlled non-monotone characteristic is
realized by cascading a differential amplifier (left) with a
fixed non-monotone characteristic (see Fig. 7). Input–output
response for different values of vz (right).

can be used to the scale the input–output characteristic, as
shown in Fig. 8, left. We have

v4 − 0.6 =
(
RB2 + R̄E

)
iB2 + R̄EiB3

vz − 0.6 = R̄EiB2
+
(
RB3

+ R̄E

)
iB3

with R̄E = (β + 1)RE . The currents are thus(
iB2

iB3

)
=

1

d

(
R̄E +RB3

−R̄E

−R̄E R̄E +RB2

)(
v4 − 0.6
vz − 0.6

)
with

d = R̄E (RB2
+RB3

) +RB2
RB3

.

Let R̄C2
= βRC2

and R̄C3
= βRC3

. When iC3
does not

saturate, i.e., when

R̄EiB2
+ (R̄C3

+ R̄E)iB3
< vcc − 0.1 ,

the output voltage is

v5 = vcc − ProjS2
(g4(v4 − 0.6)− g5(vz − 0.6)) , (8)

where

g4 =
1

d
R̄C2

(
R̄E +RB3

)
g5 =

1

d
R̄C2

R̄E .

and the interval S2 = [0, vs2 ] is determined by

vs2 =
R̄C2

R̄E + R̄C2

(
vcc − 0.1− R̄EiB3

)
.

The voltage v4 is called the non-inverting input and vz the
inverting one. The complete block is shown in Fig. 10 and the
input–output characteristic is shown in Fig. 8, right.

C. Hysteretic characteristic

The hysteretic block is built as the positive feedback of a
basic saturation and a linear gain [13]. This is achieved at
once with another differential amplifier. By letting v5 be the
inverting input, v6 the non-inverting input and vx the output,
we obtain, cf. (8),

vx = vcc − ProjS3
(g6(v5 − 0.6)− g7(v6 − 0.6)) .



Fig. 9: Hysteretic characteristic. Input–output response. To
illustrate the hysteretic behavior, the input v5 is swept from
0 to 5V and back. A dotted line has been manually added to
sketch the solutions that the numerical solver cannot find and
which correspond to unstable steady states.

Positive feedback is then achieved simply by setting v6 =
vx, as shown in Fig. 9. This results in the piecewise linear
characteristic

F (v5, vx) = vx − vcc
+ ProjS3

(g6(v5 − 0.6)− g7(vx − 0.6)) = 0 . (9)

It follows from the implicit function theorem that a neces-
sary condition for the existence of singular points is 0 ∈
∂F (v5, vx), with the generalized gradient taken with respect
to vx. Application of the chain rule to (9) gives

∂F (v5, vx) = 1− g7ΨS3 (g6(v5 − 0.6)− g7(vx − 0.6)) .

A necessary condition for 0 ∈ ∂F (v5, vx) is thus g7 ≥ 1.
There are two points of singularity occurring at the boundary
of S3. The first one is characterized by

g6(v5 − 0.6) = g7(vx − 0.6)

which, together with the condition F (v5, vx) = 0, gives

vx = vcc and v5 =
g6
g7
vcc +

g6 − g7
g6

0.6 .

The other point of singularity is determined by

g6(v5 − 0.6) = g7(vx − 0.6) + vs3 ,

which gives

vx = vcc− vs3 and v5 =
g7
g6
vcc +

g6 − g7
g6

0.6− g7 − 1

g6
vs3

(see Fig. 9). For this block, the resistors were chosen so that
the first and second singularities occur, respectively, at one
and two thirds of the chosen voltage range of 5 V.

D. Voltage-controlled mirrored hysteresis

The cascade of the voltage-controlled non-monotone block
and the hysteresis is shown in Fig. 10. This interconnection
realizes the block diagram in Fig. 3. The circuit establishes
the desired static behavior relating vx, vy and vz , that is,
it implements a voltage characteristic that is topologically
equivalent to the algebraic variety given by (2). In other words,

Fig. 12: Transition between a stable node (constant output)
and a stable limit cycle (oscillations) in the circuit of Fig. 14.
The transitions occur at different values of vz , which indicates
that the stable node and the stable limit cycle coexist for some
values of vz .

it produces the desired voltage-controlled mirror hysteresis
(see Figs. 11, black traces). Compared to Figs. 2-C, the
simulated responses are, on one hand, stiffer and, on the other,
reflected along a horizontal axis. However, this does not alter
the qualitative picture in terms of number and type of different
possible attractors. In this sense we say that the two portraits
are qualitatively equivalent.

E. Burster

We now transform the static circuit in Fig. 10 into a dynamic
circuit exhibiting the same qualitative dynamics as model (1).
The parasitic capacitances of the transistors provide the fast
vx dynamics and set its corresponding timescale (cf. Hf in
Fig. 4). The voltage vx is fed back to vy by means of a resistive
voltage divider and a capacitor. The values of the resistors and
the capacitor determine the timescale of the slow vy dynamics
as well as the slope of its nullcline (cf. Hs in Fig. 4). For
bursting, we choose the resistors in such a way that this slope
is small and the vy nullcline intersects both branches of the
mirrored hysteresis, as in Fig. 2.

Fig. 11 confirms the qualitative equivalence of the circuit
in Fig. 10 and model (1). By sweeping vz we recover the
same qualitative phase portraits of Fig. 2-C left, which underlie
the behavior simulated in Fig. 12. A key ingredient in the
bursting behavior is the bistability of the limit cycle and the
node (Fig. 11b, red). The presence of this phenomenon can be
asserted by noting that the transition from the constant output
(the stable node) to the oscillating behavior (the limit cycle)
occurs at a higher value of vz than the one for the transition
from the oscillating behavior back to the constant output.

Bursting is finally achieved by feeding vx back to vz through
the ultra slow filter Hu. This is again realized with a voltage
divider and a capacitor, but now the circuit’s time-constant is
chosen much larger. To ensure a robust operation, the output
of Hu is amplified so that vz exhibits a large swing. In fact
it is the complement of vx that is passed through an amplifier
with negative slope (this accounts for the sixth transistor). The
complete circuit is shown in Fig. 14 and its time response is



Voltage-controlled

non monotone characteristic

Hysteresis

Fig. 10: Circuit realizing the mirrored hysteresis in simulation. By suitably changing vz , the vy–vx characteristic can adopt
the three forms portrayed on Fig. 11 (cf. the right part of Fig. 2).

(a) vz = 3.8 V . A saddle point, an unstable
and a stable node are present (red). Only a
stable node is present (blue). In both cases,
almost all trajectories converge to the stable
node.

(b) vz = 4.1V . A saddle point, a stable limit
cycle around an unstable node and a stable
node coexist (red). The only attractor is a
stable node (blue).

(c) vz = 4.7V . A stable limit cycle around an
unstable node exists. Almost all trajectories
converge to the limit cycle (red and blue).

Fig. 11: Mirrored-hysteresis. Solid black lines correspond to the x-steady states found by solving the circuit with ngspice.
Dotted lines are manually added to sketch the solutions not found by the solver. Red and blue lines correspond to the desired
vy-nullclines.

Fig. 13: Bursting (red) and tonic spiking (blue). Simulation.

shown in Fig. 13.

F. Spiker

Recall that the mirrored hysteresis captures both modes
of operation: bursting and tonic spiking. Geometrically, the
difference between the two behaviors is the locus of the stable
fixed point, as sketched in Fig. 2. In our circuit, we recover
the same geometric picture by changing the slope of the vy-

nullcline via tuning of the resistance Ri1 and Ri2 . When
the slope of the vy nullcline is sufficiently large this line
solely intersects the left branch of the mirrored hysteresis
at the transition between spiking and resting (see Figs. 11b
and 11c, blue), thus destroying the possibility of the bistability
underlying bursting. The model is in this case in the tonic
spiking mode shown in Fig. 13.

All the results of this section can be easily reproduced using
the code provided in the appendix.

G. Modulation of excitability properties in electronic devices
The possibility of reliably switching between bursting and

tonic spiking is relevant because it provides a means to
modulate the input–output behavior of our circuit. The output
is the fast capacitor voltage vx. We introduce inputs by adding
a current source iapp at the node labeled vz in Fig. 14. The
injected current corresponds to u in (1). Sufficiently large
positive applied currents set the circuit in a stable resting
state, both in the tonic and bursting modes. The resting state is
however excitable: the response to excitatory (that is, negative
for our circuit) input is large and highly nonlinear (spiking),
reflecting the latent nonlinear dynamics of the circuit (Fig. 15).



Fig. 14: Complete circuit capable of bursting and spiking in simulation. The ultra slow dynamics results from the capacitor
Co and the voltage divider Ro1 , Ro2 . The slow dynamics results from the capacitor Ci and the voltage divider Ri1 , Ri2 . The
fast dynamics results from the transistor’s parasitic capacitances.

A)

B)

Fig. 15: Input–output response of the neuromorphic circuit in
tonic (A) and bursting (B) modes. The input is provided by
a source that injects a current iapp at the node labeled vz
(Fig. 14) and is depicted in black. The response of the output
voltage vx to different current steps when in tonic and bursting
mode is depicted in blue and red, respectively.

Excitability is sharply different in tonic and bursting modes
[7]. The tonic mode is characterized by a quasi-linear coding
of incoming inputs: the response of the circuit lasts only
as long as the excitatory input is applied and the elicited
spiking frequency is roughly proportional to the magnitude
of the excitatory inputs. On the contrary, the bursting mode is
characterized by a nonlinear detection mechanism of incoming

inputs: the response of the circuit lasts for a fixed amount
of time that can outlast the length of the excitatory stimuli
(memory) and the elicited frequency is roughly independent
of the input magnitude. Excitability in bursting mode serves
as a bell ring signaling the arrival of new incoming inputs (for
instance an unexpected sensory stimulus), whereas excitability
in tonic mode serves as a frequency-coding mechanism to
transmit information about those inputs. The possibility of
switching between the two modes is widespread in the brain
[7], [8].

Our circuit exhibits the same behavioral transition. In the
tonic mode the voltage output response roughly codifies the
input current step magnitude (Fig. 15A). In the bursting mode
it responds with bursts whose length and interspike frequency
are virtually independent of the magnitude of the input current
(Fig. 15B).

IV. REAL-WORLD IMPLEMENTATION

The real circuit was built using the same methodology used
for designing the simulated circuit. First, a non-monotone
block was built as in Section III-B. Using the formulas
in that section, the resistors were tuned so that the local
minimum occurs at half the voltage range, 2.5 V . The output
of the non-monotone block was connected to a differential
amplifier without much difference with the simulated design.
A hysteretic characteristic was implemented by means of a
differential amplifier in positive feedback. Again, the resistors
were chosen in order to have have a symmetric characteristic
with a large swing in vx. The direct interconnection of the
voltage-controlled block and the hysteresis did not work as
expected, the main reason being the fact that the hysteretical
block draws a non-negligible current from the non-monotone
block and changes its behavior (a phenomenon usually referred
to as loading). To overcome this issue, an extra transistor in an
emitter-follower configuration was inserted between these two
blocks. In this configuration, the extra transistor presents high



Fig. 18: Bursting (red) and tonic spiking (blue). Experimental
results.

input and low output impedances, allowing the hysteretical
block to be driven by the non-monotone block, but preventing
the hysteretical block from affecting the behavior of the
non-monotone block. This effectively overcomes the loading
problem and simplifies the tuning of the circuit parameters,
but induces a stiffer characteristic.

The resulting circuit is depicted on the upper half of the
circuit shown in Fig. 16. The voltage-controlled non-monotone
block is composed of transistors Q1-Q3, the emitter-follower
transistor corresponds to Q4 and the hysteretical block is
formed by transistors Q5-Q6. The behaviour is shown in
Fig. 17. It can be seen that the responses are indeed stiffer
than the simulated ones, but remain qualitatively equivalent to
the mirrored hysteresis of Figs. 2-C.

The vy–vx feedback loop is closed by means of another
transistor in a common-emitter configuration, Q7, with a
response similar to the one depicted in Fig. 6. The negative
slope presented by this block is corrected by taking the
complementary output of vx at the collector of Q6, instead of
vx itself at the collector of Q5. The 11 nF ceramic capacitor
and the 100 kΩ potentiometer set the slow time-scale. The
potentiometer also permits to adjust the slope of the vy-
nullcline in a similar way as in Fig. 11. Indeed, by properly
adjusting the potentiometer, it is possible to set the circuit
either in bursting or in tonic spiking mode.

Closing the vz–vx loop is slightly more complicated. First,
an emitter-follower, Q8, is used for the same impedance-
matching purposes as before. A 10 µF electrolytic capacitor
and a 5.6 kΩ resistor set the ultra slow time-scale. The
output of the ultra slow filter is then connected to a two-stage
amplifier, Q9-Q10, that works as a signal conditioner which
translates the voltage change in vx that arises when transition-
ing from the upper stable equilibrium (∼4 V) to the stable limit
cycle (∼3 V, average), into the voltage change required in vz
for transitioning between the mirrored hysteresis of Fig. 17c
(2.7 V) and Fig. 17a (0.8 V). The desired bursting and tonic
spiking modes are finally shown in Fig. 18. As explained
above, it is possible to smoothly transition from one mode
to the other simply by adjusting the 100 kΩ potentiometer.

It is worth mentioning that the circuit was built using
common low-cost components. All the transistors have part

number 2N2222. The resistors have precision tolerances of
5 %, while the capacitors have precision tolerances of 10 %.
The low precision of the components attests to the intrinsic
robust nature of the singularity approach. To further asses
the robustness of the design, the transistors where randomly
swapped. The resulting responses were virtually indistinguish-
able.

V. CONCLUSION AND PERSPECTIVES

A. A robust geometric neuromorphic circuit design methodol-
ogy

Instead of relying on fine, non-constructive parameter tun-
ing, the design methodology introduced in this paper allows
to implement desired behaviors in electronic circuits from the
geometrical inspection of the static characteristic of suitable
sub-circuits. The proposed methodology is a direct application
of the geometric analysis of neuronal behaviors in [9], [10]
and of the realization theory in [13]. The main extension was
the use of non-smooth analysis to cope with the switching
behavior typical of electronic devices. When applied to the
biological transition between tonic spiking and bursting the
result of the proposed methodology is a compact six-transistor
ngspice model that only requires four additional transistors
for a robust, low-cost component, real-world implementation.

B. Reliable excitability modulation in neuromorphic circuits

Because the same geometry of high-dimensional neuron
models is being enforced, it is natural to expect that the
proposed methodology enforces the same input–output be-
havior. The transition between tonic spiking and bursting is
associated with a switch in excitability type from linear input
coding to nonlinear input detection that plays a fundamental
role in brain functions. The same qualitative transition is
reliably reproduced in the designed neuromorphic devices.
Other excitability transitions could robustly and efficiently
be implemented following the same geometric methodology,
which provides the main advantage with respect to available
neuromorphic circuit design methods.

C. Perspective

The possibility of implementing the transition between
distinct excitability types in simple, inexpensive, and robust
neuromorphic circuits opens the path, for instance, to the
design of neuromorphic sensors inspired by the thalamus, the
main sensory hub in the central nervous system, where this
transition plays a major role in the efficient coding of sensory
stimuli [7].

In terms of computational capabilities, spike-based neural
networks offer several promising features such as selective
attention [25] and homeostasis [26].

More generally, because virtually any higher-level brain
function relies on the modulation of spiking and the ex-
citability property at the single neuron level [8], the designed
circuit potentially provides a novel building block for any
neuromorphic circuit in which neuromodulation is essential.



Fig. 16: Circuit used for experimental testing.

(a) vz = 0.8 V . (b) vz = 0.9 V . (c) vz = 2.7 V .

Fig. 17: Mirrored-hysteresis. Experimental results. Solid lines correspond to the vx voltage measured while sweeping vy . Dotted
lines are manually added to sketch the unstable solutions that do not manifest physically (cf. Fig. 11).
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APPENDIX

Simulations were carried using ngspice. The circuit sim-
ulator is a well-documented open-source implementation of
Spice3, Cider and Xspice. The following code describes
the circuit depicted in Fig. 14 and was used to produce the
plots shown in Fig. 13.

* this is complete.cir file
* voltage resources
vcc 5 0 dc 5V
* non monotone
q1 2 3 4 2n2222bis
rC1 5 2 16k
rB1 3 1 100k
rE1 4 0 10k
Ra1 6 1 100k
Ra2 6 2 33k
Rs 6 0 220k
* non monotone modulation
q2 7 8 9 2n2222bis
q3 10 11 9 2n2222bis
rC2 7 5 4.7k
rC3 10 5 4.7k
rB2 8 6 1k
rB3 12 11 1.2k
rE2 9 0 470
* hysteresis
q4 13 14 15 2n2222bis
q5 16 17 15 2n2222bis
rC4 13 5 820
rC5 16 5 240
rB4 14 7 2.4k
rB5 17 13 6k
rE4 15 0 240
* vy-vx feedback loop
ri1 13 1 15k
ri2 1 0 47k
* Set ri2 to 34.5k for tonic spiking
ciF 1 0 22n
* vz-vx feedback loop
q6 12 18 19 2n2222bis
ro1 16 18 4.7k
ro2 18 0 4.7k
coF 18 0 4.7u
rC6 12 5 200
rE6 19 0 20
rbi 19 5 150
* model for a 2n2222 transistor
.model 2n2222bis npn (is=14.34f bf=255.9
+ vaf=74.03 ikf=.2847 ise=14.34f ne=1.307
+ br=6.092 ikr=0 isc=0 nc=2 rb=10 rc=1

+ cje=22.01p tf=411.1p cjc=7.306p tr=46.91n
+ xtb=1.5 Xti=3 Eg=1.11 Mjc=.3416 Vjc=.75
+ Fc=.5 Mje=.377 Vje=.75 Itf=.6 Vtf=1.7
+ Xtf=3 )
.control
tran 1us 40ms
plot v(16) ylimit 0 5

.endc

.end
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