
Training-Free Indexing Refinement for Visual Media via1

Multi-Semantics2

Peng Wang 1∗, Lifeng Sun1∗, Shiqiang Yang1∗, Alan F. Smeaton2∗
3

1National Laboratory for Information Science and Technology4

Department of Computer Science and Technology5

Tsinghua University, Beijing, 100084, China6

2Insight Centre for Data Analytics7

Dublin City University, Glasnevin, Dublin 9, Ireland8

Abstract9

Indexing of visual media based on content analysis has now moved beyond

using individual concept detectors and there is now a focus on combining con-

cepts by post-processing the outputs of individual concept detection. Due to

the limitations and availability of training corpora which are usually sparsely

and imprecisely labeled with concept groundtruth, training-based refinement

methods for semantic indexing of visual media suffer in correctly capturing

relationships between concepts, including co-occurrence and ontological re-

lationships. In contrast to training-dependent methods which dominate this

field, this paper presents a training-free refinement (TFR) algorithm for en-

hancing semantic indexing of visual media based purely on concept detection

results, making the refinement of initial concept detections based on seman-

tic enhancement, practical and flexible. This is achieved using what can be

called multi-semantics, factoring in semantics from multiple sources. In the

case of this paper, global and temporal neighbourhood information inferred

from the original concept detections in terms of weighted non-negative matrix
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factorization and neighbourhood-based graph propagation are both used in

the refinement of semantics. Furthermore, any available ontological concept

relationships among concepts can also be integrated into this model as an

additional source of external a priori knowledge. Extended experiments on

two heterogeneous datasets, images from wearable cameras and videos from

TRECVid, demonstrate the efficacy of the proposed TFR solution.

Keywords: Semantic indexing, Refinement, Concept detection10

enhancement, Context fusion, Factorization, Propagation11

1. Introduction12

Video in digital format is now in widespread use in everyday scenarios.13

While mainstream consumer-based access to image and video on platforms14

such as YouTube and Vine are based on user tags and metadata, prevailing15

methods to indexing based on content detect the presence or absence of se-16

mantic concepts which might be general (e.g., indoor, face) or more abstract17

(e.g., violence, meeting). The conventional approach to content-based index-18

ing of visual media, as taken in the annual TRECVid benchmarking [21, 20],19

is to manually annotate a collection of visual media covering both positive20

and negative examples, for the presence of each concept. This can be done21

manually, or can use visual captchas [16], and then train a machine learning22

classifier using these annotations to recognise the presence, or absence, of the23

semantic concept. This typically requires a classifier for each concept without24

considering inter-concept relationships or dependencies yet in reality, many25

concept pairs and triples are often semantically related and dependent and26

thus will co-occur rather than occur independently. It is widely accepted and27
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it is intuitive that detection accuracy for concepts can be improved if concept28

correlation can be exploited.29

The idea of refining an initial, raw, set of concept detections is intuitive30

and has been explored for some time and it is still currently a topic attracting31

a lot of attention, such as in [14]. Context-Based Concept Fusion (CBCF)32

is an approach to refining the detection results for independent concepts33

by modeling relationships between them [5]. Concept correlations are either34

learned from annotation sets [10, 24, 25, 8, 6] or inferred from pre-constructed35

knowledge bases [28, 9] such as WordNet. However, annotation sets are36

almost always inadequate for learning correlations due to their limited sizes37

and the annotation having being done with independent concepts rather38

than correlations in mind. In addition, training sets may not be fully labeled39

or may be noisy. The use of external knowledge networks also limits the40

flexibility of CBCF because it uses a static lexicon which is costly to create41

and even costlier to maintain. When concepts do not exist in an ontology,42

these methods cannot adapt to such situations.43

In this paper we propose a training-free refinement (TFR) method to44

exploit inherent co-occurrence patterns for concepts which exist in testing45

sets, exempt from the restrictions of training corpus and external knowledge46

structures and we use this to refine and improve the output of independent47

concept classifiers. TFR can fully exploit various sources of semantic infor-48

mation including global patterns of multi-concept appearance, an ontology49

encapsulating any concept relations (if available), as well as sampling the dis-50

tribution of concept occurrences in the temporal neighbourhood of a given51

image, all with the goal to enhance the original one-per-class concept de-52
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tectors and all done within a unified framework. Although this reduces the53

learning/training process, we set out here to see if TFR can still obtain better54

or comparable performance than the state-of-the-art as such an investigation55

into refinement of semantic indexing has not been done before.56

The contributions of this paper can be highlighted as:57

• A training-free refinement method which uses information inferred from58

test datasets without any requirement for high quality training data59

based on full concept annotations. This can flexibly adapt to many60

real world applications where only limited or incomplete annotations61

are available for correlation inference and goes beyond the state-of-the-62

art in that it is flexible and dynamically adaptable to new domains or63

datasets, without the need for a training phase;64

• An ontological factorization algorithm to adjust and improve on the65

initial less accurate results for concept detection, according to the global66

patterns of concept appearance and absence, across the whole collection67

of samples. Ontology-based concept relationships can also be combined68

into this algorithm as another source of external a priori knowledge thus69

illustrating how the TFR method presented here, can easily incorporate70

new sources of evidence for concept refinement, unlike other available71

approaches;72

• A similarity graph of nearest neighbours based on the refined results73

using ontological factorization and applying a graph propagation algo-74

rithm to further enhance the detection accuracy exploiting such local75

relationships, which finally achieves satisfactory refinement, something76
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which has not been available previously;77

• A set of experiments on two heterogeneous datasets, chosen to validate78

the effectiveness of the above.79

The rest of the paper is organized as follows: in Section 2 we review related80

work on refinement of semantic indexing. In Section 3 we present an overview81

of our TFR solution and algorithm followed by a detailed elaboration of TFR82

in Section 4. A set of experiments including a description of the two datasets83

we used and a discussion of results, are presented in Section 5. We finish84

with conclusions and proposals for future work.85

2. Related Work86

The task of automatically determining the presence or absence of a semantic87

concept in an image or a video shot (or a keyframe) has been the subject88

of at least a decade of intensive research. The earliest approaches treat-89

ed the detection of each semantic concept as a process independent of the90

detection of other concepts and used supervised learning approaches to im-91

plement this, but it was quickly realised that such an approach is not scalable92

to large numbers of concepts, and does not take advantage of inter-concept93

relationships. Based on this realisation, there have been efforts within the94

multimedia retrieval community focusing on utilization of inter-concept rela-95

tionships to enhance detection performances, which can be categorized into96

two paradigms: multi-label training and detection refinement or adjustment.97

In contrast to isolated concept detectors, multi-label training tries to clas-98

sify concepts and to model correlations between them, simultaneously. A99
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typical multi-label training method is presented in [18], in which concep-100

t correlations are modeled in the classification model using Gibbs random101

fields. Similar multi-label training methods can be found in [30]. Since all102

concepts are learned from one integrated model, one shortcoming is the lack103

of flexibility, which means that the learning stage needs to be repeated when104

the concept lexicon is changed. Another disadvantage is the high complexity105

when modeling pairwise correlations in the learning stage. This also hampers106

the ability to scale up to large-scale sets of concepts and to complex concept107

inter-relationships.108

There has also been some work on multi-label detection, within the frame-109

work of TRECVid where for the 2012 and 2013 edition of the TRECVid110

semantic indexing task, a secondary “concept pair” task was offered. The111

motivation here is a video (but could equally well be image) retrieval s-112

cenario which demands complex queries that go beyond a single concept.113

Examples of concept pairs which could go together include Animal+ Snow,114

Person + Underwater and Boat/Ship + Bridges. Rather than combining115

concept detectors at query time, the TRECVid concept pair task aimed at116

detecting the simultaneous occurrence of a pair of unrelated concepts in a117

video.118

In 2012 the top run achieved a score of 0.076 MAP and in 2013 the top119

run achieved a score of 0.162 MAP [2]. While this seems an improvement, it120

should be noted that the pairs changed from one year to the next and some121

may have been easier, or less rare, than the ones in 2012. Of course there122

was variability in performance across concept pairs but the best performer123

for the pair Government Leader + Flags, for example, scored 0.658 MAP124
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which is very respectable.125

The approaches taken by various participants in this activity were mostly126

based around combining multiple individual detectors by well known fusion127

schemes, including sum, product and geometric mean and while it represents128

an interesting exploration, the feasibility of indexing visual media, at index-129

ing time, by concept pairs and scaling this to large collections would seem130

remote.131

As an alternative to concept detection at indexing time, detection refine-132

ment or adjustment methods post-process detection scores obtained from133

individual detectors, allowing independent and specialized classification tech-134

niques to be leveraged for each concept. Detection refinement has attracted135

interest based on exploiting concept correlations inferred from annotation136

sets [10, 24, 25, 5] or from pre-constructed knowledge bases [28, 9, 12]. How-137

ever, these depend on training data or external knowledge. When concepts138

do not exist in the lexicon ontology or when extra annotation sets are in-139

sufficient for correlation learning as a result of the limited size of the corpus140

or of sparse annotations, these methods cannot adapt to such situations.141

Another difficulty is the matter of determining how to quantify the adjust-142

ment when applying the correlation. Though concept similarity [9], sigmoid143

function [28], mutual information [10], random walk [24, 25], random field144

[5], etc. have all been explored, this is still a challenge in the refinement145

of concept detections. In a state-of-the-art refinement method for indexing146

TV news video [8, 6], the concept graph is learned from the training set.147

Though adaptation is considered to handle changes between training and148

test data, the migration of concept alinement to testing sets also depends on149
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the affinity of two data sets, which is not always the case and can reduce150

the performance of indexing user-generated media, for example. Moreover,151

incomplete or imprecise annotations on training sets will further degrade the152

performance of these methods which rely highly on inter-concept correlation-153

s learned from training labels. The proposed TRF method in this paper is154

indeed a refinement methods but tries to tackle the above challenges.155

These approaches to improving concept detection all try to compensate156

for the fact that it is really difficult to get accurate training data, i.e. an-157

notations. TRECVid, the largest collaborative benchmarking activity in the158

area, with its collaborative annotation of training data among participants159

in one year realised a total of 8,158,517 annotations made directly by the160

participants of TRECVid or by the annotators of the Quaero project and a161

total of 28,864,844 annotations was obtained by propagating the initial an-162

notations using the implies or excludes relations among concepts. While this163

may appear substantial and used clever techniques like an active learning164

procedure to prioritise annotations of the most useful sample shots [3] and165

to ask for a “second opinion” when manual annotations strongly disagreed166

with a prediction [19], this was still for only 346 concepts in TRECVid 2010167

to 2015. Clearly this is not sustainable to a larger and more realistic set of168

concepts so between 2012 and 2015 a “no annotation” task was offered in169

TRECVid, to reflect the difficulty associated with finding good training data170

for the supervised learning tools which have become commonplace.171

The potential for automatically harvesting annotations or training data172

for supervised learning from web resources has been recognised by many, in-173

cluding the first such work by [23]. While participation in this aspect of the174
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semantic indexing task in TRECVid was low, by 2014 the best submission175

scored 0.078 in terms of MAP against a best submission using manual an-176

notations of 0.34 MAP , quite a long way behind [2]. While these results are177

encouraging, much more work remains to be done in this area.178

3. Motivation and Proposed Solution179

Fusing the results of concept detection to provide better quality semantic180

analysis and indexing is a challenge. Current research is focused on learning181

inter-concept relationships explicitly from training corpora and then applying182

these to test sets. Since the initial results of semantic concept detection183

will always be noisy because of the accuracy level at which they operate,184

little work has investigated a refinement approach which directly uses the185

original detection results to exploit correlations. However, according to the186

TRECVid benchmark, acceptable detection results can now be achieved,187

particularly for concepts for which there exists enough annotated training188

data [20, 22, 2]. These detections with high accuracies should be used as189

cues to enhance overall multi-concept detections since the concepts are highly190

correlated, though the bottleneck is in the correlation itself which is difficult191

to precisely model.192

For much of the visual media we use in our everyday lives there is a193

temporal aspect. For example video is inherently temporal as it captures194

imagery over time and thus video shots or keyframes from shots may have195

related content because they are taken from the same scene or have the same196

characters of related activities. Likewise still images of a social event cap-197

tured in sequence will have semantic relationships based on shared locations,198
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activities or people. We represent these related samples in terms of “neigh-199

bors” which are likely to be similar within the same time range. For such200

“connected” visual media it makes sense to try to exploit the temporal re-201

lationships when post-processing initial concept detection, and to use the202

“neighbourhood” aspect of visual media.203

Our TFR method is thus motivated based on the following:204

• Reliability: Detection results for at least some concepts should be ac-205

curate enough to be exploited as reliable cues for a refinement process.206

• Correlation: Instead of occurring in isolation, concepts usually co-207

occur or occur mutually exclusively among the same samples.208

• Compactness: Since concept occurrences are not fully independent,209

detection results can be projected to a compact semantic space.210

• Re-Occurrence: Concepts will frequently occur across semantically211

similar samples so where the visual media has temporal relationships212

such as video keyframes, neighbourhood relationships can be exploited.213

Based on the above motivations, the TFR method is proposed which will214

combine the correlation of individual concepts with various detection accura-215

cies, to improve the performance of overall semantic indexing. The overview216

of this proposed solution is illustrated in Fig. 1. In Fig. 1(a), initial concept217

detection is first applied to a set of visual media inputs, returning results de-218

noted as matrix C where each row si(1 ≤ i ≤ N) represents a sample media219

element such as an image or video shot, while each column corresponds to220

a concept vj(1 ≤ j ≤ M) in the vocabulary. We use different gray levels to221

represent matrix elements in C, namely the confidences of concept detections.222
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Figure 1: Illustration of the TFR framework. (a) Semantic Indexing: Media samples
indexed through concept detections, returning C. (b) Global Refinement (GR): Refining
C as C ′ using global contextual patterns. (c) Neighbourhood propagation (NP): Refining
C ′ by similarity propagation between nearest neighbours.

As shown in Fig. 1, the refinement procedure involves two stages of global223

refinement (GR) and neighborhood propagation (NP). The intuition behind224

GR is that, the high-probable correct detection results are selected to con-225

struct an incomplete but more reliable matrix which is then completed by a226

factorization method. Matrix factorization is one approach which has been227

used as a way to refine initial, usually automated, assignments of content228

descriptions or tags in work applied to social tags [13] or visual bag-of-words229

[14]. In our work, GR in Fig. 1(b) is a weighted matrix factorization process230

and performs an estimation of concept detection results which were less ac-231

curate in the original matrix C. If ontological relationships among concepts232

exist, they may also be employed to appropriately choose the entry value233

in the weighted matrix in correspondence to C. In Fig. 1(c), reconstructed234

concept detection results C ′ are used to calculate the sample-wise similarity235

in order to identify a number of nearest neighbours of the target sample si.236
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The propagation algorithm is then applied to infer labels iteratively based237

on neighbours connected to each sample.238

4. Training-Free Refinement (TFR)239

As illustrated in Fig. 1, GR and NP in the TFR framework are implement-240

ed by ontological factorization and graph propagation, which exploit global241

patterns and local similarities respectively.242

4.1. Factorizing Detection Results243

In GR, the task of detection factorization is to modify the N ×M matrix244

C to overlay a consistency on the underlying contextual pattern of concept245

occurrences. Non-negative matrix factorization (NMF) has shown advan-246

tages in scalably detecting the essential features of input data with sparsity,247

which is more suitable to the semantic indexing refinement task where the248

annotations are sparse and the confidences in C are non-negative.249

As distinct to the traditional NMF method, we need to optimize the250

factorization problem in weighted low ranks to reflect different accuracies251

of concept detections in GF. For this purpose, we employ a weight matrix252

W = (wij)N×M whose elements are larger for reliable, and lower for less253

reliable detections, to distinguish contributions of different concept detectors254

to the cost function. Because each value cij in C denotes the probability of255

the occurrence of concept vj in sample si, the estimation of the existence256

of vj is more likely to be correct when cij is high, which is also adopted by257

[10, 26] under the same assumption that the initial detectors are reasonably258

reliable if the returned confidences are larger than a threshold. While we259

can simply assign wij = 1 for cij ≥ threshold and wij ∈ (0, 1) uniformly260
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for cij < threshold, we will describe a more sophisticated weighting scheme261

using ontologies in Section 4.2.262

The application of weighted NMF here is to represent C as C̃ = LR,263

where vectors in LN×d and Rd×M can be referred to as d-dimensional sample-264

related and concept-related latent factors. By applying rules of customized265

optimization, each confidence value in C can be refined as c̃ij =
∑d

k=1 likrkj.266

We define the following cost function and solve for L and R by optimizing267

the weighted least square form:268

F =
1

2

∑
ij

wij(cij − Li·R·j)
2 +

λ

2
(∥L∥2F + ∥R∥2F ) (1)

such that L ≥ 0, R ≥ 0 where ∥ · ∥2F denotes the Frobenius norm and the269

quadratic regularization term λ(∥L∥2F + ∥R∥2F ) is applied to prevent over-270

fitting. After factorization, refinement can be expressed as a fusion of confi-271

dence matrices:272

C ′ = αC + (1− α)C̃ = αC + (1− α)LR (2)

To solve the factorization problem, we use a multiplicative method [11] which

has the advantage of re-scaling the learning rate instead of optimization with

a fixed and sufficient small rate. Without loss of generality, we focus on the

update of R in the following derivation and the update rule for L can be

obtained in a similar manner. Inspired by [11], we construct an auxiliary

function G(r, rk) of F (r) for fixed L and each corresponding column r, c, w

in R, C and W respectively. G(r, rk) should satisfy the conditions G(r, rk) ≥

F (r) and G(r, r) = F (r). Therefore, F (r) is non-increasing under the update
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rule [11]:

rt+1 = argminrG(r, rt) (3)

where rt and rt+1 stand for r values in two successive iterations. For function

F defined in Eqn. (1), we construct G as

G(r, rt) = F (rt) + (r − rt)T∇F (rt) +
1

2
(r − rt)TK(rt)(r − rt) (4)

where rt is the current update of optimization for Eqn. (1). Denoting D(·)

as a diagonal matrix with elements from a vector on the diagonal, K(rt) in

Eqn. (4) is defined as

K(rt) = D(
(LTDwL+ λI)rk

rk
) (5)

where Dw = D(w) and the division is performed in an element-wise manner.273

According to Eqn. (3), r can be updated by optimizing G(r, rt). By

solving ∂G(r,rt)
∂r

= 0, we obtain

∇F (rt) +K(rt)r −K(rt)rt = 0 (6)

where

∇F (rt) = LTDw(Lr
t − c) + λrt (7)

The combination of Eqn. (6) and (7) achieves the update rule

Rt+1
kj ← Rt

kj

[LT (C ◦W )]kj
[LT (LR ◦W )]kj + λRkj

(8)
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Similarly, each elements in matrix L can be updated by

Lt+1
ik ← Lt

ik

[(C ◦W )RT ]ik
[(LR ◦W )RT ]ik + λLik

(9)

where ◦ denotes Hadamard (element-wise) multiplication and each element274

in L can be updated similarly. According to Eqn. (3), the proof of F (r) being275

non-increasing under the update rule given by Eqn. (8) and (9) is indeed the276

proof of G(r, rt) being an auxiliary function of F (r), which is to be described277

in the analysis of the effectiveness of the approximation in Section 4.3.278

4.2. Integration with Ontologies279

In Section 4.1, we applied weighted NMF (WNMF) to perform low-accuracy280

concept estimation based on the assumption that the credibility of concepts281

in C is high enough if their detection confidence is larger than a predefined282

threshold. If we assign uniform weights for low-confidence concepts, WNMF283

will adjust confidences in terms of equal chance over these concepts. However,284

this is not the case in real world applications, where we often have biased285

estimations. To reflect concept semantics in W we introduce an ontological286

weighting scheme for WNMF-based global refinement.287

To model concept semantics, an ontology is employed to choose appropri-288

ate weights for different concepts based on their semantics, similar in principle289

to the work reported in [31]. The goal is to correctly construct the matrix290

W which can reflect the interaction between concepts and their detection291

accuracy. Based on this motivation, we denote the ascendant concepts and292

descendant concepts for concept v as ASC(v) and DES(v). Similarly, the293

disjoint concepts explicitly modeled in the ontology are DIS(v). The con-294
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fidence of sample s belonging to concept v being returned by a detector is295

represented as Conf(v|s). We introduce the multi-class margin factor [12]296

as297

Conf(v|s)−maxvi∈DConf(vi|s) (10)

where D is the universal set of disjoint concepts of v which contains all298

concepts exclusively occurring with v. Note that D ⊇ DIS(v) because there299

are also concepts modeled implicitly as disjoint with v in the ontology. For300

example, we only state “indoor” and “outdoor” are two disjoint concepts in301

an ontology and “tree”, “sky” and “road” as descendant concepts of “out-302

door”. Then DIS(indoor) includes “outdoor” only, but all disjoint concepts303

of “indoor” include “outdoor” and all descendants of “outdoor” like “tree”,304

“sky” and “road”. Indeed, D includes DIS(v) as well as DES(DIS(v)),305

which are all descendants of disjoint concepts of v, and disjoint concepts of306

ascendent concepts above v, denoted as DIS(ASC(v)). These statements307

of disjointness can be asserted or inferred. The former is created directly308

by the ontology to assert the statement. However, for the latter, a seman-309

tic reasoner is required to infer additional disjointness statements logically.310

Various reasoners such as RDFS [4] inference or OWL [15] inference can be311

embedded straightforwardly in our algorithm to leverage explicit statements312

to create logically valid but implicit statements.313

By employing an ontology we assign each element in W as314

wij ∝ 1− [cij −maxvk∈Dcik] (11)
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The interpretation of the weighting scheme is that if the disjoint concepts315

of vj have higher detection confidences, it is less likely that vj exists in sample316

si. In this case, the weight for concept vj needs to be larger, otherwise the317

weight is lowered by ontology relationships using the multi-class margin.318

4.3. Proof of Convergence319

According to Eqn. (4), G(r, r) = F (r) is satisfied and the proof of func-320

tion G(r, rt) being an auxiliary of F (r) is indeed the proof of G(r, rt) ≥ F (r).321

For this purpose, we expand function F (r) in the form of322

F (r) =
1

2
(c− Lr)TDw(c− Lr) +

λ

2
rT r + C(L)

= F (rt) + (r − rt)T∇F (rt)

+
1

2
(r − rt)T (LTDwL+ λI)(r − rt) (12)

where I is d × d identity matrix and C(L) is only relevant to L. According323

to Eqn. (4) and (12), we need to prove324

(r − rt)T (K(rt)− LTDwL− λI)(r − rt) ≥ 0 (13)

Substituting Eqn. (5) into (13), this is equal to proving that D(L
TDwLrt

rt
) −325

LTDwL is positive semi-definite. We define a rescaling matrix as326

M = D(rt)(D(
LTDwLr

t

rt
)− LTDwL)D(rt)

= D(LTDwLr
t)D(rt)−D(rt)(LTDwL)D(rt) (14)

17



For any vector v, since M is a symmetric matrix, we have327

vTMv =
∑
ij

viMijvj

=
∑
ij

[rti(L
TDwL)ijr

t
jv

2
i − vir

t
i(L

TDwL)ijr
t
jvj]

=
∑
ij

(LTDwL)ijr
t
ir

t
j[
1

2
v2i +

1

2
v2j − vivj]

=
1

2

∑
ij

(LTDwL)ijr
t
ir

t
j(vi − vj)

2 ≥ 0 (15)

So far, we can conclude that D(L
TDwLrt

rt
)− LTDwL is positive semi-definite,328

hence G(r, rt) is an auxiliary of F (r). This guarantees effectiveness using the329

iterative update rules given in Eqn. (8) and (9).330

4.4. Temporal Neighbourhood-Based Propagation331

As shown in Fig. 1(c), temporal neighbourhood-based propagation further332

refines C ′ to achieve better indexing by exploiting local information between333

samples which are semantically similar. This procedure consists of two steps334

namely similarity-based neighbour localization and graph propagation.335

4.4.1. Similarity Calculation336

Following GR, detection results will have been adjusted in a way consistent337

with the latent sample/concept factors modeled in WNMF. While this pro-338

cedure exploits general contextual patterns which are modeled globally by339

matrix factorization, the similarity propagation method can further refine the340

result by exploiting any local relationships between samples as demonstrat-341

ed in Fig. 1(c). In this, it is important to localize highly related temporal342
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neighbours for similarity-based propagation, for which the results C ′ after343

GR can provide better measures.344

To derive the similarity between samples si and sj, we calculate based on345

the refined results C ′ formulated in Eqn. (2) by Pearson Correlation, defined346

as:347

Pi,j =

∑M
k=1(c

′
ik − c̄′i)(c

′
jk − c̄′j)√∑M

k=1(c
′
ik − c̄′i)2

√∑M
k=1(c

′
jk − c̄′j)2

where c′i = (c′ik)1≤k≤M is the i-th row of C ′, and c̄′i is the average weight for348

c′i. To normalize the similarity, we employ the Gaussian formula and denote349

the similarity as:350

P ′
i,j = e−

(1−Pi,j)
2

2δ2 (16)

where δ is a scaling parameter for sample-wise distance. Based on this we can351

localize the k nearest neighbours of any target sample ci which is highlighted352

with an orange circle in Fig. 1(c). Neighbours of ci are indicated with green353

dots connected with edges quantified by Eqn. (16).354

4.4.2. Graph Propagation355

For implementing graph propagation, the NP procedure localizes k nearest356

neighbours for further propagation which are connected with the target sam-357

ple in an undirected graph. The label propagation algorithm [29] is derived358

to predict more accurate concept detection results based on this fully con-359

nected graph whose edge weights are calculated by the similarity metric in360

Eqn. (16). Mathematically, this graph can be represented with a sample-361
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wise similarity matrix as G = (P ′
i,j)(k+1)×(k+1), where the first k rows and362

columns stand for the k nearest neighbours of a target sample to be refined363

which is denoted as the last row and column in the matrix. The propagation364

probability matrix T is then constructed by normalizing G at each column365

as366

ti,j =
P ′
i,j∑k+1

l=1 P ′
l,j

which guarantees the probability interpretation at columns of T . By de-367

noting the row index of k nearest neighbours of a sample c′i to be refined368

as ni(1 ≤ i ≤ k) in C ′ and stacking the corresponding rows one below an-369

other, the neighbourhood confidence matrix can be constructed as Cn =370

(c′n1
; c′n2

; ...; c′nk
; c′i). The propagation algorithm is carried out iteratively by371

updating372

Ct
n ← βTCt−1

n (17)

where the first k rows in Cn stand for the k neighbourhood samples in C ′
373

indexed by subscript ni and the last row corresponds to the confidence vector374

of the target sample c′i. Since Cn is a subset of C ′, the graph G constructed375

on Cn is indeed a subgraph of the global graph constructed on C ′ as shown376

in Fig. 1(c). During each iteration, the neighbourhood concept vector c′ni
377

needs to be clamped to avoid fading away. After a number of iterations, the378

algorithm converges to a solution in which the last row of Cn is a prediction379

based on similarity propagation. In this way, the local relationships between380

neighbours can be used for a more comprehensive refinement.381
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5. Experiments and Discussion382

We assessed the performance of the TFR approach on two heterogenous383

datasets, a dataset of still images collected from wearable cameras (Dataset1)384

and the videos used in the TRECVid 2006 evaluation (Dataset2). We adopt-385

ed per-concept average precision (AP ) for evaluation based on manual groundtruth386

as well as mean AP (MAP ) for all concepts.387

5.1. Evaluation on Wearable Camera Images (Dataset1)388

For this evaluation, we assess TFR method on the same dataset as in [26],389

indexed by a set of 85 everyday concepts with 12,248 images collected from390

4 users with wearable cameras. To test the performance on different levels391

of concept detection accuracy, detectors were simulated using the Monte392

Carlo method following the work in [1]. In this simulation, concept detection393

performance is controlled by modifying the models’ parameters based on394

manually annotated groundtruth of concept occurrences. These parameters395

are the mean µ1 and standard deviation σ1 for the positive class, as well396

as the mean µ0 and the standard deviation σ0 for the negative class. The397

performance of concept detection can be varied by controlling the intersection398

of the areas under the two probability density curves by changing the means399

or the standard deviations of the two classes for a single concept detector.400

During the simulation procedure, we fixed the two standard deviations and401

the mean of the negative class and varied the mean of the positive class µ1402

in the range [1.0...5.0], the original detection accuracy results for individual403

concepts are simulated and MAP is shown in Fig. 2 (denoted as Original)404

as semantic indexing results before refinement. Since the increasing of µ1405
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reduced the intersection area of positive and negative class distributions, the406

original detection accuracy are improved accordingly as shown in Fig. 2.407

Figure 2: MAP of TFR refinement, Ontological, Random Walk, Tensor and Original on
the wearable sensing dataset (mean over 20 runs)

In Fig. 2, the TFR method is compared with a variety of concept de-408

tection refinement methods including ontological refinement [28], a Random409

Walk-based method [24], as well as the state-of-the-art Tensor-based refine-410

ment for wearable sensing [26]. In ontological refinement, an ontology is411

constructed on 85 concepts with subsumption and disjointness concept re-412

lationships. Since the ontological method has to learn the correlation of413

accuracy and multi-concept confidences before enhancement, we randomly414

select half the dataset for training and the other half for evaluation. The415

sigmoid function is used for fitting the correlation between classification ac-416

curacy and multi-class margin. The same ontology is also applied to TFR.417

Note that the ontology is not a pre-requisite to TFR as shown in Section 5.2418

in which TFR can still achieve a comparable result to the state-of-the-art419

without an ontology and training step. To be fair, the Random Walk is420

performed in the same training-free manner, which means the concept co-421
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occurrence is also inferred from thresholded pseudo-positive samples. The422

concept graph is then constructed with each weight representing concept co-423

occurrence similarities. The original confidence scores of concept detections424

are then adjusted by random walk algorithm which propagates the scores425

with concept graph. In Tensor-based refinement, a tensor is employed to426

formalize event segmentations and concept detections in order to preserve427

the temporal characteristics of each event. A weighted non-negative tensor428

factorization is then applied to re-estimate the concept detection confidences429

according to concept patterns [27]. In TFR, we empirically choose the num-430

ber of latent features as d = 10 and we threshold the detection results with431

0.3. The fusion parameter in Eqn. (2) is simply set to α = 0.5, assigning432

equal importance to the two matrices. We also use 30 nearest neighbours in433

the propagation step.434

As we can see, TFR out-performs all the other methods at all levels of435

original detection MAP from 0.15@µ1 = 1.0 to 0.92@µ1 = 4.0. At µ1 = 1.0,436

the less significant performance of all refinement approaches makes sense as437

initial detection accuracy is low. In this case, very few correctly detected438

concepts are selected for further enhancement which is impractical in real439

world applications and counter to our assumption of reliability (Sec. 3).440

When original detection performance is good, as shown in Fig. 2 if µ1 ≥ 4.0,441

there is no space to improve detection accuracy. Therefore, the improvement442

is not that significant at µ1 ≥ 4.0 for all refinements. However, TFR still443

achieves the best refinement in both extreme cases.444

The best of the overall improvements of different approaches are shown445

in Table 1, in which the corresponding accuracy levels are depicted with446
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µ1 values. As shown, TFR out-performs other approaches significantly and447

obtains the highest overall MAP improvement of 14.6%. Recall that Tensor-448

based refinement uses the temporal neighbourhood patterns within image449

sequences but is still out-performed by the TFR method. The number of450

improved concepts is shown in Table 1, counted from a per-concept AP451

comparison before and after refinement. TFR can improve the detection of452

almost all concepts (80 out of 85). Due to the constraints of the ontology453

model with its fixed lexicon, only a limited number of concepts can be refined454

in the ontological method (only 30 concepts are improved). However, this455

does not limit the TFR methods which exploit various semantics.456

Table 1: Top overall performance of approaches to semantic refinement. Abbreviations of
Onto, RW and Tens represent ontological refinement, Random Walk-based method and
Tensor-based refinement respectively.

Method Onto RW Tens TFR
Top Impr 3.2% 3.9% 10.6% 14.6%
Num Impr 30 56 80 80
Accu level µ1 = 1.5 µ1 = 2.5 µ1 = 2.0 µ1 = 2.0

5.2. Evaluation on TRECVid Video (Dataset2)457

Experiments were also conducted in the domain of broadcast TV news to458

assess the generality of TFR using the TRECVid 2006 video dataset [6, 8].459

Dataset2 contains 80 hours broadcast TV news video segmented into 79,484460

shots in total. As a multi-concept detection task, in TRECVid 2006 the461

dataset is indexed by a lexicon of 374 LSCOM concepts [17] and 20 concepts462

are selected for performance evaluation with their groundtruth provided.463

We employed the reported performance of the official evaluated concepts464
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by VIREO-374 as a baseline1, which is based on building SVM models of465

374 LSCOM concepts [7]. The performance of TFR is also compared to the466

state-of-the-art domain adaptive semantic diffusion (DASD) [6] technique on467

the same 20 evaluated concepts by TRECVid using the official metric of468

AP@2000, as shown in Fig. 3.469

Figure 3: Per-concept AP@2000 comparison on the TRECVid 2006 dataset.

In our evaluation, TFR is implemented without using a concept ontol-470

ogy. The same parameters are applied directly as were used in Dataset1471

without further optimization. As demonstrated, the results on Dataset2 are472

also promising using the same parameter values of d, α, etc., showing these473

parameters to be dataset independent. Similar as DASD, TFR achieves474

consistent enhancement gain against the baseline except for the concept of475

“Corporate Leader”, which is degraded in terms of performance. This is476

because “Corporate Leader” only has 22 positive samples within the 79,484477

samples in Dataset2, which makes accurately exploiting contextual patterns478

1http://vireo.cs.cityu.edu.hk/research/vireo374/
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from such few samples quite difficult. Over all other 19 concepts, the per-479

formance of TFR is comparable with DASD. Interestingly, according to our480

evaluation TFR does not require many positive samples in order to achieve481

satisfactory refinement. In Dataset2, the number of positive samples ranges482

from 150 to 1,556 and there are 10 of the 20 concepts which have less than 300483

positive samples but still achieve satisfactory refinement by TFR. Note that484

DASD is still a training-based refinement method which needs to construct485

an initial concept semantic graph through learning from the TRECVid 2005486

dataset whereas training data or a priori knowledge are not a pre-requisite487

for TFR.488

5.3. The Effect of Different Semantics489

Figure 4: Effect comparison of different semantics in refinement. TFR obtains the highest
by integrating them in a unified framework (Dataset1).

Fig. 4 depicts the roles of different semantics in refinement of semantic in-490
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dexing at original detection accuracy levels of µ1 = [1.0, ..., 3.0] in Dataset1.491

The Global in Fig. 4 is generated using an intermediate refined result C ′
492

with ontological weighting by GR. Neighbour is generated using the original493

C as input for neighbourhood-based propagation instead of using C ′. While494

the exploitation of contextual and neighbourhood semantics can both refine495

the original indexing results, TFR can further integrate them to achieve the496

most significant refinement. Generally speaking, refinement by neighbour-497

hood relationships will tend to adapt to the dataset better than global pat-498

terns, especially when original accuracy is high enough since the neighbours499

are more reliable and can better refine the target sample through similarity500

propagation in this case. Furthermore, by calculating the pair-wise similarity501

on the globally refined results C ′, the final results obtained by TFR are fur-502

ther improved. This is because the less accurate detections are first refined503

in C ′ hence will be less likely to disruptively affect the neighbourhood-based504

propagation.505

As described in Section 4.1, reliable detection results can be selected by506

thresholding the original confidences for refining low-accuracy counterparts.507

The threshold indeed decides the number of trustworthy elements in C which508

can be used for context-based refinements. The number of reliable elements509

(depicted as density in C) and their correlation with the threshold is depicted510

in Table 2, for which the improvement is judged using the intermediate re-511

sult C ′. The density decreases while threshold value increases because fewer512

elements can be selected and regarded as accurate enough to carry out the513

refinement.514

On the contrary, at a given detection accuracy level (fixed µ1), the improve-515
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Table 2: Effect of reliable detections (Dataset1) evaluated on intermediate result C ′.

µ1 = 1 µ1 = 2 µ1 = 3
thres Dens Impr Dens Impr Dens Impr

0.2 17.3% 1.4% 9.6 % 2.7% 7.7% 1.5%
0.3 10.4% 1.4% 7.3% 3.1% 6.8% 1.7%
0.4 6.5% 1.0% 5.8% 3.2% 6.1% 1.8%
0.5 4.1% 0.6% 4.7% 3.1% 5.7% 1.9%
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Figure 5: Impact of latent features (Dataset1) evaluated on intermediate result C ′.

ment climbs first and then drops as the threshold increases continuously.516

This is because high/low thresholding criteria lead to insufficient/incorrect517

detections which are not reliable enough for refinement and this verifies the518

assumption of detection reliability as introduced in Section 3. The best per-519

formance is obtained when the threshold in the range [0.3, 0.5] for different µ1520

values. As shown in Table 2, if the original concept detection performance521

improves (i.e., larger µ1), a higher threshold can be assigned accordingly522

in order to achieve better overall semantic enhancement. This is because523
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increasing the threshold will induce fewer misclassified concepts which are524

regarded as reliable, when the original detections are more accurate.525

The impact of selected latent features is shown in Fig. 5 in which the526

MAP improvement is assessed on the intermediate result C ′ for µ1 = 1, 2527

and 3, depicted across different d values. When original concept detection528

does not perform well, better improvement is achieved when fewer latent529

features are selected. This can be shown by the peaks at d = 8 and 20 for530

µ1 = 1 and 2 respectively. With the increase in d, the performance decreases531

gradually and converges at stable values. More stable performance is shown532

for better original detections such as at µ1 = 3 at which the performance533

keeps increasing and usually converges when about 40 latent features are534

selected. The small number d of latent features needed for refinement ver-535

ifies the compactness assumption of projected semantic space which can be536

reconstructed with lower-rank dimensions, as introduced in Section 3.537

The ontological weighting algorithm described in Section 4.2 was ap-538

plied and incorporated with the WNMF-based enhancement to take ad-539

vantage of the function of the ontology. In this experiment, we directly540

employed the same concept ontology structure as used in Section 5.1 and541

applied the concept semantics in choosing each weight element in matrix542

W to alleviate the deficiency introduced by uniform weighting. In Fig. 6,543

the ontological weighting approach is compared with the WNMF-based ap-544

proach with uniform weighting scheme. As demonstrated in Fig. 6, the545

ontological weighting scheme significantly outperforms the uniform weight-546

ing scheme, which shows great potential for concept semantics if they are547

employed effectively in concept detection. The ontological weighting scheme548
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combined with WNMF-based enhancement not only has better performance549

than the WNMF-based method, but also complements the shortcoming of550

WNMF-based enhancement at small µ1 values. According to experiments,551

the WNMF-based method plus the ontological weighting scheme outperforms552

both of them over various concept detection accuracies.553
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Figure 6: Improvement after using ontological weighting.

According to the above results, our TRF algorithm has many advantages.554

First, the approach is data-efficient and easy to implement. It can obtain555

significant detection enhancement even if there is no prior knowledge such556

as an ontology structure or distributions learned from extra training data.557

Second, the approach is shown to be effective in significantly improving detec-558

tion accuracies for a large number of concepts. If combined with ontological559

weighting, the approach shows even better enhancement performance. Final-560

ly, the only input required are the initial concept detection results and the561

algorithm is independent of any specific implementation of concept detectors,562

the advantage of which is domain-independence.563
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5.4. Efficiency Analysis of TFR564

In each iteration using Eqn. (8), the computational complexity is only rele-565

vant to the dimensionality of the matrix C and the selection of low rank d. For566

a total of iter iterations to converge, the running time is thus O(iter ·NMd2).567

The complexity of TFR is linear to the size of concept lexicon. This can be568

easily scaled up to much larger concept lexicon and is more promising com-569

pared to learning models such as multi-label training whose complexity is570

quadratic to the number of concepts.571

Recall that d ≤ min{N,M} and the number of concepts M in the lexi-572

con is usually much smaller than the number of instances in the corpus N .573

Hence the computational complexity can be simplified as O(iter · N). In574

our experiments, the updating step of the approximation of L and R only575

takes several hundred iterations to obtain satisfactory approximation. Thus576

we empirically fix iter = 1, 000 and for Dataset1, it takes approximately 30577

seconds to execute the factorization on a conventional desktop computer.578

Similarly, the computational complexity for graph propagation on one tar-579

get sample can be represented asO(iter·kM∗k2). Since a small fixed value for580

k is enough in the implementation, the total complexity for neighbourhood-581

based refinement is also O(iter ·N) which indicates the TFR method can be582

easily scaled up to much larger corpora.583

6. Conclusions584

Heterogenous multimedia content generated for various purposes usually have585

high visual and semantic diversities, thus presenting a barrier to the current586

approaches usually taken to refinement for concept-based semantic index-587
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ing, which highly depend on the quality of a training corpus. To ease these588

challenges, we presented the motivation for a training-free semantic refine-589

ment (TFR) of visual concepts, aimed at maximizing indexing accuracy by590

exploiting trustworthy annotations. TFR can take advantage of various se-591

mantics including global contextual patterns, ontologies or other knowledge592

structures and temporal neighbourhood relationships, all within a unified593

framework.594

The rationale and algorithm presented in this paper have been assessed on595

two different datasets from very different domains and collected for very dif-596

ferent applications, in order to show its versatility. Though exempt from the597

training/learning steps, the performance of TFR is still found to be compara-598

ble or better than the state-of-the-art. Since TFR is based on the assumption599

that reliable detection results can be selected as cues for refinement, a study600

of adaptive selection strategy is one area for future work. Besides traditional601

refinement tasks, TFR can also be applied in social tag recommendation,602

cross-domain label refinement, and others.603
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