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Abstract 

Epilepsy is a common neurological disorder and is characterized by recurrent seizures. 

Electroencephalography (EEG) signals, as a useful measure for analysing the brain’s electrical 

activity, has been widely used for the detection of epilepsy. Most of current relevant researches 

primarily aim at increasing the detection accuracy, while the interpretability of the methods 

receives relatively little attention. In this work, we concentrate on the epileptic classification of 

EEG signals with interpretability. We first propose an epilepsy detection framework for EEG 

data, followed by a comparative study under this framework to evaluate the accuracy and 

interpretability of four rule-based classifiers, namely, the decision tree algorithm C4.5, the 

random forest algorithm (RF), the support vector machine (SVM) based decision tree algorithm 

(SVM+C4.5) and the SVM based RF algorithm (SVM+RF), in two-group, three-group, and the 

most challenging five-group classification of EEG signals. The experimental results show that 

RF outperforms the other three rule-based algorithms, achieving average accuracies of 0.9896, 

0.9600 and 0.8260 for two-group, three-group and five-group seizure classification respectively, 

and exhibiting higher interpretability. 
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1. Introduction 

Epilepsy is a common brain disorder, characterized by recurrent seizures [1]. Approximately 

fifty million people over the world suffer from epilepsy and eighty percent of them are in 

developing countries. More than two million new cases of epilepsy are diagnosed per year 

worldwide [2]. Electroencephalogram (EEG) signals are widely used to detect the existence of 

epilepsy by directly recording the brain’s electrical activity [3].  However, EEG signal analysis is 

non-trivial, and given the spontaneity of epileptic seizures, the detection of an epileptic seizure 

remains a clinical issue, where the treatment relies on an accurate diagnosis. Hence, an 

automated detection system that is able to classify epileptic EEG signals from normal ones is 

helpful for making diagnosis. For such a system, the recorded EEG signals recorded are the input 

whereas the classification of EEG signals is the output. Generally, two steps are involved in the 

detection system: (i) extraction of features from the EEG input signals and (ii) classification of 

the extracted features to identify epileptic EEG signals [4]. In this study, we concentrate 

particularly on the latter, investigating the effectiveness of rule-based classification approaches 

in detecting epileptic seizures using EEG signals acquired under five different conditions (see 

Table 1, to be discussed later) [5]. Investigations are conducted to detect epilepsy by classifying 

the signals into two, three and five groups using machine learning techniques. A standard feature 

extraction method, i.e. short time Fourier transform (STFT) [6,8], is employed in the study. 

Many machine learning methods have been applied to classify EEG signals. The experimental 

results show that EEG signals contain informative features for the detection of seizure events and 

automated diagnostic systems constructed by machine learning methods are effective [7] [8]. For 

two-class epilepsy classification, i.e. distinguishing EEG signals collected in normal and ictal 
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stage, neural network based model [7,9-18], adaptive neuro-fuzzy inference system [19], Elman 

network [20], mixture expert model [21, 56], decision tree [22] [23], support vector machine 

(SVM) [24-26]and least square support vector machine (LS-SVM) [27] have been applied for 

diagnosis of epilepsy. For three-class epilepsy classification involving normal, interictal and ictal 

stages, recurrent neural network [12], spiking neural network [28, 29], back propagation neural 

network [30], radial basis function neural network [31], SVM [32-35], k-nearest neighbour 

(KNN) [15], Fuzzy classifier [36] and the C4.5 algorithm for decision tree [37] have been 

explored. Although variations in dynamical properties of brain electrical activities have been 

shown clearly at different extracranial and intracranial recording regions and at different 

physiological and pathological brain states [5], almost all the existing researches on EEG signal 

analysis and classifications focus on two-group classification and three-group classification, with 

little attention paid on the most challenging five-group classification.  

Besides, a shortcoming with the frequently used EEG signal classification techniques, e.g. 

SVM and artificial neural network (ANN) [38] [39] , is that they suffer from the “black-box” 

problem where the actual meaning of the rules learned is not available even though a working 

model can be obtained. Therefore, it is important to improve the interpretability of the 

classification methods in order to make automated epilepsy detection system practically more 

useful for clinical diagnosis applications.  

The SVM algorithm is a machine learning technique that can be integrated to extract the 

underlying rules from datasets obtained from a system, like the traditional approach of decision 

trees. It is a nonlinear predictive data mining technique and exhibits good generalization 

behaviour. The existing rule extraction approaches based on SVM can be summarized into three 

categories [36]: (i) learning based approach, treating SVM model as a closed box, (ii) eclectic 
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approach, extracting rules from the support vectors (SVs), and (iii) decompositional approach, 

making use of the SVs and decision function of the training data. In this study, the eclectic 

approach is used which integrates both learning based and decompositional approaches by only 

using SVs or applying rule-based model to train the synthetic data based on the SVs [37, 38]. 

The approach can also extract the rules with high accuracy from datasets in different medical 

domains, e.g. diabetes, heart diseases, breast cancer, hepatitis and on the SVs [37, 38]. Barakat et 

al. proposed a method to extract rules from a subset of the SVs of a SVM model by a modified 

sequential covering algorithm which involved an ordered search of the most discriminative 

features as determined by the inter-class separation [40]. Chaves et al. extracted fuzzy rules from 

SVM by projecting the coordinate axes of each feature onto the SVs to formulate the fuzzy sets 

[41]. The fuzzy membership degrees were then calculated so that each of the SVs was assigned 

to the fuzzy set with the highest membership degree, and finally the fuzzy rules were extracted 

from each SV. A rule extraction method was also developed based on decision tree model using 

the SV of SVM [42]. The method generated an artificial dataset and replaced the actual class 

labels by the predicted class labels. A decision tree learner was then applied to the artificial 

dataset to learn what the SVM had learned to generate the rules. Similarly, a hybrid method was 

proposed for diabetes diagnosis using the ensemble learning approach where the C4.5 algorithm 

and random forest algorithm (RF) are applied to classify the artificial datasets of SVs [43]. 

In this study, we focus on the investigation of rule-based classification techniques for 

epilepsy detection with EEG data in an attempt to identify the ones with both high accuracy and 

high interpretability. Four approaches are studied, including the traditional decision tree 

algorithm C4.5, RF, and two SVM-based rule extraction algorithms developed using the 

ensemble learning approach, namely, the SMM-based decision tree algorithm (SVM+C4.5) and 
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the SVM-based RF algorithm (SVM+RF). The performance of the four algorithms in detecting 

epileptic seizures is compared with reference to their ability to identify two, three and five 

groups of distinct EEG signals. The major findings of the study are as follows: 

1. The ensemble learning approach is adopted to deal with the “black-box” issue with SVM 

by incorporating the RF and C4.5 algorithms respectively to improve the interpretability. The 

feasibility and performance are evaluated by comparing them with the results obtained using the 

traditional RF and C4.5 algorithms alone. 

2. The results of the study indicate that the overall performance of RF in epileptic EEG 

signal detection is outstanding among the four approaches. In addition to the high interpretability 

it offers, RF demonstrates high classification accuracy in differentiating two,, three or five 

groups of EEG signals.  

This paper is structured as follows. Section 2 describes the detection framework used to 

evaluate the epileptic EEG signal classification methods. Section 3 discusses the EEG datasets 

adopted in the study and the STFT algorithm used for feature ex-traction, followed by a review 

of the SVM and rule-based classifiers concerned in Section 4. The experimental results are 

discussed in Section 5, and conclusions are given in Section 6. 

2. The Proposed Detection Framework 

A framework is proposed to evaluate the EEG signal classification algorithms for epileptic 

seizure detection. It is used to assess the performance of the algorithms in classifying EEG 

signals into two, three and five separate groups. The five sets of EEG signals were acquired from 

healthy subjects with their eyes open (eye open) and their eyes closed (eye closed) respectively; 
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and from subjects with epilepsy at interictal (signals measured at two different locations of the 

brain) and ictal state [5].  

Three stages are involved in the proposed detection framework. The first stage is feature 

extraction, where STFT is applied to the EEG signals to generate the training and testing dataset 

with the extracted features. In the second stage, the training dataset is used by the four rule-based 

classifiers, i.e. the decision tree algorithm C4.5, RF, and two ensemble learning approaches 

SVM+C4.5 and SVM+RF, to construct the rules for classification on the extracted features. In 

the third stage, the rule sets generated from the four classifiers are evaluated on the testing 

dataset and the corresponding results are compared. The proposed detection framework is shown 

in Fig. 1. 

Note that while SVM has previously been applied for the analysis of EEG signals, the SVM-

based ensemble learning approaches for rule extraction, SVM+C4.5 and SVM+RF, have never 

been used for multi-class classification of EEG signals. Although SVM+RF exhibits superiority 

over the other rule-based classifiers for diagnosis of diabetes [43], evidence is needed to support 

whether it would also outperform others in the detection of epileptic seizures in EEG signals. 

Besides, C4.5 has also been used for two-group and three-group classification of epileptic EEG 

signals, but its performance on five-group classification has yet to be evaluated. As a 

conventional rule-based algorithm, RF has not been applied used for the classification of 

epileptic EEG signals.  Hence, these algorithms are of interest for the detection of epileptic 

seizures with EEG signals and are selected for evaluation in this study. 
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    Fig. 1. Detection Framework for EEG signals  

 

3. Datasets and Feature Extraction 

3.1. Datasets 

The EEG dataset provided by the University of Bonn, Germany, is adopted in this study [5]. 

The dataset has five groups of data, labelled as A, B, C, D and E. Each group contains 100 



9 

 

single-channel EEG segments captured in 23.6 seconds. The sampling rate of all the data is 

173.6Hz. Groups A and B consist of EEG signals taken from five normal volunteers using the 

standardized electrode placement scheme. The volunteers were relaxed in an awake state with 

eyes open (Group A) and eyes closed (Group B) respectively. Groups C, D and E are groups 

with EEG signals collected from subjects with epilepsy during pre-surgical diagnosis. Segments 

in group C were recorded from the hippocampal formation of the opposite hemisphere of the 

brain and those in group D were recorded from the epileptogenic zone. Both groups C and D 

contain only signals measured during seizure free intervals (interictal state) while group E 

contains data recorded during seizure activity (ictal state). Fig. 2 shows the typical EEG signal 

traces in the five groups of data. The settings used for the data collection are described in Table 

1. 

 

Fig. 2. Typical signal traces in the five groups of EEG data 
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Table 1. Descriptions of EEG segments in Group A to Group E 

Subjects Groups 
EEG 

segments 
Settings 

Healthy 

subjects 

A 100 EEG signals captured with eyes open 

B 100 EEG signals captured with eyes closed 

 

Subjects 

with 

epilepsy 

C 100 

EEG signals obtained from the hippocampal 

formation of the opposite hemisphere of the brain 

during seizure free intervals 

D 100 
EEG signals recorded from the epileptogenic zone 

during seizure free intervals 

E 100 EEG signals captured during seizure activity 

 

Three experiments, denoted as Expt 1, Expt 2 and Expt 3, are carried out to evaluate the 

performance of the four rule-based algorithms in classifying the EEG signals into two, three and 

five distinct groups respectively. Details about the data used in the three experiments are 

described below and summarized in Table 2. 

Expt 1: Two-group classification. The experiment is conducted to evaluate the performance 

of the algorithms in classifying EEG signals into two groups, i.e. EEG signals of (i) healthy 

subjects and (ii) subjects with epilepsy. The first group of data is composed of 200 EEG 

segments of healthy subjects in datasets A and B, whereas the second group contains the 100 

EEG segments in dataset E of subjects with epilepsy during seizure. In the experiment, the 

distinctive features extracted from sub-band frequency analysis are identified and used to classify 

the data. Here the two-class SVM model is used for rule extraction. 
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Expt 2: Three-group classification. The experiment is conducted to classify the EEG signals 

into three groups, i.e. EEG signals of (i) healthy subjects, (ii) subjects with epilepsy during 

seizure-free intervals, and (iii) subjects with epilepsy during seizure. The corresponding groups 

of data used in the experiment are, respectively, composed of the 200 segments of healthy 

subjects in datasets A and B, the 200 EEG segments in datasets C and D of subjects with 

epilepsy during seizure free intervals; and the 100 segments in dataset E of subjects during 

epileptic seizures. The multi-class SVM model is used in the experiment for rule extraction.  

Expt 3: Five-group classification. This experiment is further refined to evaluate the 

performance of the algorithms in classifying the five groups of subjects (A to E) in the original 

dataset of EEG signals. The multi-class SVM model is also used for rule extraction. The five-

group classification experiment is of interest since algorithms with stronger classification ability 

can differentiate EGG signals recorded from different extracranial and intracranial regions, and 

during different physiological states and brain activities, which is helpful in the analysis of the 

dynamical properties of the brain’s electrical activity [5]. This is advantageous in that the finer 

classification results can provide insights into the activities of the brain, or enable the 

determination of whether the EEG signals collected are able to provide enough information to 

reveal the underlying dynamical properties  [44]. There is no previous research conducted for 

five-group classification by using the complete EEG dataset provided by the University of Bonn; 

And the five-group classification is still a challenging task.  
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Table 2. Data used in the three experiments 

Experiments No. of classes Descriptions 

Expt 1 2 (i)  Healthy subjects – Groups A and B, 200 EEG 

segments  in total;  

(ii)  Subjects with epilepsy during seizure – Group E, 

100 EEG segments. 

Expt 2 3 (i)  Healthy subjects – Groups A and B, 200 EEG 

segments  in total; 

(ii)  Subjects with epilepsy during seizure – Groups C 

and D, 200 EEG segments  in total; 

(iii)  Subjects with epilepsy during seizure – Group E, 

100 EEG segments. 

Expt 3 5 The five groups in the original dataset, i.e. Groups A 

to E, each with 100 EEG segments. 

 

3.2. Feature Extraction 

In this work, as a widely used approach for epilepsy detection,  the standard feature 

extraction method STFT [8, 17, 20, 32] is utilized for the EEG signals before they are trained and 

tested by the classifiers.  

To perform STFT, a small sliding window is used for the Fourier transform. STFT can be 

computed by  

                                              ( ) ( ) ( ) 2, j ft

STFTF u f x t g t u e dt


−

−
= −                                                               (1) 

where ( )tx  is a given continuous EEG signal; ( )tg  is a window function of limited width with the 

centre at u ; F is a transformation function mapping ( )tx  into the time-frequency plane. The 

process of performing STFT on the EEG signals for feature extraction can be stated as follows. 

Firstly, the EEG signals are distributed by STFT into different local stationary signal segments, 
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and a group of spectra of local signals is obtained through Fourier transform. Then, the discrepancy 

in local spectrum of the signals at different times can be identified. Finally the energy of the EEG 

signals is separated into five standard frequency bands as listed in Table 3, and the energies of 

different bands can be taken as the new features for EEG analysis. An example of the features 

extracted from the EEG signals by STFT in Group A is illustrated in Fig. 3 [8]. 

Table 3. Five frequency bands in EEG analysis 

Bands Frequency range (Hz) 

Delta 0-4 

Theta 4-8 

Alpha 8-15 

Beta 15-30 

Gamma 30-60 

 

 

Fig. 3. Extracted features of EEG signal in group A by STFT 
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4. Rule-based Classifiers 

The four rule-based classifiers, i.e., C4.5, RF, SVM+RF and SVM+C4.5, investigated in the 

study are discussed in this section.  

4.1. Decision Tree 

Decision tree algorithms learn rules by splitting the training dataset into subsets by testing 

attributes. In the form of a tree-like graph, where each non-leaf node of the tree denotes a test on 

an attribute whereas each leaf node holds a class label. Decision tree algorithms have high 

interpretability through the learned rules, and the obtained rules are also readily compressible 

with Boolean logic. The widely adopted C4.5 algorithm, which is practically feasible in many 

applications,  is used as the decision tree classifier in this study [45]. 

4.2. Random Forest 

RF algorithm is an ensemble learning method for classification. It makes use of many 

decision tree classifiers as a “forest”, and aggregates the results for classification. Multiple 

models are used in the algorithm to achieve better learning performance, which is more complex 

yet flexible than using a single decision tree model [46]. Classification of a new input vector is 

performed by using each of the trees in the forest to classify the vector, followed by a vote from 

each classification tree based on the individual result. The algorithm then identifies the class that 

the input vector belongs to according to the one getting the highest vote among all the trees in the 

forest.  

4.3. Support Vector machines 
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SVM is the most typical kernel-based technique in supervised learning. The basic principle 

of SVM is to create a classification hyperplane as a decision surface, where classification is 

achieved by maximizing the edge of the isolation between the categories with respect to the 

hyperplane. The SVM classification process consists of two stages. In the first stage, the input 

data vectors are mapped to a high-dimensional space. The dimension of the new space is 

effectively larger when compared that of the original input space [47]. In the new space, the 

algorithm will be executed to search for a hyperplane which is able to classify the data with the 

largest margin, so as to obtain the best generalization ability. For a given training dataset 

( ) ( )  ( )YXyy NN = ,x,xT 1 ,...,1 ,  ( )NiYyX i
n

i ,...,2,11,1, =−== Rx , where the training data matrix 

X  contains two separable classes with the class labels -1 and +1 stored in the set Y . Fig. 4 

illustrates schematically a case where two linearly separable classes, denoted using the symbol 

circle (-1) and triangle (+1). The data points closest to the hyperplane are the SV, whereas the 

distance between SVs and hyperplane is the margin.  

Applying Lagrangian multipliers with the appropriate kernel function ( )'xx,K  and the 

regularization parameter C , the SVM can be formulated as the dual optimization problem below 

                                                   ( ) 
== =

−

N

j

jjijij

N

i

N

j

i Kyy

11 1

,
2

1
min  xx ,                                            (2) 

NiCy i

N

i

ii ,...,1,0,0s.t.

1

==
=

  

where the optimal solution is given by  ( )TN
**

1
* ,...,=α  and *b  is a threshold value. The decision 

function for classification is therefore given by 
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                                                       ( ) ( )













+= 

=

*

1

*
,sgn bKyf ii

N

i

i xxx  ,                                                 (3) 

The summation in Eq. (3) is performed only on a small group of SVs whose corresponding 

parameters i  are not zero.  

 

Fig. 4. SVM learns a hyperplane which best separates the two classes with circle and triangle representing 

class label of -1 and +1 respectively 

In three-group and five-group classification, multiple one-against-all SVMs with continuous 

decision functions are utilized to determine multiple decision functions that separate one class 

from the other classes [48]. For the i th decision function, the maximum margin which splits the 

class i  from the remaining classes is 

                                                           ( ) ( )T

i i if b= +x w x ,                                                         (4)                                                                      
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where iw is the decision vector, ( )x  is the mapping function that maps x  into the feature space, 

and ib  is the bias term. Then continuous decision functions are applied for the classification. For 

the data sample x , it is classified into the class with the maximal result: 

                                                                   ( )
1,...,

max i
i M

f
=

x ,                                                                (5) 

where M denotes the total number of classes.  

In this study, the “black-box” issue of SVM is tackled by combining it with C4.5 and RF 

respectively. The resulting SVM+C4.5 and SVM+RF algorithms are ensemble learning 

approaches which begin by using the training dataset to construct the SVM model. The model 

parameters are tuned by the multi-fold cross validation (CV) strategy. The algorithms then 

extracts the SVs from the best model constructed in the CV process, which are plugged into the 

SVM model constructed to obtain the predicted labels. Finally, an artificial dataset is created by 

replacing the actual labels of the SVs with the predicted label. The purpose of the replacement is 

to maximize the simulation of the prediction made by the SVM model. By introducing the rule 

extraction techniques C4.5 and RF into SVM, an insight into the black-box model can be gained 

and the noise can be eliminated [49]. The SVs are used to construct two rule sets separately by 

C4.5 and RF, which are fixed by tuning the parameters through the CV strategy. 

5. Results and Discussion 

As discussed in previous sections, to evaluate the performance of the four rule-based 

classification algorithms RF, C4.5, SVM+RF and SVM+C4.5, the experiment is conducted by 

first applying the STFT technique to the original EEG signals to obtain the corresponding 

datasets with extracted features, which are then used to detect epilepsy with the classification 

algorithms respectively and the accuracies are recorded for comparison. In this study, the 



18 

 

performance of the rule-based algorithms is also compared with that of three conventional black-

box type classification methods – back-propagation neural network (BPNN) [50], radial-basis-

function neural network (RBFN) [51] [52] and SVM. 

The experimental settings for SVM+RF and SVM+C4.5 are as follows. The algorithms are 

run on the dataset for the 10-fold CV in which each run, the dataset is randomly divided into 10 

equal parts with nine used as training dataset and the remaining one as testing dataset. In the first 

run of the 10-fold CV, 90% of the data are used for training the SVM, where common kernel 

functions are adopted and the grid-search strategy is used to obtain the optimal regularization 

parameter C and the kernel’s parameter. Here, Gaussian kernel is selected in Expt 1 and Expt.2 

while tanh kernel is selected in Expt 3 after comparing different kernels’ performances in each 

experiment.  A number of models are obtained in the process. The ultimate SVM model is the 

one which yields the best classification result on the testing dataset. Finally, the SVM model is 

tested on the remaining 10% of the dataset. For the remaining nine runs of the CV, in order to 

ensure fair performance comparison of the trained model, the nine shuffled datasets are trained 

using SVM parameterized with the same values as identified in the first round.  

Similarly, RF, C4.5, BPNN and RBFN are executed on the same dataset for the 10-fold CV. 

The number of trees to grow (numTrees) in RF, the percentage of incorrectly assigned samples at 

a node (inc_code) in C4.5, the learning rate in BPNN and the spread in RBFN are determined by 

the grid search strategy in the first round of the CV process. The settings of the parameters in 

these algorithms are summarized in Table 4. The results of the three experiments, in terms of 

average classification accuracy, are shown in Table 5. In particular, the generated SVs for both 

SVM+RF and SVM+C4.5 are used in the SVM model as the training dataset to predict the 

labels. An artificial dataset is created by replacing the original labels in the dataset with the 
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predicted labels. The artificial dataset is then used by the RF and C4.5 models to construct the 

rule sets and obtain the corresponding experimental results as illustrated in the last two rows of 

Table 5. 

Table 4. Parameter settings in experiments 

Classifiers Parameters Parameter settings 

Expt 1 Expt 2 Expt 3 

 

SVM 

 

Kernel type 

Kernel’s parameter 

C 

Gaussian 

0.2 

200 

Gaussian 

2e1 

200 

tanh 

2e-3 

200 

RF numTrees 2000 1500 1000 

C4.5 Inc_node 10 25 10 

BPNN Learning rate 0.05 0.1 0.05 

RBFN Spread 2e1 2e2 2e1 

SVM+RF  

(i.e, RF on SVs) 

numTrees 2000 1000 1000 

SVM+C4.5 

(i.e, C4.5 on SVs) 

Inc_node 20 20 20 

Table 5. Average accuracy results in experiments of 10-fold CV for 10 runs 

Classifiers Expt 1 

(meanSD) 

Expt 2 

(meanSD) 

Expt 3 

(meanSD) 

SVM 0.99630.0117 0.9660 0.0325 0.6704 0.0601 

RF 0.99300.0044 0.9569 0.0369 0.8311 0.0515 

C4.5 0.98520.0259 0.9311 0.0286 0.7178 0.0555 

BPNN 0.98520.0191 0.9222 0.0424 0.6516 0.0816 
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RBFN 0.9867 0.0233 0.9000 0.0301 0.6600 0.0492 

SVM+RF  

(i.e, RF on SVs) 

0.9900 0.0161 0.9432 0.0467 0.9216 0.0348 

SVM+C4.5 

(i.e, C4.5 on SVs) 

0.9917 0.0118 0.9218 0.0708 0.9102 0.0362 

 

To compare the performance of the four rule-based algorithms involved ed in the study – 

SVM+RF, SVM+C4.5, RF, C4.5, they are tested on the corresponding testing datasets ten times, 

with the performance of SVM, BPNN and RBFN also evaluated in the same way to provide the 

results as a reference in the comparison. The results are show in Table 6. It can be seen that RF 

generally outperforms the other algorithms. Paired t-test is conducted between RF and other 

algorithms for the three experiments to evaluate whether the outstanding performance observed 

in RF is of statistical significance. The p-values of the t-tests are shown in the same table. As the 

performance of RF in five-group classification is particularly outstanding, further investigation is 

conducted by expressing the classification accuracy of the five distinct groups of EEG signals 

using a confusion matrix, as shown in Table 7.  

Table 6. Classification performance on the testing datasets 

Classifiers  Expt 1 Expt 2 Expt 3 

SVM+RF Mean 

(std) 

0.9967 

(0.0105) 

0.9720 

(0.0253) 

0.6980 

(0.0797) 

 p-valuea 0.3060 0.4342 0.0034(+) 

SVM+C4.5 Mean 

(std) 

0.9933 

(0.0141) 

0.9433 

(0.0312) 

0.6820 

(0.0649) 
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 p-value 0.6036 0.2471 0.0012(+) 

RF Mean 

(std) 

0.9896 

(0.0157) 

0.9600 

(0.0311) 

0.8260 

(0.0525) 

 p-value - - - 

C4.5 Mean 

(std) 

0.9920 

(0.0144) 

0.9367 

(0.0416) 

0.7220 

(0.0537) 

 p-value 0.5041 0.2339 0.0028(+) 

SVM Mean 

(std) 

0.9940 

(0.0123) 

0.9400 

(0.0351) 

0.6600 

(0.0736) 

 p-value 0.3988 0.1411 2.7105e-4(+) 

BPNN Mean 

(std) 

0.9927 

(0.0139) 

0.9472 

(0.0368) 

0.6836 

(0.0539) 

 p-value 0.5041 0.4679 1.9979e-4(+) 

RBFN Mean 

(std) 

0.9900 

(0.0161) 

0.9320 

(0.0368) 

0.6580 

(0.0569) 

 p-value 0.6036 0.0011(+) 8.3565e-4(+) 

a The superscript (+) denotes that the RF method is better than the method under comparison 

based on t-test results. The smaller the p-value, the more significant the difference of the average 

values. A p-value of 0.05 is considered to be statistically significant.  

Table 7. Confusion matrix presenting the classification performance of RF in Expt 3 

 Predicted Groups 

Actual Groups A B C D E 

A 100% 0 0 0 0 

B 0 100% 0 0 0 
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C 0 0 100% 0 0 

D 25% 0 33.3% 41.7% 0 

E 0 0 10% 0 90% 

 

From the results of Expt 1 in Table 6, it can be seen that the two ensemble approaches 

SVM+RF and SVM+C4.5 give the best results in two-group classification, with  average 

accuracies of 0.9967 and 0.9933 respectively, which the performance of RF is the worst yet still 

achieved an accuracy of 0.9896. However, the t-test results indicate the difference in 

performance is not statistically significant, and therefore the algorithms under comparison are 

considered to have comparable performance in two-group EEG signal classification. In Expt 2, 

SVM+RF and RF are the best two algorithms in the classification of the three groups of EEG 

signals, yielding the accuracies of 0.9720 and 0.9600 respectively. The classification accuracies 

of the other algorithms are all below 0.9500, where the accuracy attained by RFBN, i.e., 0.9320, 

is statistically worse than RF. In Expt 3, the performance of RF stands out in five-group 

classification of EEG signals, achieving the highest accuracy of 0.8260 among the algorithms 

under comparison. C4.5 gives the second highest accuracy of 0.7220, whereas the accuracy of 

the other algorithms is all below 0.7000.  

Apart from the four rule-based algorithms, the three algorithms serving as references for 

comparison in the study, i.e. SVM, BPNN and RBFN, show moderate performance in two-group 

and three-group classification, with an accuracy above 0.9900. The accuracy in five-group EEG 

signal classification is relatively low, with BPNN yielding an accuracy of 0.6580 at best. 

On the other hand, it can be seen from the diagonal of the confusion matrix in Table 7 that 

the average accuracy attained by RF is as high as 100% in classifying the EEG segments in 
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Group A (healthy subjects with eye open), Group B (healthy subjects with eye open) and Group 

C (subjects with epilepsy during seizure free interval). An accuracy of 90% is also achieved for 

classifying EEG segments in Group E (subjects with epilepsy during seizure). That is, the states 

of eye-open and eye-closed can be well distinguished using RF. The result is in line with a 

previous study where the two states were differentiated  using frequency power levels [53]. 

However, it is also noted that the classification accuracy of EEG segments in Group D is very 

low, only 41.7%. This reveals a potential weakness of RF in distinguishing EEG signals recorded 

from different locations of the brain for subjects with epilepsy during seizure free intervals.  

As shown in Table 5, SVM achieves high accuracies of 0.9963 and 0.9660 respectively in 

two-group and three-group EEG signal classification, which indicates the motivation of rule 

extraction from SVM. However, in five-group classification, due to the fact that SVM’s already 

have a low accuracy of 0.6704, the rule extraction from SVM by the ensemble learning 

approaches may be to a certain extent directly affected by this pre-existing low accuracy. 

Moreover, for the ensemble learning approaches SVM+RF and SVM+C4.5, their RF and 

C4.5 work respectively with the artificial datasets consisting of the SVs with the predicted labels. 

However, Table 5 demonstrates that at this moment RF and C4.5 are almost comparable in 

performance with each other in Expt 1, Expt 2 and Expt 3. In other words, SVM+RF does not 

provide any evidence to demonstrate its superiority over SVM+C4.5. Particularly, even though 

there are acceptable levels of accuracy in Expt 3 for RF and C4.5 on the artificial dataset 

consisting of the SVs, we should notice their poor performance in Expt 3, see Table 5.  

In summary, among the four rule-based algorithms concerned in the study, RF shows the 

best overall performance in two-group, three-group and five-group classification of EEG signals, 
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attributed to its strong ensemble learning capability with multiple decision trees. The 

performance of RF in five-group classification is particularly outstanding when compared to 

SVM and the SVM-based ensemble learning approach. This is potentially due to the poor 

performance of SVM which directly affects accuracy of rule extraction from the SVM model 

using the ensemble learning approaches. This finding is also in line with the claim in [54] that 

RF is most likely to be the best classifier after evaluating 179 classifiers covering all the relevant 

classifiers available today (SVM, decision trees, rule-based classifiers, etc) on 121 datasets 

representing the whole UCI database and other real problems.  On the other hand, RF is also 

advantageous in that, when compared to SVM, parameter tuning is not necessary, which makes it 

easy to implement and scale up the computation for complicated analysis.  

When compared with the three algorithms included in the experiments as reference, i.e., 

SVM, BPNN and RBFN, the performance of RF in two-group classification is slightly lower, 

whereas the performance in three-group classification is moderate and the performance in five-

group classification is significantly better. The weakness of RF in two-group classification might 

be due to the small size of the dataset. Meanwhile, the experimental results also show that the 

SVM-based ensemble learning approaches can at least achieve a performance equivalent to that 

of using SVM alone, which is in line with the results in previous studies [55]. 

6. Conclusion 

In this paper, we investigate the performance of the four rule-based classifiers – C4.5, RF, 

SVM+C4.5 and SVM+RF – in the detection of epilepsy with EEG, in terms of their ability in 

classifying two, three and five distinct groups of EEG signals acquired under different 

conditions. Three conventional black-box algorithms, SVM, BPNN and RBFN, are also involved 

in the experiments as references. After extracting the features in the EEG signals using STFT, 
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the classification accuracies of the seven algorithms are evaluated for performance comparison. 

In particular, rule extraction from the SVM model is performed by using the ensemble learning 

approaches SVM+RF and SVM+C4.5, where the SVs are obtained by SVM, followed by the use 

of RF and C4.5 respectively to turn the “black box” of SVM decisions, represented by SVs, into 

interpretable rules for the classification of epileptic EEG signals.  

The experimental results indicate that RF has the competitive advantage in two- and three-

group classification of EEG signals. Its advantage is more noticeable in five-group classification 

where the accuracy of identifying EEG signals under five different conditions is the highest 

(0.8260) among the four rule-based algorithms investigated. In addition to classification 

accuracy, the rule sets generated by RF can serve as additional information that is more 

comprehensible by clinicians for the diagnosis of epilepsy with EEG signals.  

A future work of the study is the pruning of the rule sets obtained by RF such that the size of 

the rule sets can be reduced to facilitate diagnosis but without significantly degrading the 

classification accuracy of EEG signals. Besides, even though the EEG dataset used here has been 

analyzed by many other research groups since 2003, we have to admit the size of the dataset is 

comparatively small. Further investigation will be conducted to improve the accuracy of RF in 

classifying more abundant EEG signals collected from subjects with epilepsy at different 

locations within the brain.  
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