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Abstract

In this paper we propose classifier ensembles that use multiple Pareto image features for invariant image identification.
Different from traditional ensembles that focus on enhancing diversity by generating diverse base classifiers, the proposed
method takes advantage of the diversity inherent in the Pareto features extracted using a multi-objective evolutionary
Trace Transform algorithm. Two variants of the proposed approach have been implemented, one using multilayer
perceptron neural networks as base classifiers and the other k-Nearest Neighbor. Empirical results on a large number
of images from the Fish-94 and COIL-20 datasets show that on average, ensembles using Pareto features perform much
better than traditional classifier ensembles using the same features and data randomization. The better classification
performance of the proposed ensemble is further supported by diversity analysis using a number of measures, indicating
that the proposed ensemble consistently produces a higher degree of diversity than traditional ones. Our experimental
results demonstrate that the proposed classifier ensembles are robust to various geometric transformations in images
such as rotation, scale and translation, and to additive noise.

Keywords: Pareto front, classifier ensembles, majority voting, image identification, Trace transform, evolutionary
multi-objective optimization

1. Introduction

The idea of combining the outputs of several individ-
ual classifiers to produce an ensemble has gained a lot of
interest in many machine learning communities and pat-
tern recognition applications [1, 2, 3, 4]. In machine learn-5

ing, classifier ensembles have been very popular recently
because they often improve classification performance sig-
nificantly. A conventional classifier ensemble combines the
outputs of several individual classifiers, each of which is re-
ferred to as an ensemble member, or an individual learner,10

or a base classifier. Typically, individual outputs of an en-
semble are combined using a decision-making mechanism
such as majority voting, averaging, bagging or stacking to
produce a final decision [5]. Depending on whether the en-
semble members are of the same type or of different types15

of models, the ensemble can be homogeneous and heteroge-
neous. In this work, we focus on homogeneous ensembles
that use the same type of models as base classifiers.

Diversity of homogeneous ensembles can be achieved
via data randomization or using different learning algo-20

rithms in training the base classifiers [6]. Bian and Wang
[7] suggested to enhance ensemble diversity by training
base classifiers with different learning algorithms. The au-
thors showed that among the different models used, the
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radial basis function (RBF) neural network has the largest25

diversity in both homogeneous and heterogeneous ensem-
bles. On the other hand, multilayer perceptron (MLP)
neural networks have the smallest diversity [7]. A differ-
ent idea is to include a penalty term for diversity in the
cost function in training base classifiers [8]. In case the en-30

semble members are trained using population based search
methods, individuals in the last generation can be made
use of to create an ensemble [9]. In addition, Pareto-based
multi-objective learning [10] has widely been adopted for
creating ensembles, where, apart from minimizing the er-35

ror on a training data set, a second objective will be opti-
mized, e.g., minimizing the error on another dataset [11],
maximizing a diversity measure [12], or minimizing com-
plexity [13, 14].

Although a high degree of diversity is desired in gen-40

eral [15], it has also been found that diversity sometimes
negatively impacts the overall ensemble accuracy, in par-
ticular when all base classifiers are weak [16, 17]. In other
words, to construct accurate base classifiers is as impor-
tant as to create highly diverse base classifiers. The key45

challenge in designing ensembles becomes how to gain a
higher degree of diversity without degrading the accuracy
of the base classifiers.

There is a few research on how to obtain diversity of
ensembles through the use of different features as inputs to50

the base classifiers. In [18], a subset of features is selected
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using a Bayesian technique as the input for base clas-
sifiers and a multi-objective optimization algorithm was
employed to minimize the error on training data and min-
imize the number of selected features. In [19], comple-55

mentary features, such as textures and edge-based local
features, are combined at the descriptor extraction level
to improve classification performance in a single classifier.
Su et al. [20] proposed to use both global and a set of local
facial features to create a hierarchical ensemble classifier,60

which produced impressively better results than the state-
of-the-art on two large-scale face databases. Subsamples
of images are used as features to be fed into randomized
trees for classification of images [21]. However, none of
the above methods has taken explicit measures to optimize65

the extracted features according to performances related
to classification.

Several feature extraction techniques have been pro-
posed for image analysis, such as Wavelet transform [22],
Hidden Markov Model [23], Image Moments [24] and Scale70

Invariant Feature Transform (SIFT) [25]. Recent research
highlights the importance of combining different features
in an ensemble to produce efficient and accurate results. In
[26], the authors uses four features such as color/edge mo-
ments to train an ensemble of decision trees to accurately75

predict the illumination in images. In [27] the authors
proposed an approach that extract a compact set of hier-
archical space-time tree structures of human actions from
training videos and build an ensemble of the discovered
trees in combination with simpler action words and pair-80

wise structures for action recognition. Moreover, in [28] a
discriminative ferns ensemble is proposed using simple bi-
nary features for hand pose recognition. The method uses
histogram of bit vectors to achieve translation invariance
and compared to the Random forest ensemble. The Trace85

transform [29] is one of the powerful tools for invariant im-
age analysis. It is an effective method for extracting image
features that are robust to rotation, scale and translation
(RST).

In this paper, a multi-objective evolutionary Trace trans-90

form algorithm is used to extract a set of Pareto image
features. We aim to achieve diversity in classifier ensem-
bles by exploiting these image features. We show that the
Pareto features near the knee point of the Pareto front can
provide sufficient diversity for classifier ensembles for RST95

invariant image identification. We demonstrate that the
performance of the proposed ensemble is better than the
average performance of conventional homogeneous ensem-
bles generated by data manipulation that use a single set
of features in addition to the traditional ensembles, such as100

Random Forests [30], that use the same multiple features.
The rest of this paper is organized as follows. Sec-

tion 2 briefly review the Pareto feature selection method
together with a short introduction to the Trace transform.
In Section 3, we describe in detail the construction of ho-105

mogeneous classifier ensembles, including the methodology
for combining individual outputs of the base classifiers.
Experimental results on two image datasets are given in
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Figure 1: The Trace Transform [29].

Section 4, followed by an analysis of the diversity of the
compared ensembles. Conclusions and future work are pre-110

sented in Section 5.

2. Multi-objective Pareto Image Features

2.1. Trace Transform for Image Feature Extraction

We start with a brief overview of the Trace transform
and the theory of Triple features. Kadyrov and Petrou115

introduced the Trace transform (TT) in [29], using some
functionals to produce Triple features that are RST invari-
ant. Given a two-dimensional image I(x, y) of size M ×N
pixels, a new representation of I is obtained by applying
the Trace functional T along lines crossing the image I120

along different orientations θ and distances ρ from the im-
age origin, as shown in Fig. 1(a). The new representation
is a function of two variables, ρ and θ, and can generally be
represented as a matrix. An example is given in Fig. 1(b).
The process of converting the image from the spatial do-125

main (x, y) into the transform domain (ρ, θ) is called the
Trace transform. In fact, the generation of a Triple feature
requires two further steps. First, a Diametric functional D
is applied to the (transform domain) output of the Trace
transform along the ρ dimension, resulting in a vector of130

length nθ equal to the number of orientations considered
in computing the Trace transform. Next, a Circus func-
tional C is applied to this sequence, producing a scalar
value called the Triple feature.

Refer to Fig. 1(a), to work out the value of each point
along the tracing line t, an index IB is defined at a fine grid
over the original image I such that 0 ≤ IB ≤ (tend−tbegin).
Each pixel tile in the original image is replaced by fine tile
with size BN × BN . Therefore, the size of the fine grid is
MBN ×NBN . The tIB values of the points along the line
and their corresponding (i, j) pixel coordinates are given
by [31]:

tIB = (tbegin + IB)∆t

x = b(xB + bIBxincc)/BNc
y = b(yB + bIByincc)/BNc

where tbegin and tend are the start and the end point on135

the tracing line, respectively. The (xB , yB) are the fine
grid coordinates. And xinc and yinc are the x and y in-
crements in the fine grid domain, respectively. The (x, y)
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pixel coordinates are used to obtain the grey value of the
image at point with t = tIB . Readers are referred to [31]140

for details about the definition of the beginning and the
end points of each tracing line.

If appropriate functionals are used, the extracted fea-
tures do not change much when the image is subjected to
geometric transformations [29]. Refer to Appendix 5 for145

definitions of possible Trace transform functionals.
Trace transform is a general case of the well-known

Radon transform [32]; the first step in Trace transform
becomes similar to Radon transform when the Trace func-
tional is the integral. The Radon transform is known for its150

strength in capturing the directional features of an image
and robustness to zero mean white noise. Therefore, Trace
transform can be seen as a more general case of Radon
transform. The Trace transform has been successfully ap-
plied to several machine vision problems [33, 34, 35]. It is155

evident, however, that the optimal combination of Trace,
Diametric and Circus functionals is problem dependent
and little effort has been dedicated to addressing this issue
with few exceptions. For example, Liu and Wang [36] used
a number of Trace functionals in a voting ensemble for face160

recognition, where however, eight Trace functionals were
arbitrarily chosen from 22 functionals defined in[37].

2.2. Evolutionary Multi-Objective Trace Transform

From the above description, we can see that it is im-
portant to find the optimal combination of the functionals165

for extracting Triple features capable of discriminating one
image from another, which can be measured by between-
class variance, while recognizing geometrically transformed
versions as the same image, often known as within-class
variance. However, maximizing between-class variance and170

minimizing within-class variance can be conflicting, and
such optimization problems having multiple conflicting ob-
jectives are called multi-objective optimization (MOO) [38].

Different from single objective optimization, MOO of-
ten has a set of solutions rather than one single optimal175

solution. Let S denote a set of all feasible solutions of size
Ns. Consider two solutions s1, s2 ∈ S, each having Nf
objective functions f1, f2, . . . , fNf to be minimized. Then,
solution s1 is said to dominate s2 if fi(s1) ≤ fi(s2) for
all i ∈ {1, 2, . . . , Nf}, and fj(s1) < fj(s2) for at least one180

index j ∈ {1, 2, . . . , Nf}. In the set of feasible solutions
there always exist some solutions that are not dominated
by any other solution. These solutions are called Pareto
optimal or nondominated solutions, and the curve or sur-
face formed by all nondominated solutions in the objective185

space is called the Pareto front [38].
Evolutionary algorithms (EAs) are a class of population-

based global optimization techniques inspired from natural
evolution [39, 40]. Over the past two decades, EAs have
been shown very powerful in solving optimization prob-190

lems, including MOO problems [41]. In addition, multi-
objective evolutionary algorithms (MOEA) have widely
been used to solve multi-objective learning problems [42].

In this work, we use the Evolutionary Trace Transform
in the presence of Noise (ETTN) [43], which adopts the
elitist nondominated sorting genetic algorithm (NSGA-II)
[44], one popular and powerful MOEA that does not in-
volve explicit user preferences in comparison to MOEA/D
(see [45] and [46]), to search for the optimal combinations
of functionals in Trace transform to produce RST invari-
ant Triple features, where the within-class variance and
between-class variance are used as two objectives in the
evolutionary algorithm. In ETTN, the following two ob-
jective functions are minimized:

min{f1, f2},
f1 = Sw,

f2 =
1

(Sb + ε)
,

(1)

where ε > 0 is a small constant to avoid division by zero.
Sw and Sb are within-class variance and between-class vari-
ance, respectively, which are defined as follows:

Sw =

K∑
k=1

Ck∑
j=1

(Ξjk − µΞ
k )2,

Sb =

K∑
k=1

(µΞ
k − µΞ)2,

(2)

where

µΞ
k =

1

Ck

Ck∑
j=1

Ξjk, µ
Ξ =

1

K

K∑
k=1

µΞ
k

and K is the number of classes and Ck the number of
samples in class k. µΞ

k is the mean of class k of Ξ Triple195

features, Ξjk is the jth Triple features of class k, and µΞ

is the mean of all classes of Ξ Triple features.
To find the optimal combinations for Trace functions

for extracting robust and RST invariant features using
ETTN, a few selected images from the Fish-94 database200

with low resolutions (Appendix 5) have been used. These
sample images include three different classes, each contain-
ing five different types of changes, as follows:

• Sample 1 : A low-resolution image (64 × 64) gener-
ated from a randomly chosen original image (256 ×205

256);

• Sample 2 : Random rotation, scale and translation
of Sample 1 with Gaussian noise (standard devia-
tion=4);

• Sample 3 : Random rotation, scale and translation210

of Sample 1 with Gaussian noise (standard devia-
tion=6);

• Sample 4 : Random rotation of Sample 1;

• Sample 5 : Random scale of Sample 1.
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Figure 2: An illustrative example of a set of solutions obtained by
ETTN. Each point on the Pareto front represents a particular com-
bination of functionals in the Trace transform, with which an image
feature can be extracted.

In the evolutionary algorithm, 150 population size is215

chosen and the probability of mutation and cross-over are
0.125 and 0.9, respectively. After 200 generations of evo-
lution, a set of non-dominated solutions are obtained, as
presented Fig. 2. Details about each solution are given in
the next section.220

It should be pointed out that although the Pareto func-
tional combinations are obtained using the Fish-95 database,
we will also use them for extracting features for images
from other databases. This is encouraging because it in-
dicates that Pareto functional combinations for one image225

database can be generalized to others.

2.3. Selection of Pareto Features

Each of the six solutions shown in Fig. 2 represents a
combination of functionals in the Trace transform that can
be used to extract a Pareto image feature. These Pareto230

image features trade off between within-class variance and
between-class variance. The question now is which solu-
tion should be employed for image classification. In multi-
objective optimization, Pareto solutions for which an im-
provement in one objective will result in a severe degrada-235

tion in at least another one objective are known as knee
solutions, e.g., solutions s2 and s3 in Fig. 2. It is known
in MOO that, without a predefined user preference, knee
solutions are naturally most preferred because they often
represent the best trade-offs [42, 47].240

Due to the above reasons, knee points such as s2 and
s3 in Fig. 2 are preferred solutions on the Pareto front and
can be chosen as inputs to classifier ensembles. In addition,
we can also choose solutions with a large between-class
variance, such as s1 in Fig. 2. The rationale lies in the245

fact that a solution with a large between-class variance
will make it easier to distinguish one image from another
if its within-class variance is sufficiently small.

Table 1: Pareto Solutions as Pairs of Features

Pair ID Triple features pair

X1 s1, s2

X2 s1, s3

X3 s2, s3

Table 2: Pareto Solutions. Refer to Appendix 5 for Descrip-
tion of each Functional.

Label Triple Features

s1 T0D5C5

s2 T0D3C2

s3 T0D1C2

Features extracted by Trace transform are one dimen-
sional (1-D), though in practice, 2-D features are usually250

used for image classification by combining two 1-D fea-
tures. Table 1 lists three pairs of Pareto solutions that
can be used as 2-D input features to the base classifiers
in an ensemble. Table 2 depicts details about the func-
tionals making up each solution, also refer to Appendix255

5 for description of each functional. It is worth mention-
ing that compared to the traditional Trace transform [29]
which uses thousands of features, the ETTN has proven
to be able to accurately classify noisy RST deformed im-
ages with a much lower computational cost. Readers are260

referred to [43] and [48] for more details.

3. Construction of Classifier Ensembles

As discussed in Section I, ensemble members should
be diverse yet accurate. Diversity of ensembles can be
achieved by either promoting diversity in the output of265

the ensemble members given the same input feature, or by
using different input features for different members. The
hypothesis of this work is that the Pareto image features
extracted by ETTN naturally offer a set of diverse fea-
tures that can be taken advantage by a classifier ensem-270

ble, thereby removing the burdensome task to construct
diverse base classifiers.

In this section, we start with a brief overview of the
construction of classical ensembles using single features,
where diversity of the ensemble members is achieved by275

data randomization. This is followed by our proposal to
construct ensembles using Pareto features. In each case,
two types of base classifiers, namely, multilayer Perceptron
(MLP) neural networks and k-Nearest Neighbor (k-NN)
are adopted for their simplicity and variant structure such280

that the choice of a strong classifier is not biased.

3.1. Classical ensembles with single features

In homogeneous ensembles, all base classifiers use the
same type of learning models and the same input features,
where diversity of the ensemble is introduced in training285
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the base classifiers. Typical approaches for achieving di-
versity include the use of different starting conditions, dif-
ferent learning parameters or even different learning al-
gorithms. Alternatively, different base classifiers can be
trained using randomly chosen subsets of the training data290

[49], which, for short, is termed data randomization. For
these ensembles, a single feature vector is used for all en-
semble members. In this work, any Pareto solution, which
is a single pair of Triple features from the ETTN will be
used. An example of such ensemble of size L is shown in295

Fig. 3.
Within an ensemble, each base classifier is of the same

model type, i.e. either MLP or k-NN. However, they are
trained using different subsets of the training data to achieve
diversity.300

3.2. Classifier ensembles with multiple features

To make use of the natural diversity offered by the
Pareto features extracted by ETTN, we construct classifier
ensembles using the same type of base classifiers trained
using the same training data. Note, however, that differ-305

ent ensemble members use different Triple features as the
input. This arrangement is illustrated in Fig. 4.

3.3. Majority voting

There are several methods to combine the output of
base classifiers to obtain a final decision [50], including
majority voting, weighted majority voting and naive Bayes
combination. In this work, majority voting [51] is adopted
to combine the output of the base classifiers for its sim-
plicity and it does not require extra efforts in learning or
applying weights. In majority voting, the final decision is
the one predicted by a majority of the ensemble members,
or the null class if such a majority cannot be reached.
Consider L base classifiers Mk, k ∈ {1, 2, . . . , L}, where
each classifier decides between c classes or the null out-
put. The output of each classifier is therefore a class label
yk = j ∈ {0, 1, 2, . . . , c}, where 0 represents the null out-
put. The majority vote (MV) can be described as follows:

MV =

{
j if |{yk : yk = j}| ≥ bL/2c+ 1,
0 otherwise,

(3)

where j ∈ {1, 2, . . . , c} and k ∈ {1, 2, . . . , L}.

4. Experimental Results310

4.1. Compared algorithms

We investigate the performance of two different types
of ensembles, one based on single features and the other
based on multiple Pareto features. For convenience, we
name the compared ensembles as follows. The first part315

of the name indicates the number of feature pairs used,
i.e. SF, MF stands for single and multiple features, re-
spectively. The second part identifies the base classifier
model used, i.e. MLP, kNN for multilayer perceptron and
k-nearest neighbor, respectively.320

There are two ensembles using multiple features. MF-
MLP consists of three base classifiers using MLP, each hav-
ing feature pairs X1, X2, X3, respectively, as the input,
refer to Table 1. MF-kNN is similar to MF-MLP, except
that all base classifiers use kNN. The base classifiers in325

both ensembles are trained using the same training data
and the same learning algorithm.

There are six classical ensembles using single features,
an MLP and a kNN variant for each of X1, X2, X3. For
example, SF1-MLP consists of three base classifiers using330

MLP, each member using feature pair X1 as the input.
Similarly, SF2-MLP and SF3-MLP denote the ensembles
with the MLP as base classifiers whose input feature is
X2, X3, respectively. SF1-kNN, SF2-kNN, SF3-kNN are
similar, except that the base classifiers use kNN models.335

Among several classical ensembles (such as Random Sub-
space [49] and Rotational Forest [52]), Random Forests
[30] is a commonly used ensemble algorithm. In Random
Forests, the accuracy of classification has increased signif-
icantly using a number of trees to generate an ensemble,340

which allows the trees to vote for the suitable class. In this
work, we also compare the performance with the classical
Random Forests ensemble.
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Table 3: Parameter settings for the ensembles using single features

Parameter Value/Descriptiona

Learning rate(s) (MLP) 0.3, 0.31, 0.32

Momentum(s) (MLP) 0.2, 0.21, 0.22

Epoch (MLP) 5000

Training samples/Class 44

Validation criteria Cross-validation

Number of folds 2, 3, 5

Sampling methodb Linear, Shuffled, Stratified

k (k-NN) 1

Measure type (k-NN) Euclidean Distance
a Multiple values correspond to ensembles SF1–SF3, respec-

tively.
b Linear sampling: partitions the set without changing the or-

der of elements (i.e. subsets with consecutive examples are
created); Shuffled sampling: builds random subsets of the set
(seed = 1992); Stratified sampling: builds random subsets and
ensures that the class distribution in the subsets is the same
as in the whole set [54] (seed = 1000).

Table 4: Parameter settings for the ensemble using Pareto features

Parameter Value/Description

Learning rate (MLP) 0.3

Epoch (MLP) 5000

Training samples/Class 44

Validation criteria Cross-validation

Number of folds 5-fold

Sampling method Stratified

k (k-NN) 1

Measure type (k-NN) Euclidean Distance

4.2. Experimental setups

To empirically compare the performance of the dif-345

ferent classifier ensembles, two image databases, Fish-94
database [29] and the Columbia COIL-20 database [53],
are used. Details about the two databases are provided in
Appendix 5. Parameter settings for the base classifiers us-
ing single input features are given in Table 3, while those350

for the proposed ensembles using Pareto features are given
in Table 4. For the Random Forests, the number of trees
are chosen such that there is no further improvement in
accuracy on the training dataset when increase the num-
ber of tress. The sufficient number of trees in Random355

Forest ensemble is ten trees.
For each database, we used 44 samples per class for

training the base classifiers, which include the original im-
age, 24 rotated images, 9 scaled images and 10 translated
images. In other words, each training sample may have360

only one type of geometrical transformation, with no noise
being added. By contrast, the test images are created by
performing combinations of RST transformations of the
original images and adding Gaussian noise or salt and pep-
per noise. This noise is added to the whole image (i.e. on365

both the object and background). Example test images

(a)

(b)

Figure 5: Sample test images from (a) Fish-94 database and (b)
COIL-20 database. From the left, each row contains the original
image and four modified versions.

are given in Fig. 5.

4.3. Performance Analysis

To measure the performance of each ensemble, we cal-
culate the percentage of the correctly classified samples on370

the test set as the classifier accuracy.
We start by evaluating the performance of MF-MLP on

images with different scale factors and no additive noise.
This is compared with the average performance of three
ensembles using single features, namely, SF1-MLP, SF2-375

MLP, and SF3-MLP, as well as the classical Random Forests
ensembles.

For the given experimental settings, the classification
accuracy of MF-MLP, the average accuracy of the three
classical ensembles (denoted by SF-MLP) and the Ran-380

dom Forests ensemble are shown in Fig. 6 for the Fish-94
and COIL-20 databases. It can be seen that the over-
all performance of MF-MLP is consistently better than
the mean of the corresponding classical ensembles on both
databases. For images from the Fish-94 database, the per-385

formance of MF-MLP is significantly better than SF-MLP
especially when the scale factor is below 0.5, and it shows a
comparative performance in comparison with the Random
Forests. Similarly, for images from the COIL-20 databases,
MF-MLP also performs impressively better than the mean390

of ensembles with single input features when the scale fac-
tor is between 0.1 and 0.5. Note that the Random Forests
shows comparative results in terms of accuracy compar-
ing with the MF-MLP. However, this will not be the case
in the presence of rotation and translation transformation395

and in the presence of noise.
Next, we investigate the invariance performance of the

ensembles under more realistic conditions, where each test
image has rotation, translation, scaling, and additive noise.
Fixed sets of test images were generated, with random ro-400

tation and translation, for a range of scaling factors and
noise variance. The same test images were used with the
compared ensembles. The classification performance of
MF-MLP is compared with the average performance of
the three classical SF-MLPs, as shown in Fig. 7. Similarly405
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Figure 6: Robustness to different scale factors. MF-MLP, average performance of three classical ensembles SF-MLP and Random Forests
ensembles.
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(d) COIL-20.

Scale factor

C
la
ss
ifi
ca
ti
o
n
a
cc
u
ra
cy

(%
)

σ
2 = 4

 

 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Random Forest
SF−MLP
MF−MLP

(e) COIL-20.
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Figure 7: Robustness to random rotation, translation, and fixed scaling and additive Gaussian noise of zero mean and variance σ2 for
MF-MLP, the average performance of three classical ensembles SF-MLP and Random Forests ensemble, for Fish-94 and COIL-20 database.

to what we observed in Fig. 6, MF-MLP performs con-
sistently better than the mean performance of the three
classical classifier ensembles SF-MLP for all noise levels
on both databases. Note, however, that the performance
of ensembles on the Fish-94 database seriously degrades in410

the presence of higher noise. This is probably because in
this database the objects occupy only a small part of the
whole image.

We repeat the experiments using salt and pepper noise
instead of Gaussian noise. This noise model randomly re-415

places pixels with pure white or black, with a given prob-
ability. Results for RST transformation and salt & pep-
per noise are shown in Fig. 8. Similar to the case with
Gaussian noise, MF-MLP performs better than the aver-
age performance of the three classical SF-MLP ensembles420

and Random Forests ensembles. We again see that all en-
sembles are very sensitive to higher noise for the Fish-94
database.

Finally, we repeat the experiments using k-NN base
classifiers. Results for additive Gaussian noise are given425
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(b) Fish-94.
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(c) Fish-94.
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(d) COIL-20.
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(e) COIL-20.
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(f) COIL-20.

Figure 8: Robustness to random rotation, translation, and fixed scaling and salt & pepper noise with proportion p of affected pixels, for
MF-MLP, the average performance of three classical ensembles SF-MLP and Random Forests ensembles, for Fish-94 and COIL-20 datasets.
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(c) Fish-94.
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(d) COIL-20.
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(e) COIL-20.
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Figure 9: Robustness to random rotation, translation, and fixed scaling and additive Gaussian noise of zero mean and variance σ2 for MF-kNN,
the average performance of three classical ensembles SF-kNN and Random Forests ensembles, for Fish-94 and COIL-20 database.
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(a) Fish-94.
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(b) Fish-94.
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(c) Fish-94.
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(d) COIL-20.
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(e) COIL-20.
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Figure 10: Robustness to random rotation, translation, and fixed scaling and salt & pepper noise with proportion p of affected pixels, for
MF-kNN, the average performance of three classical ensembles SF-kNN and Random Forests ensembles, for Fish-94 and COIL-20 datasets.

in Fig. 9, while results for salt and pepper noise are given
in Fig. 10. Very similar results to those using MLP as the
base classifiers have been obtained. Overall, MF-kNN out-
performs the classical ensembles and SF-kNN in all cases
considered in this work. This implies that the performance430

improvement achieved by the ensembles with Pareto fea-
tures does not rely on the base classifier used. The results
confirm our hypothesis that the performance of the en-
sembles with different Pareto features as input is better
than the classical ensembles and the average performance435

of classical ensembles generated using the same features.
In the following, we quantitatively analyzed the diver-

sity of the ensembles using various diversity measures, hop-
ing to gain some more insight into the performance differ-
ence between the two types of ensembles.440

4.4. Diversity Analysis

Much work has been done to investigate the influence
of diversity and accuracy of member classifiers on the ac-
curacy of the overall ensemble [55, 7, 56]. In general, di-
versity measures can be divided into two categories: pair-445

wise and non-pairwise. In the previous section, we have
shown that the ensembles using multiple Pareto features
as input outperform those using the counterpart single fea-
tures. To examine if such performance improvement can
be attributed to a higher degree of diversity offered by the450

Pareto features, we quantitatively compare the diversity

of ensemble under study using six diversity measures ad-
dressed in [16]. In the following, we briefly introduce the
six diversity measures, starting with three pairwise ones.
In all cases, the diversity is calculated over a set of Nt test455

samples.
Q statistics: To assess the similarity of classifier out-

puts, Yule’s Q statistics [57] for two classifiers M1 and M2

can be formulated. Let Nab represent the number of sam-
ples for which M1 is correct if a = 1 or incorrect if a = 0
and M2 is correct if b = 1 or incorrect if b = 0. Note that
by definition N11+N10+N01+N00 = Nt. The Q measure
is then given by:

QM1,M2
=

{
N11N00−N01N10

N11N00+N01N10 if N11N00 +N01N10 > 0,

1 otherwise.

(4)
Disagreement measure: This measure calculates how

often two classifiers have different opinions. It is defined
as the ratio between the number of observations when M1

is correct and M2 is incorrect (or vice versa) to the total
number of observations:

DisM1,M2
=
N01 +N10

Nt
. (5)

The double-fault measure: As the name suggests, this
measure considers the proportion of the number of incor-
rect classifications made by both classifiers. It can be writ-
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ten as:

DFM1,M2
=
N00

Nt
. (6)

By their very nature, pairwise measures determine the
diversity between each pair of classifiers. As we are con-
cerned with the overall diversity of an ensemble, for an
ensemble with L classifiers and a diversity measure D we
compute the average diversity between all distinct pairs of
base classifiers as follows:

D̄ =
2

L(L− 1)

∑
i,j∈{1,2,...,L},

i<j

DMi,Mj
(7)

Kohavi-Wolpert variance: This measure accounts for
the variability of the predicted class label for a given dataset
using base classifiers with two possible outputs: correct
output and incorrect output. This measure is defined by

σKW =
1

NtL2

Nt∑
i=1

Nc(i)(L−Nc(i)) (8)

where Nc(i) is the number of base classifiers that correctly
classify input sample i.

Entropy: This is an information-theoretic measure for
the uncertainty in the ensemble output, which is consid-
ered as a random variable. It is computed by

H =
1

Nt(L− dL/2e)

Nt∑
i=1

min{Nc(i), L−Nc(i)} (9)

where maximum diversity occurs when H = 1.
Generalized diversity: Minimum diversity occurs when

the failure of one classifier is accompanied by failure of
other classifiers. In contrast, maximum diversity occurs
when the failure of one classifier is accompanied by correct
classification of other classifiers. The generalized diversity
measure relates the probability at which two classifiers fail
with the probability at which one classifier fails. Let pk be
the probability that exactly k of L classifiers are incorrect,
which can be estimated by

pk =
|{i : Nc(i) = L− k}|

Nt
(10)

where k ∈ {0, 1, 2, . . . , L} and i ∈ {1, 2, . . . , Nt}. The gen-
eralized diversity measure is given by

GD = 1−
∑L
k=1

k(k−1)pk
L(L−1)∑L

k=1
kpk
L

. (11)

Maximum diversity occurs when GD = 1.460

To assess the diversity of each ensemble we perform
experiments using 20 objects from each of the Fish-94 and
COIL-20 databases. For each diversity measure, we cal-
culate the average value over three different runs using
different test objects. Results are given in Tables 5–8.465

From these calculations, we can see that MF-MLP and

Table 5: Diversity measures and average performance for MLP based
ensembles (Fish-94)

Diversitya MF-MLP SF1-MLP SF2-MLP SF3-
MLP

Q̄ (↓) -0.106 0.969 0.997 1.000

D̄is (↑) 0.400 0.089 0.056 0.033

D̄F (↓) 0.189 0.256 0.461 0.367

σKW (↑) 0.133 0.030 0.019 0.011

H (↑) 0.600 0.133 0.083 0.050

GD (↑) 0.595 0.159 0.086 0.051

PI 0.611 0.700 0.511 0.617

PMV 0.667 0.733 0.517 0.633
a Diversity is greater if the measure is lower (↓) or greater (↑).

Table 6: Diversity measures and average performance for MLP based
ensembles (COIL-20)

Diversitya MF-MLP SF1-MLP SF2-MLP SF3-
MLP

Q̄ (↓) 0.494 1.000 1.000 1.000

D̄is (↑) 0.156 0.022 0.022 0.000

D̄F (↓) 0.011 0.256 0.150 0.033

σKW (↑) 0.052 0.007 0.007 0.000

H (↑) 0.233 0.033 0.033 0.000

GD (↑) 0.926 0.074 0.076 0.000

PI 0.911 0.883 0.839 0.967

PMV 0.967 0.883 0.850 0.967
a Diversity is greater if the measure is lower (↓) or greater (↑).

Table 7: Diversity measures and average performance for k-NN
based ensembles (Fish-94)

Diversitya MF-kNN SF1-kNN SF2-kNN SF3-
kNN

Q̄ (↓) 0.193 0.973 1.000 1.000

D̄is (↑) 0.378 0.133 0.000 0.000

D̄F (↓) 0.244 0.250 0.400 0.517

σKW (↑) 0.126 0.044 0.000 0.000

H (↑) 0.567 0.200 0.000 0.000

GD (↑) 0.530 0.247 0.000 0.000

PI 0.567 0.683 0.600 0.483

PMV 0.633 0.717 0.600 0.483
a Diversity is greater if the measure is lower (↓) or greater (↑).

MF-kNN exhibit much greater diversity over their coun-
terparts using single features in terms of all the six con-
sidered diversity measures. This confirms our hypothesis
that diversity in ensembles using multiple Pareto features470

is much greater than ensembles using the same input fea-
ture whose diversity is mainly achieved using data ran-
domization. Note that in training the base classifiers of
the ensembles using multiple Pareto features, no explicit
measures have been taken to promote diversity. Finally,475

we calculate the average performance of individual clas-
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Table 8: Diversity measures and average performance for k-NN
based ensembles (COIL-20)

Diversitya MF-kNN SF1-kNN SF2-kNN SF3-
kNN

Q̄ (↓) 0.020 1.000 1.000 1.000

D̄is (↑) 0.211 0.000 0.000 0.000

D̄F (↓) 0.022 0.150 0.250 0.033

σKW (↑) 0.070 0.000 0.000 0.000

H (↑) 0.317 0.000 0.000 0.000

GD (↑) 0.886 0.000 0.000 0.000

PI 0.872 0.850 0.750 0.967

PMV 0.933 0.850 0.750 0.967
a Diversity is greater if the measure is lower (↓) or greater (↑).

sifiers (PI) and the average performance of the majority
voting (PMV) over the three different runs.

These results show how the increased diversity also in-
creases the reliability and improves the performance of the480

ensembles. It is worth pointing out that in all cases, the
performance of the majority voting ensemble is better than
or as good as the performance of the individual classifiers,
as indicated in the last two rows of Tables 5–8.

5. Conclusions485

In this paper we proposed to construct classifier en-
sembles using multiple Pareto features as inputs extracted
by a multi-objective evolutionary Trace Transform algo-
rithm. Two types of models, multilayer perceptron and
k-Nearest Neighbor base classifiers are used as the base490

classifiers for the ensembles. To verify that multiple Pareto
features can provide sufficient diversity, no particular mea-
sures are taken in generating ensemble members. By con-
trast, for traditional classifier ensembles using single input
features, data randomization techniques have been em-495

ployed in training the ensemble members to explicit pro-
mote the diversity of ensembles.

The proposed ensembles using multiple Pareto features
are empirically compared with the classical ensembles us-
ing single features and the classical Random Forest for500

image identification on two widely used image databases.
Experimental results on both databases demonstrate that
ensembles using multiple Pareto features consistently out-
perform the ensembles using single features and Random
Forests, when the images are subject to geometrical trans-505

formations and additive noise. To further confirm the hy-
pothesis that the better performance of the ensembles us-
ing multiple Pareto features can be attributed to the di-
versity in the multiple Pareto features, we quantitatively
compared the diversity of the two types of ensembles us-510

ing six diversity measures. Our results confirm that the
ensembles using Pareto features are more diverse than tra-
ditional ones using single features.

Future work will focus on the multi-objective evolu-
tionary optimization of the Trace transform by include di-515

versity as an additional objective using trainable and non-
trainable ensemble methods rather than simple majority
voting. One potential advantage of promoting diversity in
features over promoting diversity in the ensemble members
is that diversity in features may be less conflicting with the520

accuracy of the base classifiers. Meanwhile, it might also
be of interest to combine the idea of achieving diversity
in features with that of promoting diversity in the base
models via data randomization.
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Appendix

Trace transform Functionals

We list here the functionals used to produce the Pareto
features of Table 2, shown in Fig. 2. The fourteen Trace
functionals are given in Table 9, six Diametric functionals535

are given in Table 10, and six Circus functionals are in
Table 11.

Datasets

The first database used in this work is the Fish-94
database, containing 94 grayscale images of fish, origi-540

nally presented in [29]. These images are originally of size
200 × 400 pixels, which we convert to a standard size of
256×256 pixels for convenience. This conversion is done by
scaling the images down and padding with the background
pixel value. For reference, these are shown in Fig. 11.545

The second database is the Columbia Object Image Li-
brary of 20 grayscale objects (COIL-20) [53]. This database
consists of 20 different objects at 256 × 256 pixels.These
are shown in Fig. 12.
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Table 9: List of Trace Functionals T

Label Functional definitiona

T0

∑nt
i=1 τi

T1 maxnti=1 τi −minnti=1 τi

T2

(∑nt
i=1 |τi|

1
2

)2

T3

(∑nt
i=1 |τi|

4
) 1

4

T4

∑nt
i=1

∣∣∣τ ′

i

∣∣∣
T5

√
1
nt

∑nt
i=1 (τi −M)2,M = 1

nt

∑nt
i=1 τi

T6

∑nt
i=1

√
|τi|

T7 maxnti=1 |τi|

T8

∑nt
i=c (i− c)2τi, c =

∑nt

i=1
i|τi|∑nt

i=1
|τi|

T9

∑nt
i=c (i)2τi, c =

∑nt

i=1
i|τi|∑nt

i=1
|τi|

T10

∑nt
i=c (i)3τi, c =

∑nt

i=1
i|τi|∑nt

i=1
|τi|

T11

∑nt
i=c (r)0.5τi, c =

∑nt

i=1
l|τi|∑nt

i=1
|τi|

, r = |l− c|,
l = 1, 2, . . . , nt

T12

∑nt
i=c (r)τi, c =

∑nt

i=1
l|τi|∑nt

i=1
|τi|

, r = |l − c|,
l = 1, 2, . . . , nt

T13

∑nt
i=c (r)2τi, c =

∑nt

i=1
l|τi|∑nt

i=1
|τi)|

, r = |l − c|,
l = 1, 2, . . . , nt

aIn the definitions, nt is the total number of image pixels along
the tracing line (as defined by ρ and θ) and τi is the value of the ith

pixel along this line.

Table 10: List of Diametric Functionals D

Label Functional definitiona

D0

∑nρ
i=1 δi

D1 max
nρ
i=1 δi

D2

(∑nρ
i=1 |δi|

1
2

)2

D3

(∑nρ
i=1 |δi|

4
) 1

4

D4

√∑nρ
i=1 δ

2
i

D5 max
nρ
i=1 δi −min

nρ
i=1 δi

D6

∑nρ
i=1

∣∣∣δ′

i

∣∣∣
D7

∑nρ
i=c (i− c)2δi, c =

∑nρ

i=1
i|δi|∑nρ

i=1
|δi|

aIn the definitions, nρ is the number of columns in the Trace
matrix (i.e. along parameter ρ) and δi is the value in the ith column
of the Trace matrix for the given θ.

[5] A. Jain, R. P. W. Duin, J. Mao, Statistical pattern recognition:
a review, IEEE Transactions on Pattern Analysis and Machine
Intelligence 22 (1) (2000) 4–37. doi:10.1109/34.824819.

[6] G. Brown, J. Wyatt, H. R., X. Yao, Diversity creation methods:570

A survey and categorisation, Journal of Information Fusion 6 (1)
(2005) 5–20.

[7] S. Bian, W. Wang, Investigation on diversity in homogeneous

Table 11: List of Circus Functionals C

Label Functional definitiona

C0

∑nθ
i=1 ξi

C1 mediannθi=1ξi

C2

√
1
nθ

∑nθ
x=1 (ξi −M)2,M = 1

nθ

∑nθ
i=1 ξi

C3

∑nθ
i=1

∣∣∣ξ′

i

∣∣∣
C4 maxnθi=1 ξi
C5 maxnθi=1 ξi −minnθi=1 ξi

aIn the definitions, nθ is the total number of elements in the row
direction of trace matrix (i.e. along parameter θ) and ξi is the value
of the ith sample in the Diametric vector.

Figure 11: Fish-94 database.

and heterogeneous ensembles, in: IEEE International Joint
Conference on Neural Networks, 2006. IJCNN ’06, 2006, pp.575

3078–3085. doi:10.1109/IJCNN.2006.247268.
[8] Y. Liu, X. Yao, T. Higuchi, Evolutionary ensembles with neg-

ative correlation learning, IEEE Transactions on Evolutionary
Computation 4 (4) (2000) 380–387. doi:10.1109/4235.887237.

[9] X. Yao, Y. Liu, Making use of population information in evo-580

lutionary artificial neural networks, IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B: Cybernetics 28 (3) (1998)
417–425. doi:10.1109/3477.678637.

[10] Y. Jin, Multi-Objective Machine Learning, Springer, Berlin,
2006.585

[11] H. Abbass, Pareto neuro-evolution: constructing ensemble of
neural networks using multi-objective optimization, in: The
2003 Congress on Evolutionary Computation, 2003. CEC ’03,

12

http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1109/IJCNN.2006.247268
http://dx.doi.org/10.1109/4235.887237
http://dx.doi.org/10.1109/3477.678637


Figure 12: COIL-20 database.

Vol. 3, 2003, pp. 2074–2080 Vol.3. doi:10.1109/CEC.2003.

1299928.590

[12] H. Chen, X. Yao, Multiobjective neural network ensembles
based on regularized negative correlation learning, IEEE Trans-
actions on Knowledge and Data Engineering 22 (12) (2010)
1738–1751. doi:10.1109/TKDE.2010.26.

[13] Y. Jin, T. Okabe, B. Sendhoff, Neural network regularization595

and ensembling using multi-objective evolutionary algorithms,
in: Congress on Evolutionary Computation, 2004. CEC’04,
Vol. 1, 2004, pp. 1–8 Vol.1. doi:10.1109/CEC.2004.1330830.

[14] C. Smith, Y. Jin, Evolutionary multi-objective generation of
recurrent neural network ensembles for time series prediction,600

Neurocomputing 143 (0) (2014) 302 – 311. doi:http://dx.doi.
org/10.1016/j.neucom.2014.05.062.

[15] S. Wang, X. Yao, Relationships between diversity of classifi-
cation ensembles and single-class performance measures, IEEE
Transactions on Knowledge and Data Engineering 25 (1) (2013)605

206–219. doi:10.1109/TKDE.2011.207.
[16] L. I. Kuncheva, C. J. Whitaker, Measures of diversity in clas-

sifier ensembles and their relationship with the ensemble accu-
racy, Machine learning 51 (2) (2003) 181–207.
URL http://pages.bangor.ac.uk/~mas00a/papers/lkml.pdf610

[17] D. de Oliveira, A. Canuto, M. C. P. De Souto, The diver-
sity/accuracy dilemma: An empirical analysis in the context
of heterogeneous ensembles, in: IEEE Congress on Evolution-
ary Computation, 2009. CEC ’09, 2009, pp. 939–946. doi:

10.1109/CEC.2009.4983046.615

[18] H. Chen, X. Yao, Evolutionary multiobjective ensemble learn-
ing based on bayesian feature selection, in: IEEE Congress on
Evolutionary Computation, 2006. CEC’06, 2006, pp. 267–274.
doi:10.1109/CEC.2006.1688318.

[19] L. Xie, Q. Tian, M. Wang, B. Zhang, Spatial pooling of hetero-620

geneous features for image classification, IEEE Transactions on
Image Processing 23 (5) (2014) 1994–2008. doi:10.1109/TIP.

2014.2310117.
[20] Y. Su, S. Shan, X. Chen, W. Gao, Hierarchical ensemble of

global and local classifiers for face recognition, IEEE Trans-625

actions on Image Processing 18 (8) (2009) 1885–1896. doi:

10.1109/TIP.2009.2021737.
[21] A. Descampe, C. De Vleeschouwer, P. Vandergheynst, B. Macq,

Scalable feature extraction for coarse-to-fine JPEG 2000 image
classification, IEEE Transactions on Image Processing 20 (9)630

(2011) 2636–2649. doi:10.1109/TIP.2011.2126584.
[22] Y. Dong, D. Tao, X. Li, J. Ma, J. Pu, Texture classification

and retrieval using shearlets and linear regression, IEEE Trans-
actions on Cybernetics 45 (3) (2015) 358–369. doi:10.1109/

TCYB.2014.2326059.635

[23] M. Hu, Y. Wang, Z. Zhang, D. Zhang, J. Little, Incremental
learning for video-based gait recognition with lbp flow, IEEE
Transactions on Cybernetics 43 (1) (2013) 77–89. doi:10.1109/
TSMCB.2012.2199310.

[24] L. Li, W. Lin, X. Wang, G. Yang, K. Bahrami, A. Kot, No-640

reference image blur assessment based on discrete orthogonal
moments, IEEE Transactions on Cybernetics PP (99) (2015)
1–1. doi:10.1109/TCYB.2015.2392129.

[25] D. G. Lowe, Distinctive image features from scale-invariant key-
points, International Journal of Computer Vision 60 (2) (2004)645

91–110.
URL http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

[26] D. Cheng, B. Price, S. Cohen, M. S. Brown, Effective learning-
based illuminant estimation using simple features, in: 2015
IEEE Conference on Computer Vision and Pattern Recogni-650

tion (CVPR), 2015, pp. 1000–1008. doi:10.1109/CVPR.2015.

7298702.
[27] S. Ma, L. Sigal, S. Sclaroff, Space-time tree ensemble for action

recognition, in: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 5024–5032. doi:10.655

1109/CVPR.2015.7299137.
[28] E. Krupka, A. Vinnikov, B. Klein, A. B. Hillel, D. Freedman,

S. Stachniak, Discriminative ferns ensemble for hand pose recog-
nition, in: 2014 IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 3670–3677. doi:10.1109/CVPR.660

2014.469.
[29] A. Kadyrov, M. Petrou, The trace transform and its applica-

tions, IEEE Transactions on Pattern Analysis and Machine In-
telligence 23 (8) (2001) 811–828.

[30] L. Breiman, Random forests, Machine Learning 45 (1) (2001)665

5–32. doi:10.1023/A:1010933404324.
[31] M. Petrou, F. Wang, A Tutorial on the Practical Implemen-

tation of the Trace Transform, Handbook of Texture Analy-
sis, Imperial College Press, 2008, Ch. 11, pp. 313–346. doi:

10.1142/9781848161160_0011.670

[32] S. R. Deans, The Radon Transform and Some of Its Applica-
tions, Krieger Publishing Company, 1983.

[33] M. Petrou, A. Kadyrov, Affine invariant features from the trace
transform, IEEE Transactions on Pattern Analysis and Machine
Intelligence 26 (1) (2004) 30–44.675

[34] N. Liu, H. Wang, Modeling images with multiple trace trans-
forms for pattern analysis, IEEE Signal Processing Letters
16 (5) (2009) 394–397.

[35] G. Goudelis, K. Karpouzis, S. Kollias, Exploring trace trans-
form for robust human action recognition, Pattern Recognition680

46 (12) (2013) 3238 – 3248. doi:http://dx.doi.org/10.1016/

j.patcog.2013.06.006.
URL http://www.sciencedirect.com/science/article/pii/

S0031320313002586

[36] N. Liu, H. Wang, Classification of transformed face images with685

majority voting, in: IEEE International Conference on Systems,
Man and Cybernetics, 2007. ISIC, 2007, pp. 2860–2864. doi:

10.1109/ICSMC.2007.4413907.
[37] S. Srisuk, M. Petrou, W. Kurutach, A. Kadyrov, A face authen-

tication system using the trace transform, Pattern Analysis and690

Applications 8 (1) (2005) 50–61.
[38] K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer,

Boston, 1999.
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