
Teaching Robots to Do Object Assembly using Multi-modal 3D Vision

Weiwei Wana, Feng Lub, Zepei Wua, Kensuke Haradaa

aNational Institute of Advanced Industrial Science and Engineering, Japan
bBeihang University, China

Abstract

The motivation of this paper is to develop a smart system using multi-modal vision for next-generation mechanical assembly. It
includes two phases where in the first phase human beings teach the assembly structure to a robot and in the second phase the robot
finds objects and grasps and assembles them using AI planning. The crucial part of the system is the precision of 3D visual detection
and the paper presents multi-modal approaches to meet the requirements: AR markers are used in the teaching phase since human
beings can actively control the process. Point cloud matching and geometric constraints are used in the robot execution phase to
avoid unexpected noises. Experiments are performed to examine the precision and correctness of the approaches. The study is
practical: The developed approaches are integrated with graph model-based motion planning, implemented on an industrial robots
and applicable to real-world scenarios.

Keywords:
3D Visual Detection, Robot Manipulation, Motion Planning

1. Introduction

The motivation of this paper is to develop a smart system us-
ing multi-modal vision for next-generation mechanical assem-
bly: A human worker assembles mechanical parts in front of a
vision system; The system detects the position and orientation
of the assembled parts and learns how to do assembly follow-
ing the human workerfs demonstration; An industrial robot per-
forms assembly tasks following the data learned from human
demonstration; It finds the mechanical parts in its workspace,
picks up them, and does assembly using motion planning and
assembly planning.

The difficulty in developing the smart system is precise vi-
sual detection. Two problems exist where the first one is in the
human teaching phase, namely how to precisely detect the posi-
tion and orientation of the parts in human hands during manual
demonstration; The second one is in the robot execution phase,
namely how to precisely detect the position and orientation of
the parts in the workspace and perform assembly.

Lots of detecting and tracking studies are available in con-
temporary publication, but none of them meets the require-
ments of the two problems. The approaches used include RGB
images, markers, point cloud, extrinsic constraints, and multi-
modal solutions where the RGB images and markers are short
in occlusions, the point cloud and extrinsic constraints are short
in partial loss and noises, and the multi-modal solutions are not
clearly stated and are still being developed.

This paper solves the two problems using multi-modal vi-
sion. First, we attach AR markers to the objects for assembly
and track them by detecting and transforming the marker posi-
tions during human demonstration. We don’t need to worry oc-
clusions since the teaching phase is manual and is performed by

human beings who are intelligent enough to actively avoid oc-
clusions and show good features to vision systems. The modal
employed in this phase is the markers (rgb image) and the geo-
metric relation between the markers and the object models. The
tag “AR(RGB)” is used for representation.

Second, we use depth cameras and match the object model
to the point cloud obtained using depth camera to roughly es-
timate the object pose, and use the geometric constraints from
planar table surface to reinforce the precision. For one thing,
the robot execution phase is automatic and is not as flexible as
human teaching. Markerless approaches are used to avoid oc-
clusions. For the other, the point cloud and extrinsic constraints
are fused to make up the partial loss and noises. The assump-
tion is when the object is placed on the surface of a table, it sta-
bilizes at a limited number of poses inherent to the geometric
constraints. The poses help to freeze some Degree of Freedom
and improve precision. The modal employed in this phase is the
cloud point data and the geometric constraints from the plenary
surface. The tag “Depth+Geom” is used for representation.

Moreover, we propose an improved graph model based on
our previous work to perform assembly planning and motion
planning. Experiments are performed to examine the preci-
sion and correctness of our approaches. We quantitatively
show the advantages of “AR(RGB)” and “Depth+Geom” in
next-generation mechanical assembly and concretely demon-
strate the process of searching and planning using the improve
graph model. We also integrate the developed approaches with
Kawada Nextage Robots and show the applicability of them in
real-world scenarios.

Preprint submitted to Neurocomputing January 27, 2016

ar
X

iv
:1

60
1.

06
47

3v
2

 [
cs

.R
O

]
 2

6
Ja

n
20

16

2. Related Work

This paper is highly related to studies in 3D object detection
for robotic manipulation and assembly and the literature review
concentrates on the perception aspect. For general studies on
robotic grasping, manipulation, and assembly, refer to [1], [2],
and [3]. The literature review emphasizes on model-based ap-
proaches since the paper is motivated by next-generation me-
chanical assembly and is about the industrial applications where
precision is crucial and object models are available. For model-
less studies, refer to [4] and [5]. For appearance-based studies,
refer to [6] [7], and [8]. Moreover, learning approaches are no
reviewed since they are not precise. Refer to [9] and [10] if
interested.

We archive and review the related work according to the
modals used for 3D detection, including RGB images, mark-
ers, point cloud, haptic sensing, extrinsic constraints, and multi-
modal fusion.

2.1. RGB images
RGB images are the most commonly used modal of robotic

perception. Using RGB images to solve the model-based 3D
position and orientation detection problem is widely known as
the “model-to-image registration problem” [11] and is under
the framework of POSIT (Pose from Orthography and Scaling
with Iterations) [12]. When looking for objects in images, the
POSIT-based approaches match the feature descriptors by com-
paring the most representative features of an image to the fea-
tures of the object for detection. The features could either be
values computed at pixel points or histograms computed on a
region of pixels. Using more than three matches, the 3D posi-
tion and orientation of an object can be found by solving poly-
nomial equations [13, 14, 15]. A good material that explains the
matching process can be found in [16]. The paper studies multi-
view image matching. It is not directly related to 3D detection,
but explains well how to match the feature descriptors.

Some of the most common choices of features include corner
features [17] applied in [18] and [12], line features applied in
[19], [20] and [21], cylinder features applied in [21] and [22],
and SIFT features [23] applied in [24] and [25]. Especially,
[24] stated clearly the two stages of model-based detection us-
ing RGB images: (1) The modeling stage where the textured
3D model is recovered from a sequence of images; (2) The de-
tection stage where features are extracted and matched against
those of the 3D models. The modeling stage is based on the
algorithms in [16]. The detection stage is open to different fea-
tures, different polynomial solving algorithms, and some opti-
mizations like Levenberg-Marquardt [26] and Mean-shift [27],
etc. [28] compared the different algorithms in the second stage.

2.2. Markers
In cases where the objects don’t have enough features, mark-

ers are used to assist image-based detection. Possible marker
types include: AR markers, colored markers, and shape mark-
ers, etc. The well known AR libraries [29, 30] provide robust
libraries and the Optitrack device provides easy-to-use systems
for the different marker types. However, the applications with

markers require some manual work and there are limitations on
marker sizes, view directions, etc.

[31] uses circular concentric ring fiducial markers which are
placed at known locations on a computer case to overlay the
hidden innards of the case on the camerafs video feed. [32]
uses AR markers to locate the display lots during virtual confer-
ence. It explains the underneath computation well. [33] doesnft
directly use markers, but uses the offline matched keyframes,
which are essential the same thing, to correct online tracking.
[34] uses AR markers to recognize and cage objects. [35] uses
both balls (circles) and AR markers to estimate and track the
position of objects. More recently, [36] uses AR markers to
track the position of human hands and the operating tools and
uses the tracked motion to teach robots. The paper shares the
same assumption that human beings can actively avoid occlu-
sions. However, it doesn’t need and didn’t analyze the precision
since the goal of tracking is in task level, instead of the low level
trajectories.

2.3. Point cloud

Point cloud can be acquired using a structured light camera
[37], stereovision camera [38], and LIDAR device [39], etc.
The recent availability of low cost depth sensors and the handy
Point Cloud Library (PCL) [40] has widely disseminated 3D
sensing technology in research and commercial applications.
The basic flow of using point cloud for detection is the same as
image-based detection: The first step is to extract features from
models and objects; The second step is to match the features
and detect the 3D pose.

[41] is one of the early studies that uses point cloud to de-
tect the pose of an object. It is based on the Iterative Clos-
est Point (ICP) algorithm [42] which iteratively minimizes the
mean square distance of nearest neighbor points between the
model and the point cloud. Following work basically uses the
same technique, with improvements in feature extraction and
matching algorithms. The features used in point cloud detec-
tion are more vast than those in image-based detection, includ-
ing local descriptors like signature of histograms of orientation
(SHOT) [43] and Radius-based Surface Descriptor (RSD) [44],
and global descriptors like Clustered Viewpoint Feature His-
togram (CVFH) [45] and Ensemble of Shape Functions (ESF)
[46]. The matching algorithms didnft change much, sticking to
Random Sample Consensus (RANSAC) [13] and ICP. A com-
plete review and usage of the features and matching algorithms
can be found in [47].

2.4. Extrinsic constraints

Like the markers, extrinsic constraints are used to assist point
cloud based detection. When the point cloud don’t provide
enough features or when the point cloud are noisy and oc-
cluded, it is helpful to take into account the extrinsic con-
straints. For example, the detection pipeline in [47] uses hy-
pothesis, which is one example of extrinsic constraints, to ver-
ify the result of feature matching. [48] analyzes the functions
of connected object parts and uses them to refine grasps. The
paper is not directly related to detection but is an example of

2

improving performance using extrinsic constraints caused by
adjacent functional units.

Some other work uses geometric constraints to reduce am-
biguity of ICP. [49] and [50] segment 3D clutter using the ge-
ometric constraints. They are not directly related to detection
but are used widely as the initial steps of many detection algo-
rithms. [51] clusters point cloud into polygon patches and uses
RANSAC with the multiple polygon constraints to improve the
precision of detection. [52] uses table constraints for segmenta-
tion and uses Hough voting to detect object poses. [53] uses the
sliced 2D contours of 3D stable placements to reduce the noises
of estimation. It is like our approach but is contour-based and
suffers from ambiguity.

2.5. Multi-modal fusion

Multi-modal approaches are mostly the combination or rep-
etition of the previous five modals. For example, some work
fuses repeated modals to improve object detection. [54] fuses
colour, edge and texture cues predicted from a textured CAD
model of the tracked object to recover the 3D pose, and is open
to additional cues.

Some other work uses visual tracking to correct the noises
caused by fast motions and improve the precision of initial
matches. The fused modals include the RGB image modal and
the motion modal where the later one could be either estimated
using image sequences or third-part sensors like Global Posi-
tioning System (GPS) or gyros. [55] is one representative work
which fuses model motion (model-based tracking) and model
detection in RGB images to refine object poses. [20] fuses gyro
data and line features of RGB images to reinforce the pose es-
timation for head-mounted displays. [56] uses gyro data, point
descriptors, and line descriptors together to improve the perfor-
mance of pose estimation for outdoor applications.

[57] uses point cloud to cluster the scene and find the Region-
of-Interests (ROIs), and uses image modal to estimate the object
pose at respective ROIs. The fused modals are RGB images
and Point cloud. [58] also combines image and depth modals.
It uses the image gradients found on the contour of images and
the surface normals found on the body of point cloud to estimate
object poses.

To our best knowledge, the contemporary object detection
studies do not meet our requirements about precision. The most
demanding case is robotic grasping and simple manipulation,
which is far less strict than regrasp and assembly. We develop
our own approaches in this paper by fusing different modals to
deal with the problems in the teaching phase and the robot ex-
ecution phase respectively. For one thing, we use AR markers
to detect the 3D object positions and orientations during human
teaching. For the other, we use the cloud point data and the ge-
ometric constraints from planar table surface during robot exe-
cution. The details are presented in following sections.

3. System Overview

We present an overview of the next-generation mechanical
assembly system and make clear the positions of the 3D detec-

tion in this section, and describe in detail the “AR(RGB)” and
“Depth+Geom” approaches in the sections following it.

Figure 1: The flow of the next-generation mechanical assembly. The flow is
composed of a human teaching phase and a robot execution phase. In the human
teaching phase, a human worker demonstrates assembly with marked objects in
front of an RGB camera. The computer detects the relationship of the assembly
parts. In the robot execution phase, the robot detects the parts in the workspace
using depth camera and geometric constraints, picks up them, and performs
assembly.

Fig.1 shows the flow of the next-generation mechanical as-
sembly system. It is composed of a human teaching phase and
a robot execution phase. In the human teaching phase, a human
worker demonstrates how to assemble mechanical parts in front
of a vision system. The system records the relationship of the
two mechanical parts and saves it as an intermediate value.

In the robot execution phase, the robot uses another vision
system to find the mechanical parts in the workspace, picks up
them, and performs assembly. The relative position and orienta-
tion of the assembly parts are the intermediate values perceived
by the human teaching phase. The grasping configurations of
the robotic hand and the motions to move the parts are com-
puted online using motion planning algorithms.

The beneficial point of this system is it doesn’t need direct
robot programming and is highly flexible. What the human
worker needs to do is to attach the markers and presave the
pose of the marker in the object’s local coordinate system so
that the vision system can compute the pose of the object from
the detected marker poses.

The 3D detection in the two phases are denoted by the two
“object detection” sub-boxes in Fig.1. The one in the human
teaching phase uses AR markers since human beings can inten-
tially avoid unexpected partial occlusions by human hands or
the other parts, and as well as ensure high precision. The one
in the motion planning phase uses point cloud data to roughly
detect the object pose, and uses the geometric constraints from
planar table surface to correct the noises and improve precision.
The details will be explained in following sections. Before that,
we list the symbols to facilitate readers.

pX
s The position of object X on a planery surface. We use

3

A and B to denote the two objects and consequently
use pA

s and pB
s to denote their positions.

RX
s The orientation of object X on a planery surface. Like

pX
s, X is to be replaced by A or B.

pX
a The position of object X in the assembled structure.

RX
a The orientation of object X in the assembled structure.

pX
p The pre-assembly positions of the two objects. The

robot will plan a motion to move the objects from the
initial positions to the preassemble positions.

gX
f The force-closure grasps of object X. The letter f in-

dicates the object is free, and is not in an assembled
structure or laying on something.

gX
s′ The force-closure grasps of object X on a planery sur-

face. It is associated with pX
s and RX

s.
gX

s The collision-free and IK (Inverse Kinematics) feasi-
ble grasps of object X on a planery surface. It is also
associated with pX

s and RX
s.

gX
a′ The force-closure grasps of object X in an assembled

structure. It is associated with pX
a and RX

a.
gX

a The collision-free and IK (Inverse Kinematics) feasi-
ble grasps of object X in the assembled structure. It is
associated with pX

a and RX
a.

gX
p′ The force-closure grasps of object X at the pre-

assembly positions.
gX

p The colllision-free and IK feasible grasps of object X
at the pre-assembly positions.

4. 3D Detection during Human Teaching

The object detection during human teaching is done using
AR markers and a RGB camera. Fig.2 shows the flow of the
detection and the poses of the markers in the object model’s
local coordinate system. The markers are attached manually by
human workers.

Figure 2: Object detection using AR markers. Beforehand, human worker at-
taches the markers and presaves the pose of the marker in the object’s local
coordinate system. During detection, vision system computes the pose of the
object from the detected marker poses (the three subfigures). The output is the
(pA

a, RA
a) and (pB

a, RB
a).

During demonstration, the worker holds the two objects and
show the makers to the camera. We assume the workers have
enough intelligence and can expose the markers to the vision
system without occlusion. The detection process is conven-
tional and can be found in many AR literature: Given the posi-
tions of some features in the markers’ local coordinate system,
find the transform matrix which converts the them into the po-
sitions on the camera screen. In our implementation, the human
teaching part is developed using Unity and the AR recognition
is done using the Vuforia SDK for Unity.

In the example shown in Fig.2, there are two objects where
the detected results are represented by (pA

a, RA
a) and (pB

a,

RB
a). During robot execution, the (pB

a, RB
a) is set to:

pB
a = pB

a − pA
a, RB

p = RB
a · (RA

a)′ (1)

and pA
a and RA

a are set to zero and identity matrix respectively.
Only the relative poses between the assembly parts are used.

5. 3D Detection during Robotic Execution

The object pose detection during robot execution is done us-
ing Kinect, Point Cloud Library, and geometric constraints. The
detection cannot be done using markers since: (1) What the
robot manipulates are thousands of industrial parts, it is impos-
sible to attach markers to all of them. (2) The initial configu-
ration of the object is unexpectable and the markers might be
occluded from time to time during robotic pick-and-place. The
detection is also not applicable to image-based approaches: In-
dustrial parts are usually mono colored and textureless, image
features are not only helpless but even harmful.

Using Kinect is not trivial due to its low resolution and pre-
cision. For example, the objects in industrial applications are
usually in clutter and it is difficult to segment one object from
another using Kinect’s resolution. Our solution is to divide the
difficulty in clutter into two subproblems. First, the robot con-
siders how to pick out one object from the clutter, and place the
object on an open plenary surface. Second, the robot estimate
the pose of the single object on the open plenary surface. The
first subproblem doesn’t care what the object is or the pose of
the object and its only goal is to pick something out. It is re-
ferred as a pick-and-place problem in contemporary literature
and is illustrated in the left part of Fig.3. The first subproblem
is well studied and interested readers may refer to [59] for the
solutions.

The second subproblem is to detect the pose of a single ob-
ject on an open plenary surface and is shown in the right part
of Fig.3. It is much easier but still requires much proess to
meet the precision requirements of assembly. We concentrate
on precision and will discuss use point cloud algorithms and
geometric constraints to solve the second problem.

Figure 3: Overcome the clutter problem by dividing the pose detection into two
subproblems. The first one is picking out from clutter where the system doesn’t
care what the object is or the pose of the object and its only goal is to pick
something out. The problem is well studied. The second one is to detect the
pose of a single object on an open plenary surface. It is not trivial since the
precision of Kinect is bad.

5.1. Rough detection using point cloud

First, we roughly detect the pose of the object using CVFH
and CRH features. In a preprocessing process before start-
ing the detection, we put the camera to 42 positions on a unit

4

sphere, save the view of the camera, and precompute the CVFH
and CRH features of each view. This step is virtually performed
using PCL and is shown in the dashed blue frame of Fig.4.
During the detection, we extract the plenary surface from the
point cloud, segment the remaining points cloud, and compute
the CVFH and CRH features of each segmentation. Then, we
match the precomputed features with the features of each seg-
ment and estimate the orientation of the segmentations. This
step is shown in the dashed red frame of Fig.4. The matched
segments are further refined using ICP to ensure good match-
ing. The segmentation that has highest ICP matches and small-
est outlier points will be used as the output. An example is
shown in the “Raw result” framebox of Fig.4.

Figure 4: Rawly detecting the pose of an object using model matching and
CVFH and CRH features. In a preprocessing process before the detection,
we precompute the CVFH and CRH features of 42 different views and save
them as the template. The preprocessing process is shown in the dashed blue
frame. During the detection, we segment the remaining points cloud, compute
the CVFH and CRH features of each segmentation, and match them to the pre-
computed views using ICP. The best match is used as the output.

5.2. Noise correction using geomteric constraints

Figure 5: Correcting the raw result using the stable placements on a plenary
surface (geometric constraints). In a preprocessing process before the correc-
tion, we compute the stable placements of the object on a plenary surface. An
example is shown in the stable placements framebox. During the correction, we
compute the distance between the raw results and each of the stable placements,
and correct the raw results using the nearest pose.

The result of rough detection is further refined using the geo-
metric constraints. Since the object is on plenary surface, its
stable poses are limited [60] and can be used to correct the
noises of the roughly estimated result. The placement planning
includes two steps. First, we compute the convex hull of the
object mesh and perform surface clustering on the convex hull.
Each cluster is one candidate standing surface where the object
may be placed on. Second, we check the stability of the objects
standing on these candidate surfaces. The unstable placements
(the placement where the projection of center of mass is outside

the candidate surface or too near to its boundary) are removed.
An example of the stable placements for one object is shown in
the stable placements framebox of Fig.5.

Given the raw detection result using CVFH and CRH fea-
tures, the robot computes its distance to the stable placements
and correct it following Alg.1.

Algorithm 1: Noise correction
Data: Raw result: pr, Rr;

Stable placements: {Rp(i), i = 1, 2, . . .}
Table height: ht

Result: Corrected result: pc, Rc

1 dmin ← +∞

2 Rnear ← I
3 for i← 1 to Rp.size() do
4 di ← || log(Rp(i)Rp

′)||
5 if di < dmin then
6 dmin ← di

7 Rnear ← Rp(i)
8 end
9 end

10 Ryaw ← rotFromRpy(0, 0, rpyFromRot(Rr).y)
11 Rc ← Ryaw · Rnear

12 pc ← [pr.x, pr.y, ht]′

In this pseudo code, I indicates a 3×3 identity matrix. Func-
tions rotFromRpy and rpyFromRot converts roll, pitch, yaw
angles to rotation matrix and vice verse. The distance between
two rotation matrices is computed in line 4. The corrected result
is updated at lines 11 and 12.

6. Grasp and Motion Planning

After finding the poses of the parts on the plenary surface,
what the robot does next is to grasp the parts and assemble
them. It includes two steps: A grasp planning step and a motion
planning step.

6.1. Grasp planning

In the grasp planning step, we set the object at free space
and compute the force-closured and collision-free grasps. Each
grasp is represented using gX

f ={p0, p1,R} where p0 and p1 are
the contact positions of the finger tips, R is the orientation of
the palm. The whole set is represented by gX

f , which includes
many gX

f . Namely, gX
f = {gX

f }.
Given the pose of a part on the plenary surface, say pX

s and
RX

s, the IK-feasible and collision-free grasps that the robot can
use to pick up the object is computed following

gX
s = IK (gX

s′) ∩ CD (gX
s′ , planery sur f ace) (2)

where
gX

s′ = RX
s · gX

f + pX
s (3)

RX
s ·gX

f + pX
s transforms the grasps at free space to the pose

of the object. gX
s′ denotes the transformed grasp set. IK() finds

5

the IK-feasible grasps from the input set. CD() checks the colli-
sion between the two input elements and finds the collision-free
grasps. gX

s denotes the IK-feasible and collision-free grasps
that the robot can use to pick up the object.

Likewise, given the pose of object A in the assembled struc-
ture, say pA

a and RA
a, the IK-feasible and collision-free grasps

that the robot can use to assemble it is computed following

gA
a = IK (gA

a′) ∩ CD (gA
a′ , objB(pB

a,RB
a)) (4)

where
gA

a′ = RA
a · gA

f + pA
a (5)

RA
a · gA

f + pA
a transforms the grasps at free space to the

pose of the object in the assembled structure. gX
a′ denotes the

transformed grasp set. IK() and CD() are the same as Eqn(2).
objB(pB

a,RB
a) indicates the mesh model of object B at pose

pB
a,RB

a. gA
a denotes the IK-feasible and collision-free grasps

that the robot can use to assemble the object.

6.2. Motion planning

In the motion planning step, we build a graph using the
elements in gX

s and gX
a, search the grasp to find high-level

keyframes, and perform Transition-based Rapidly-Exploring
Random Tree (Transition-RRT) [61] motion planning between
the keyframes to find assemble motions.

Figure 6: The flow of the motion planning. Given initial and goal poses of an
object (left images in the upperleft and lowerleft frameboxes), we search its
available initial and goal grasps and use the common grasps and IK to get the
initial and goal configurations of the robot arm. Then, we do motion planning
repeatedly between the initial and goal configurations to find a solution to the
desired task.

Fig.6 shows the flow. The object X in this graph is a wooden
block shown in the left image of the upper-left frame box. The
image also shows the pose of this object on the plenary surface,
pX

s and RX
s. When the object is assembled in the structure, its

pose pX
a and RS

a is shown in the left image of the bottom-left
frame box. The grasps associated with the poses are shown in
the right images of the two frame boxes. They are rendered
using the colored hand model. Green, blue, and red denote IK-
feasible and collision free, IK-infeasible, and collided grasps
respectively. We build a graph to find the common grasps and

employ Transition-RRT to find the motion between the initial
configuration and goal configuration.

In practice, the flow in Fig.6 doesn’t work since the goal
configuration is in the assembled structure and is in the nar-
row passages or on the boundaries of the configuration space.
The motion planning problem is a narrow-passage [62] or peg-
in-hole problem [63] which is not solvable. We overcome the
difficulty by adding a pre-assemble configuration: For the two
objects A and B, we retract them from the structure following
the approaching direction va of the two objects and get the pre-
assemble poses pA

p, RA
p, and pB

p, RB
p where

pA
p = pA

a + 0.5va, RA
p = RA

a (6)
pB

p = pB
a − 0.5va, RB

p = RB
a (7)

The grasps associated with the retracted poses are

gA
p = IK (gA

p′), where gA
p′ = gA

a + 0.5va (8)
gB

p = IK (gB
p′), where gB

p′ = gB
a − 0.5va (9)

Note that the poses in Eqn(6-9) are in the local coordinate
of object A where pA

a is a zero vector and RA
a is an identity

matrix. Given the pose of object A in world coordinate, pA
a(g)

and RA
a(g), the grasps in the world coordinate are computed

using

gA
a(g) = gA

p(g) (10)

gB
a(g) = pA

a(g) + RA
a(g) · gB

a (11)

gA
p(g) = pA

a(g) + RA
a(g) · gA

p (12)

gB
p(g) = pA

a(g) + RA
a(g) · gB

p (13)

The moton planning is then to find a motion between one ini-
tial configuration in gX

s to a goal configuration in gX
p(g) where

X is either A or B. There is no motion between gA
p(g) and

gA
a(g) since they are equal to each other. The motion between

gB
p(g) and gB

a(g) is hard coded along va.

Figure 7: The grasp graph built using gX
s and gX

p(g). It has three layers where
the top layer encodes the grasps associated with the initial configuration, the
middle layer encodes the grasps associated with placements on planery su-
faces, and the bottom layer encodes the grasps associated with the assemble
pose. The left image shows one gX

p(g) (the virtual grasp illustrated in cyan).
It corresponds to a node in the bottom layer. The subimages in the frame box
illustrate the placements (yellow) and their associated grasps (green).

Which initial and goal configuration to use is decided by
building and searching a grasp graph which is built using gX

s

6

and gX
p(g), and is shown in the frame box of Fig.7. The graph

is basically the same as [60], but has three layers. The top layer
has only one circle and is mapped to the initial configuration.
The bottom layer also has only one circle and is mapped to the
goal configuration. The middle layers are composed of several
circles where each of them maps a possible placement on a ple-
nary surface. Each node of the circles represents a grasp: The
ones in the upper layers are from gX

s, and the ones in the bot-
tom layers are from gX

p(g)). The ones from the middle layers are
the grasps associated with the placements. The orientations of
the placements are evenly sampled on line. Their positions are
fixed to the initial position pA

s. If the circles share some grasps
(grasps with the same p0, p1, R values in the object’s local co-
ordinate system), we connect them at the correspondent nodes.
We search the graph to find the initial and goal configurations
and a sequence of high-level keyframes, and perform motion
planning between the keyframes to perform desired tasks. An
exemplary result will be shown in the experiment section.

7. Experiments and Analysis

We performed experiments to examine the precision of the
developed approaches, analyze the process of grasp and motion
planning, and demonstrate the applicability of the study using a
Kawada Nextage Robot. The camera used in the human teach-
ing phase is a logicool HD Webcam C615. The computer sys-
tem is a Lenovo Thinkpad E550 laptop (Processor: Intel Core
i5-5200 2.20GHz Clock, Memory: 4G 1600MHz DDR3). The
depth sensor used in the robotic execution phase is Kinect. The
computer system used to compute the grasps and motions is
a Dell T7910 workstation (Processor: Intel Xeon E5-2630 v3
with 8CHT, 20MB Cache, and 2.4GHz Clock, Memory: 32G
2133MHz DDR4).

7.1. Precision of the object detection in human teaching

First, we examine the precision of object detection during hu-
man teaching. We use two sets of assembly parts and examine
the precision of five assembly structures for each set. More-
over, for each assembly structure, we examine the values of at
five different orientations to make the results confident.

The two sets and ten structures (five for each) are shown in
the first row of Fig.8. Each structure is posed at five different
orientations to examine the precision. The five data rows un-
der the subimage row in Fig.8 are the result at the orientations.
Each grid of the data rows is shown in the form ∆d(∆r,∆p,∆y)
where ∆d is the difference in the measured |pA

a − pB
a| and

the actual value. (∆r,∆p,∆y) are the difference in the mea-
sured roll, pitch, and yaw angles. The last row of the figure
shows the average detection error of each structure in the form
|∆d|(|∆r|, |∆p|, |∆y|) where | · | indicates the absolute value. The
metrics are millimeter (mm) for distance and degree (◦) for ori-
entation. The precision in position is less than 1mm and the
precision in orientation is less than 2◦ on average.

7.2. Precision of the object detection in robotic execution

Then, we examine the pecision of the object detection in the
robot execution phase. Three objects with eight placements are
used during the process. They are shown in the top row of
Fig.9. The plenary surface is set in front of the robot and is
divided into four quarters. We place each placement into each
quoter to get the average values. There are five data rows di-
vided by dashed or solid lines in Fig.9 where the first four of
them show the individual detection precision at each quoter and
the last one shows the average detection precision. The detec-
tion precision is the difference between the detected value and
the groundtruth. Since we know the exact model of the object
and the height of the table, the groundtruth is know beforehand.
The average detection precision in the last row are the mean of
the absolute difference.

Inside each data grid there are four triples where the upper
two are the roughly detected position and orientation and the
lower two are the corrected values. The roughly detected re-
sults are marked with red shadows and the corrected results are
marked in green. The three values of the position triples are the
x, y, z coordinates, and their metrics are millimeters (mm). The
three values of the orientation triples are the roll, pitch, yaw
angles and their metrics are degree (◦).

The results show that the maximum errors of rough position
detection are -1.1mm, 3.3mm, and 2.3mm along x, y, and z axis.
They are marked with red boxes in Fig.9. After correction, the
maximum position errors change to -1.1mm, 3.6mm, 0.0mm re-
spectively. They are marked with green boxes. The maximum
errors of rough orientation detection are -26.3◦, 26.1◦, and -
19.5◦ in roll, pitch, and yaw angles. They are marked with red
boxes. The errors change to 0.0, 0.0, and -21.4 after correction.
The correction using geometric constraints completely corrects
the erros along z axis and in roll and pitch angles. It might
slightly increase the errors along x and y and in yaw but the val-
ues are ignorable. The average performance can be found from
the data under thee dual solid line. The performance is good
enough for robotic assembly.

In addition, the second and third subfigure rows of Fig.9 plot
some examples of the roughly detected poses and the corrected
poses. Readers may compare them with the data rows.

7.3. Simulation and real-world results

Fig.10 shows the correspondence between the paths found by
the searching algorithms and the configurations of the robot and
the object. The structure to be assembled in this task is the first
one (upper-left one) shown in Fig.8. We do motion planning
along the paths repeatedly to perform the desired tasks.

The assembly process is divided into two step with each step
corresponds to one assembly part. In the first step, the robot
finds object A on the table and moves it to a goal pose using
the three-layer graph. The subfigures (1)-(4) of Fig.10 shows
this step. In Fig.10(1), the robot computes the grasps associ-
ated with the initial pose and goal pose of object A. The asso-
ciated grasps are rendered in green, blue, and red colors like
Fig.1. They corresponds to the top and bottom layer of the
grasp shown in Fig.10(1’). In Fig.10(2), the robot chooses one

7

Figure 8: Results of the object detected during human teaching. The image row shows the structure to be assembled. Each structure is posed at five different
orientations to examine the precision and the detected error in distance and orientation are shown in the five data rows below. Each grid of the data rows is shown in
the form ∆d(∆r,∆p,∆y) where ∆d is the difference in the measured |pA

a − pB
a | and the actual value. (∆r,∆p,∆y) are the difference in the measured roll, pitch, and

yaw angles. The last row is the average detection error. The metrics are millimeter for distance and degree for orientation.

Figure 9: Results of the object detected during robotic execution. The figure includes three subfigure rows and five data rows where the first data row show the
target object pose, the second and third subfigure rows plot some examples of the roughly detected poses and the corrected poses. The five data rows are divided
by dashed or solid lines where the first four of them show the individual detection precision at four different positions and the last one shows the average detection
precision. Each data grid of the data rows include four triples where the upper two (under red shadow) are the roughly detected position and orientation and the
lower two (under green shadow) are the corrected values. The three values of the position triples are the x, y, z coordinates, and their metrics are millimeters (mm).
The three values of the orientation triples are the roll, pitch, yaw angles and their metrics are degree (◦). The maximum values of each data element are marked
with colored frameboxes.

8

Figure 10: The snapshots of assembling the structure shown in Fig.8. It is divided into two step with the first step shown in (1)-(4) and the second step shown in
(5)-(8). In the first step, the robot picks up object A and transfers it to the goal pose. In the second step, the robot finds object B on the table and assembles it to
object A. The subfigures (1’)-(8’) shows correspondent path edges and nodes on the three-layer graph.

feasible (IK-feasible and collision-free) grasp from the associ-
ated grasps and does motion planning to pick up the object.
The selected grasp corresponds to one node in the top layer
of the graph, which is marked with red color in Fig.10(2’). In
Fig.10(3), the robot picks up object A and transfers it to the goal
pose using a second motion planning. This corresponds to an
edge in Fig.10(3’) which connects the node in one circle to the
node in another. The edge directly connects to the goal in this
example and there is no intermediate placements. After that,
the robot moves its arm back at Fig.10(4), which corresponds
to a node in the bottom layer of the graph shown in Fig.10(4’).

In the second step, the robot finds object B on the table and
assembles it to object A. The subfigures (5)-(8) Fig.10(b) show
it. In Fig.10(5), the robot computes the grasps associated with
the initial pose and goal pose of object B. They are rendered in
green, blue, and red colors like Fig.10(1) and are correspondent
to the top and bottom layer of the grasp shown in Fig.10(5’). In
Fig.10(6), the robot chooses one feasible grasp and does motion
planning to pick up the object. The selected grasp corresponds
to the marked node in Fig.10(6’). In Fig.10(7), the robot picks
up object B and assembles it to the goal pose using a second
motion planning which corresponds to an edge in Fig.10(7’).
Finally, the robot moves its arm back at Fig.10(8) and (8’).

The subfigures (1”)-(8”) in the third row show how the robot
executes the planned motion. They correspond to (1)-(8) and
(1’)-(8’) in the first two rows.

8. Conclusions and Future Work

We presented precise 3D visual detection approaches in this
paper to meet the requirements of a smart mechanical assem-
bly system. In the human teaching phase of the system where
human beings control the operation and can actively avoid oc-
clusion, we use AR markers and compute the pose of the object
by detecting the markers’ poses. In the robot execution phase
where occlusions happen unexpectedly, we use point cloud

matching to find a raw pose and use extrinsic constraints to cor-
rect the noises. We examine the precision of the approaches in
the experiment part and demonstrate that the precision fulfills
assembly tasks using a graph model and an industrial robot.

The future work will be on the manipulation and assembly
aspect. The current result is position-based assembly. It will
be extended to force-based assembly tasks like inserting, snap-
ping, etc., in the future.

References

[1] T. Lozano-Perez, J. L. Jones, E. Mazer, P. A. O’Donnell, HANDEY: A
Robot Task Planner, The MIT Press, 1992.

[2] M. T. Mason, Mechanics of Robotic Manipulation, The MIT Press, 2001.
[3] M. Dogar, A. Spielberg, S. Baker, D. Rus, Multi-robot grasp planning for

sequential assembly operations, in: Proceedings of International Confer-
ene on Robotics and Automation (ICRA), 2015.

[4] C. Goldfeder, Data-Driven Grasping, Ph.D. thesis, Columbia University
(2002).

[5] I. Lenz, H. Lee, A. Saxena, Deep Learning for Detecting Robotic Grasps,
International Journal of Robotics Research (IJRR).

[6] H. Murase, S. K. Nayar, Visual Learning and Recognition of 3D Objects
from Appearance, International Journal of Computer Vision (IJCV).

[7] P. Mittrapiyanuruk, G. N. Desouza, A. C. Kak, Calculating the 3D-Pose
of Rigid-Objects using Active Appearance Models, in: Proceedings of
International Conference on Robotics and Automation (ICRA), 2004.

[8] S. Zickler, M. Veloso, Detection and Localization of Multiple Objects,
in: Proceedings of International Conference on Humand Robots (Hu-
manoids), 2006.

[9] M. Stark, M. Goesele, B. Schiele, Back to the Future: Learning Shape
Models from 3D CAD Data, in: Proceedings of British Machine Vision
Conference, 2011.

[10] J. Liebelt, C. Schmid, Multi-view Object Class Detection with a 3D Geo-
metric Model, in: Proceedings of Computer Vision and Pattern Recogni-
tion (CVPR), 2010.

[11] P. Wunsch, G. Hirzinger, Registration of CAD Models to Images by Iter-
ative Inverse Perspective Matching, in: Proceedings of International Con-
ference on Pattern Recognition, 1996.

[12] P. David, D. DeMenthon, R. Duraiswami, H. Samet, SoftPOSIT: Simul-
taneous Pose and Correspondence Determination, in: Proceedings of Eu-
ropean Conference on Computer Vision, 2002.

[13] M. A. Fischler, R. C. Bolles, Random Sample Consensus: A Paradigm
for Model Fitting and Applications to Image Analysis and Automated
Cartography, Association for Computing Machinery.

9

[14] D.DeMenthon, L. S. Davis, Model-Based Object Pose in 25 Lines of
Code, International Journal of Computer Vision.

[15] C.-P. Lu, G. D. Hager, E. Mjolsness, Fast and Globally Convergent Pose
Estimation from Video Images, Transaction on Pattern Analysis and Ma-
chine Intelligence (PAMI).

[16] F. Schaffalitzky, A. Zisserman, Multi-view Matching for Unordered Im-
age Sets, or “How do I Organize My Holiday Snaps?”, in: Proceedings of
European Conference on Computer Vision, 2002.

[17] C. J. Harris, A Combined Corner and Edge Detector, in: Proceedings of
Alvey Vision Conference, 1988.

[18] K. W. Chia, A. D. Cheok, S. J. Prince, Online 6-DOF Augmented Reality
Registration from Natural Features, in: Proceedings of European Confer-
ence on Computer Vision, 2002.

[19] P. David, D. DeMenthon, R. Duraiswami, H. Samet, Simultaneous Pose
and Correspondence Determination using Line Features, in: Proceedings
of Computer Vision and Pattern Recognition, 2003.

[20] G. Klein, T. Drummond, Robust Visual Tracking for Non-instrumented
Augmented Reality, in: Proceedings of International Symposium on
Mixed and Augmented Reality, 2003.

[21] E. Marchand, F. Chaumette, Virtual visual servoing: A framework for
real-time augmented reality, in: Proceedings of Eurographic, 2002.

[22] K. Harada, K. Nagata, T. Tsuji, N. Yamanobe, A. Nakamura, Y. Kawai,
Probabilistic Approach for Object Bin Picking Approximated by Cylin-
ders, in: Proceedings of International Conference on Robotics and Au-
tomation (ICRA), 2013.

[23] D. G. Lowe, Distinctive Image Features from Scale-invariant Key-points,
International Journal of Computer Vision (IJCV).

[24] I. Gordon, D. G. Lowe, What and Where: 3D Object Recognition with
Accurate Pose, Lecture Notes in Computer Science.

[25] A. Collet, D. Berenson, S. S. Srinivasa, D. Ferguson, Object Recognition
and Full Pose Registration from a Single Image for Robotic Manipulation,
in: Proceedings of International Conference on Robotics and Automation
(ICRA), 2009.

[26] W. Press, S. Teukolsky, W. Vetterling, Numerical Recipes in C: The Art
of Scientific Computing, The Cambridge Press, 1992.

[27] Y. Cheng, Mean shift, Mode seeking, and Clustering, Transaction on Pat-
tern Analysis and Machine Intelligence (PAMI).

[28] A. Ramisa, D. Aldavert, S. Vasudevan, R. Toledo, R. L. de Mantaras,
Evaluation of Three Vision based Object Perception Methods for a Mobile
Robot, Journal of Intelligent Robotic Systems (JIRS).

[29] M. Fiala, ARTag: A Fiducial Marker System using Digital Techniques,
in: Proceedings of Computer Vision and Pattern Recognition (CVPR),
2005.

[30] D. Wagner, D. Schmalstieg, ARToolKitPlus for Pose Tracking on Mobile
Devices, in: Proceedings of Computer Vision Winter Workshop, 2007.

[31] V. Sundareswaran, R. Behringer, Visual Servoing-based Augmented Re-
ality, in: Proceedings of International Workshop on Augmented Reality,
1998.

[32] H. Kato, M. Billinghurst, Marker Tracking and HMD Calibration for a
Video-based Augmented Reality Conferencing System, in: Proceedings
of International Workshop on Augmented Reality, 1999.

[33] L. Vacchetti, V. Lepetit, P. Fua, Stable Real-time 3D Tracking using On-
line and Offline Information, Transaction on Pattern Analysis and Ma-
chine Intelligence (PAMI).

[34] S. Makita, K. Okita, Y. Maeda, Motion Planning for 3D Multifingered
Caging with Object Recognition using AR Picture Markers, in: Proceed-
ings of International Conference on Mechatronics and Automation, 2015.

[35] F. Suligoj, B. Sekoranja, M. Svaco, bojan Jerbic, Object Tracking with
a Multiagent Robot System and a Stereo Vision Camera, Procedia Engi-
neering.

[36] K. Ramirez-Amaro, M. Beetz, G. Cheng, Transferring Skills to Human
Robots by Extracting Semantic Representations from Observations of
Human Activities, Artificial Intelligence.

[37] B. Freedman, A. Shpunt, M. Machline, Y. Arieli, Depth Mapping using
Projected Patterns (2012).

[38] S. M. Choi, E. G. Lim, J. I. Cho, D. H. Hwang, Stereo Vision System and
Stereo Vision Processing Method (2012).

[39] P. E. Bauhahn, B. S. Fritz, B. C. Krafthefer, Systems and Methods for
Safe Laser Imaging (2009).

[40] R. B. Rusu, S. Cousins, 3D is Here: Point Cloud Library (PCL), in:
Proceedings of International Conference on Robotics and Automation

(ICRA), 2011.
[41] C. Schutz, H. Hugli, Augmented Reality using Range Images, in: SPIE

Photonics West, The Engineering Reality of Virtual Reality, 1997.
[42] P. J. Besl, N. D. McKay, A Method for Registration of 3-D Shapes, Trans-

actions on Pattern Analysis and Machine Intelligence (PAMI).
[43] F. Tombari, S. Salti, L. D. Stefano, Unique Signatures of Histograms for

Local Surface Description, in: Proceedings of European Conference on
Computer Vision (ECCV), 2010.

[44] Z. C. Marton, D. Pangercic, N. Blodow, M. Beetz, Combined 2D-3D Cat-
egorization and Classification for Multimodal Perception Systems, Inter-
national Journal of Robotic Research (IJRR).

[45] A. Aldoma, et al., CAD-model recognition and 6DOF pose estimation
using 3D cues, in: ICCV Workshops, 2011.

[46] W. Wohlkinger, M. Vincze, Ensemble of Shape Functions for 3D Object
Classification, in: Proceedings of International Conference on Robotics
and Biomimetics (ROBIO), 2011.

[47] A. Aldoma, Z. C. Maron, F. Tombari, M. Vincze, Tutorial: Point Cloud
Library: Three-Dimensional Object Recognition and 6 DOF Pose Esti-
mation, IEEE Robotics and Automation Magzine.

[48] Y. Shiraki, K. Nagata, N. Yamanobe, A. Nakamura, K. Harada, D. Sato,
D. N. Nenchev, Modeling of Everyday Objects for Semantic Grasp, in:
Proceedings of International Symposium on Robot and Human Interactive
Communication, 2014.

[49] M. J. Schuster, J. Okerman, H. Nguyen, J. M. Rehg, C. C. Kemp, Per-
ceiving Clutter and Surface for Object Placement in Indoor Environment,
in: Proceedings of International Conference on Humanoid Robots (Hu-
manoids), 2010.

[50] G. Smonath, M. Rohith, D. Metaxas, C. Kambhamettu, D-Clutter: Build-
ing Object Model Library from Unsupervised Segmentation of Cluttered
Scenes, in: Proceedings of Computer Vision and Pattern Recognition),
2010.

[51] M. Saval-Calvo, J. Azorin-Lopez, A. Fuster-Guillo, J. Garcia-Rodriguez,
Three-dimensional Planar Model Estimation using Multi-constraint
Knowledge based on K-means and RANSAC, Applied Soft Computing.

[52] L. Goron, Z.-C. Marton, G. Lazea, M. Beetz, Robustly Segmenting Cylin-
drical and Box-like Objects in Cluttered Scenes using Depth Camera, in:
Proceedings of German Conference on Robotik, 2012.

[53] E. C. Cheung, C. Cao, J. Pan, Multi-contour Initial Pose Estimation for
3D Registration, in: Proceedings of International Conference on Intelli-
gent Robots and Systems (IROS), 2015.

[54] G. Taylor, L. Kleeman, Fusion of Multimodal Visual Cues for Model-
based Object Tracking, in: Proceedings of Australasian Conference on
Robotics and Automation (ACRA), 2003.

[55] T. Kempter, A. Wendel, H. Bischof, Online Model-Based Multi-Scale
Pose Estimation, in: Proceedings of Computer Vision Winter Workshop,
2012.

[56] G. Reitmayr, T. Drummond, Going Out: Robust Model-Based Tracking
for Outdoor Augmented Reality, in: Proceedings of International Sympo-
sium on Mixed and Augmented Reality, 2006.

[57] D. Pangercic, V. Haltakov, M. Beetz, Fast and Robust Object Detection in
Household Environments using Vocabulary Trees with Sift Descriptors,
in: International Conference on Intelligent Robots and Systems (IROS),
Workshop on Active Semantic Perception and Object Search in the Real
World, 2011.

[58] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab,
V. Lepetit, Multimodal Templates for Real-Time Detection of Texture-
less Objects in Heavily Cluttered Scenes, in: Proceedings of International
Conference on Computer Vision (ICCV), 2011.

[59] Y. Domae, D. Okuda, Y. Taguchi, K. Sumi, T. Hirai, Fast Graspability
Evaluation on Single Depth Maps for Bin Picking with General Grippers,
in: Proceedings of International Conference on Robotics and Automation
(ICRA), 2014.

[60] W. Wan, K. Harada, Developing and Comparing Single-arm and Dual-
arm Regrasp, IEEE Robotics and Automation Letters (RA-L).

[61] L. Jaillet, J. Cortes, T. Simeon, Transition-based RRT for path planning
in continuous cost spaces, in: Proc. of IROS, 2008.

[62] H. Liu, D. Ding, W. Wan, Predictive Model for Path Planning using K-
near Dynamic Brdige Builder and Inner Parzen Window, in: Proceedings
of International Conference on Intelligent Robots and Systems (IROS),
2008.

[63] S. kook Yun, Compliant Manipulation for Peg-in-Hole: is Passive Com-

10

pliance a Key to Learn Contact Motion, in: Proceedings of International
Conferenc on Robotics and Automation (ICRA), 2008.

11

	1 Introduction
	2 Related Work
	2.1 RGB images
	2.2 Markers
	2.3 Point cloud
	2.4 Extrinsic constraints
	2.5 Multi-modal fusion

	3 System Overview
	4 3D Detection during Human Teaching
	5 3D Detection during Robotic Execution
	5.1 Rough detection using point cloud
	5.2 Noise correction using geomteric constraints

	6 Grasp and Motion Planning
	6.1 Grasp planning
	6.2 Motion planning

	7 Experiments and Analysis
	7.1 Precision of the object detection in human teaching
	7.2 Precision of the object detection in robotic execution
	7.3 Simulation and real-world results

	8 Conclusions and Future Work

