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Abstract

Quantum Clustering (QC) provides an alternative approach to clustering
algorithms, several of which are based on geometric relationships between data
points. Instead, QC makes use of quantum mechanics concepts to find struc-
tures (clusters) in data sets by finding the minima of a quantum potential. The
starting point of QC is a Parzen estimator with a fixed length scale, which sig-
nificantly affects the final cluster allocation. This dependence on an adjustable
parameter is common to other methods. We propose a framework to find suit-
able values of the length parameter σ by optimising twin measures of cluster
separation and consistency for a given cluster number. This is an extension of
the Separation and Concordance framework previously introduced for K-means
clustering. Experimental results on two synthetic data sets and three challeng-
ing real-world data sets show that optimisation of cluster separation identifies
QC solutions with consistently high Jaccard score measured against true-cluster
labels while optimisation of cluster consistency provides insights into hierarchi-
cal cluster structure.

Keywords: Quantum clustering, Non-spherical data distributions, Number of
clusters, Parameter optimization, Separation and Concordance

1. Introduction

As interest in knowledge extraction from data grows, this typically includes
exploratory analysis especially when the data are unlabelled. A central step in
exploratory data analysis is the discovery of different categories or profiles in
the data. Clustering algorithms are efficient methods for unsupervised learn-
ing among which a frequently used algorithm is K-Means [1]. This method
implements a hard partition of the data by identifying representative points,
the prototypes, which minimize the sum of within cluster squared Euclidean
distances as shown in Eqs. (1) and (2):
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J(Θ, U) =

N∑
i=1

K∑
j=1

uij‖xi −Θj‖2 (1)

uij =

{
1, d(xi,Θj) = mink=1,...,K d(xi,Θk)
0, otherwise

}
i = 1, . . . , N (2)

where d(xi,Θj) is the distance between the i-th pattern and the j-th proto-
type, N the number of patterns and K the number of clusters. In spite of its
simplicity, K-Means is an adequate and efficient choice of clustering algorithm
in many cases. However, it suffers from a number of drawbacks that limits its
applicability. In particular, it tends to find spherical clusters formed by approxi-
mately the same number of patterns. Moreover, the final cluster allocation vary
significantly with the choice of prototype initialisation. In addition, there is a
requirement to pre-set the number of clusters, K, even though the optimal value
of K is generally not known in advance. Consequently, K-means may mix nat-
ural clusters or break them up with unnecessary intermediate clusters [2, 3, 4].
A previous publication [3] proposed a framework to ensure that optimal results
can be reproduced when K-means is repeatedly applied to the same data. This
framework relies on a parametrisation of the set of clustering solutions obtained
for different prototype initialisations and cluster numbers, using measurements
of cluster separation and of the internal consistency, or concordance, between
multiple clustering solutions obtained for the same K, hence the term SeCo for
Separation and Concordance mapping of the space of clustering solutions.

This paper proposes an extension of this method to find suitable length
parameters when applying Quantum Clustering (QC) [5, 6, 7]. This alternative
clustering methodology is attractive because it more naturally fits non-spherical
data distributions [8, 9] and it is also better suited to model clusters of different
sizes present in the same data set. We start with a review of existing methods
for optimisation of the value of the scale parameter directly from the dispersion
properties of the data, initially proposed in [10, 11], before comparing the results
with the proposed alternative method for estimating the length parameter σ
using the outcome of QC clustering rather than the data alone.

An estimation of the scale parameter was proposed in [12], where σ and the
Parzen estimator are computed locally based on the information of their K-
Nearest Neighbours. To tackle the problem of high-dimensional data and their
scalability, QC can be combined with techniques of dimensionality reduction [12,
13, 14, 15].

The rest of the paper is outlined as follows. Section 2 introduces the QC
algorithm. Section 4, reviews methods for estimating optimal values of σ from
the data, by application to a set of benchmarking data sets which include two
synthetic examples and three real-world data sets. This is followed in Section
5, by the introduction of the SeCo framework and description of its application
to the same data sets to set the length scale from clustering results. The ex-
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perimental results are discussed in Section 6 from which conclusions are then
drawn in Section 7.

2. Methodology

2.1. Quantum clustering

Many clustering algorithms are based on locations of points in the data space.
That methodology works sufficiently well in many situations but it describes a
problem that might be ill defined. QC proposes a different methodology, inspired
in concepts from Quantum Mechanics [5, 6, 7]. It starts with a Parzen-window
estimator of the probability distribution based on the data; then, a Gaussian
kernel generates a probability distribution from the data points in a Euclidean
space, as shown in Eq. (3):

Ψ(x) =
∑
i

exp

(
− (x− xi)

2

2 · σ2

)
(3)

where xi are the data points. QC associates maxima of this function with
cluster centers in a Hilbert space driven by the Schrödinger equation so that
minima of the Schrödinger potential are associated with cluster prototypes. The
Schrödinger equation is given by Eq. (4):

HΨ ≡
(
−σ

2

2
∇2 + V (x)

)
Ψ(x) = EΨ(x) (4)

where Ψ(x) is a solution of the equation (eigenstate), H is the Hamiltonian,
V the potential energy and E is an energy eigenvalue. The simplest case is
given by a single Gaussian where Ψ represents a single point at x1. It leads
to the potential V = 1

2σ2 (x− x1)
2
; this is a well-known potential in Quantum

Mechanics, the so-called harmonic potential whose ground state corresponds
to the eigenvalue E = h̄ω

2 = d
2 , where h̄ is the reduced Planck constant, ω the

angular frequency, and d the space dimension. Therefore, the Gaussian function
describes the ground state of H.

Although in Quantum Mechanics the usual strategy is to find solutions for
Ψ(x) given the potential, the proposal of QC is the other way around, i.e., since
Ψ(x) is already determined by the data points, the goal is to find a potential
V (x) whose solution is the given Ψ(x):

V (x) = E +
σ2

2 ∇
2Ψ

Ψ
= E − d

2
+

1

2σ2Ψ

∑
i

(x− xi)
2

exp

(
− (x− xi)

2

2 · σ2

)
(5)

If V is positive definite, minV = 0, and hence E = −min
σ
2∇

2Ψ

Ψ , which

implies that 0 < E < d
2 .

After cluster prototypes are found, the final task is to assign each pattern
to a given cluster. This can be done by means of a gradient descent algorithm;
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defining yi(0) = xi, the trajectories of this point over time, yi(t), is iterated as
follows, where η is the learning rate that controls the speed of approaching the
nearest minimum:

yi(t+ ∆t) = yi(t)− η(t)∇V (yi(t)) (6)

letting yi reach an asymptotic fixed value coinciding with a cluster prototype [7].

2.2. Parameter optimisation

The QC code used in this work is based on the Matlab COMPACT GUI [16].
Among the different parameters that appear in this implementation, the most
important one in the QC algorithm is σ; the rest of the parameters have been
set to default because that was the setup that provided the best results in [8],
the original work from which this paper is an extended version:

• Learning rate, η = 0.10

• Number of steps = 100

• Rescale each step = FALSE

• Use of QC Core = FALSE

2.3. Number of clusters

As cluster prototypes are associated with potential minima in QC, and the
only undetermined parameter is σ, different clustering solutions will be obtained
for different values of σ. In particular, as σ is decreased, more and deeper
minima are expected to be found. The tuning of σ is usually carried out by
means of varying it smoothly and looking for stability of cluster solutions [7].
Our conjecture is that if one could optimise the value of σ, QC would become an
automatic clustering algorithm, able to find the best combination of structures
(in principle, of different shapes) that define the data.

In the next section we introduce several data sets, real and synthetic, which
will be used to illustrate the application of the proposed methodology.

3. Description of the data

Five different data sets are used in this study to illustrate the application
of the proposed methods: two synthetic data sets and three real data sets com-
monly used to benchmark clustering methods. The data sets are described in
detail in Sections 3.1 and 3.2. Both synthetic data sets are generated using
Gaussian distributions, some of them highly overlapped, thus producing unique
structures formed by different Gaussian distributions that are difficult to sep-
arate by clustering. The real-world datasets demonstrate markedly different
cluster shapes and mix clusters of different sizes in the same data.

4



3.1. Synthetic data sets

Artificial Data Set #1 (4 clusters). This data set depicts a first possible sce-
nario, relatively simple, formed by 800 samples in a three-dimensional space and
four clusters with the same number of observations each. The aim is to evaluate
how QC reacts when there are three groups of clusters equidistant and how it
affects the internal Concordance when QC tries to allocate the labels with the
wrong cluster number. The four clusters are generated by a spherical Normal
distribution. Figure 1 shows that two clusters are partially overlapped and the
other two are totally separated.

-10

-5

5

0

5

10

3

0

2

-8-6-4-2024-5 6810

Figure 1: Principal components’ visualisation of artificial data set #1. This data set contains
four clusters, generated by a Normal distribution.

Artificial Data Set #2 (10 clusters). This data set has been used in [2, 3, 4],
it is based on 1076 observations in three dimensions with 10 clusters. Each
cluster has a different proportion of observations, being some of them sparse.
The overlapping between two clusters is important thus being quite difficult to
detect, however there are other clusters easily separable. The covariance matrix
of the Gaussian distributions is not spherical. Figure 2 shows the principal
components of this dataset.

3.2. Real data sets

Wine data set. This dataset available on the UCI data repository [17] is well
known and comprises 178 observations in 13 variables. It was acquired from a
chemical analysis of wines grown in one region of Italy. Each of the attributes
consists of measurements taken from the various wines, which are created using
three distinct cultivars. The attributes are Alcohol, Malic Acid, Ash, Alcalin-
ity of the Ash, Magnesium, Total Phenols, Flavanoids, Nonflavanoid Phenols,
Proanthocyanins, Color Intensity, Hue, OD280/OD315 of diluted wines and Pro-
line. The cultivars are well separated with the expectation of good classification
by approaches like K-means.
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Figure 2: Principal components’ visualisation of artificial data set #2 (10 clusters). This data
set contains 10 clusters, generated by a Normal distribution.

Olive oil data set. The Italian olive oil data set consists of 572 samples and
10 variables. Eight variables describe the percentage composition of fatty acids
found in the lipid fraction of these oils, which is used to determine their authen-
ticity. The remaining two variables contain information about the classes, which
are of two kinds: three “super-classes” at country level: North, South, and the
island of Sardinia; and nine collection area classes: three from the Northern
region (Umbria, East and West Liguria), four from the South (North and South
Apulia, Calabria, and Sicily), and two from the island of Sardinia (inland and
coastal Sardinia).

The goal is to distinguish the oils from different regions and areas in Italy
based on their combinations of the fatty acids. The clusters corresponding to
classes all have different shapes in the eight-dimensional data space defined by
the concentration of fatty acids [18, 19].

Iris data set. The Iris dataset [17] was introduced by Sir Ronald Fisher in 1936
for the purpose of using it as an example in explaining discriminant analysis.
The dataset comprises 150 data points in four dimensions matching the Sepal
and Petal width and height for each observation. There are three cohorts present
in the data: Setosa, Virginica and Versicolor.

3.3. Data pre-processing

The QC algorithm is designed to work in a normalised data space so that
σ values are bounded in the range [0, 2] [5, 6, 7, 16]. For that reason, it is
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necessary to implement a previous data pre-processing.
The first step is to apply the reduced Single Value Decomposition, using the

Umxn matrix of left-singular vectors as the new data.
The data need to be normalized to a unit hyper-sphere. However, in order

to preserve length information, an extended vector is used with a column of
ones added to the original matrix, Umxn. In addition, the original data matrix
is re-scaled by a single factor λ to ensure that mean length of the rows is 1. In
summary:

Datamxn = UmxnΣnxnV
∗
nxn

U ′mxn = Umxn/λ (7)

Z = rnorm([U ′, 1]mx(n+1))

where rnorm is a function that normalizes every matrix row by length 1.
In this way, raw data is transformed in a normalised hyper-sphere space, but

keeping sample module information, and where the variance si is bounded to
[0, 2].
In some datasets QC performance can be improved reducing the data dimen-
sionality, but in this work the option of reducing the dimensionality through
PCA has been skipped so that all datasets have the same preprocessing.

4. Setting the length scale from the data

For the optimisation of σ, we make use of a statistical approach for estimating
the scale parameter of a potential function presented in [10, 11], that can be
translated for the estimation of σ in QC. The estimation is based on calculating
the average Euclidean distance to a set of neighbours for each data sample;
the resulting local variances are modelled as a Gamma distribution and the
scale parameter is estimated as the mean of this Gamma distribution. Given a
data sample xi, a ranking of all other data samples according to their squared
Euclidean distance to xi is performed:

RK(xi) =
{
x(k) | ‖x(k−1) − xi‖2 < ‖x(k) − xi‖2

}
(8)

for k = 1, 2, . . . ,K, where x(k) represents the K-nearest neighbours of xi, and
‖ ‖ denotes the Euclidean distance between a data sample and xi. Since the
variance si of the local neighbourhood around each sample can be calculated, an
empirical distribution of local variance estimates can be formed by considering
several data samples xi and their neighbourhoods RK(xi). The probability
density function that characterises the empirical local variance is modelled by
the Gamma distribution:

p(s) =
sα−1

βαΓ(α)
exp(− s

β
) (9)
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where α > 0 is the shape parameter, and β > 0 is the scale parameter of the
Gamma distribution Γ(·):

Γ(t) =

∫ ∞
0

rt−1 exp(−r)dr (10)

The parameters α and β are estimated from the empirical distribution of
the variance, modelled by Eq. (9). There are different methods to calculate the
parameters α and β; the moments method is proposed in [10, 11]:

α̂ =

(
s

l

)2

; β̂ =
l2

s
(11)

where s and l are the sample mean and standard deviation of the distribution
of nearest neighbour distances for a given value of K. The estimation of σ̂ can
then be obtained as σ̂ = α̂β̂.

As detailed in next sections of the paper, this methodology is tested in QC
to find out whether it can be successfully applied to detect a suitable number
of clusters in several data sets (both synthetic and real) with different charac-
teristics.

Two methods were used to find the most suitable fit from the data, both
following the procedure described in [10, 11]. The first method estimates σ
using the average dispersion of the data and the second fits the distribution
of the dispersion using gamma functions. We show that both methods lead to
similar values of the scale parameter σ for each data set, but these values are
not necessarily optimal.

The data dispersion at each data point is estimated using K-nearest neigh-
bours (K-NN) with increasingly large numbers of near neighbours. Given a
certain K, the α and β parameters of the Gamma distribution can be obtained
either using the moments method as described in Eq. (11) or fitting the si em-
pirical distribution to the Gamma distribution; in this work the gamfit Matlab
built-in function was used. Figure 3 shows the estimation carried out by these
two different ways of calculation; as expected, both produce the same result:
σ̂ = α̂β̂. The vertical lines show the best σ solution according to the Jaccard
score for the two external labels of the olive oil data set; that helps to visu-
alise the value of the optimal σ. The bottom-left graph of Figure 3 shows the
function σ = f(KNN). Also one may observe the linear regression fitted to
the interquartile range of σ values. Over K = N/2 a Normal distribution be-
haviour is expected, where the variance increases linearly as K increases. The
bottom-right graph shows the si standard deviation with the aim of providing
additional information to estimate the best K.

The next step is to decide which K is the appropriate to select σ. Two
options have been discussed:

• According to [10, 11], K = N/4, being N the sample size, is a reasonable
choice. This approach suggests that the first quartile is the Separation
border between the variance of close neighbours and the variance produced
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Figure 3: Olive oil data set: Two methods to estimate σ̂. Moments method in top graphs,
fitting Gamma distribution in middle graphs. Estimated σ̂ in bottom left and si sample
standard deviation in bottom right. Vertical lines indicate the best σ solution according to
the Jaccard score for the two external labels of the olive oil data set.
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by remote-enough samples for Normal behaviour.

• The other option goes beyond [10, 11] and it is based on the assuming that
the variance has a normal behaviour when K is sufficiently large to include
remote neighbours, like K in the third quartile of the sample size. Fitting
a linear regression in this range of K enables to compare the variance with
near neighbours against the far ones. One criterion could be to choose a K
that separates more than 50% of the total distance between the variance
si and the linear regression.
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Figure 4: Olive oil and artificial data set #2 (10 clusters): Left graphs show the estimated
si variance curve with confidence intervals at 95%, the linear regression on the interquartile
range of KNN, and the two suggested KNN solutions, K = N/4 and K at 50% with the linear
regression. Right graphs show the error between si and the linear fit, and the two suggested
KNN solutions.
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Figure 5: Wine, artificial data set #1 (4 clusters) and Iris data set: Left graphs show the
estimated si variance curve with confidence intervals at 95%, the linear regression on the
interquartile range of KNN, and the two suggested KNN solutions, K = N/4 and K at 50%
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two suggested KNN solutions.
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Figures 4 and 5 present the two methods for estimating σ as a function of
KNN in different datasets. One may observe a completely different si behaviour
depending on the dataset, this affects the confidence intervals, the K selected
and hence the σ estimated. This issue will be discussed thoroughly later.

It would be expectable that the si curves could reveal some information
about the data internal structure, and that it would relate the KNN with the
proper σ. But it is not the case, choosing a σ with this method seems somewhat
arbitrary. There is a case to be especially noticed in Figure 5 for the artificial
data set #1, which is formed by 4 clusters, 2 of them totally separated, having
200 samples per cluster approximately; the variance curve presents an abrupt
behaviour when KNN has to include observations from the more distant clus-
ters. This should provide a clear KNN to choose σ, but the best actual σ range
is about [0.65, 0.70], quite far away from the suggested [0.2, 0.3]. An additional
problem is that this method offers a single solution that it varies strongly de-
pending on a single premise, and hence, it is hard to create a general criterion
that fits all the datasets. As QC needs more σ precision than that yielded by
this method, we came up with an alternative approach, presented in Section 5.

These results illustrate the difficulty in establishing a criterion for estimation
of consistently good values of the length parameter σ. This is addressed further
in the next section.

5. Setting the length scale from clustering results

One of the main objectives in optimising QC to a given data set is to assess
the QC solutions in an unsupervised way. This amounts to finding values of
the length scale for the initial Parzen estimator, which is controlled by the
Gaussian with parameter σ. In this section we will propose a framework using
complementary measures of cluster performance to a) map the QC solution
space, b) find suitable values for the number of clusters, K, and length parameter
σ and c) generate insight into possible hierarchical structure in the data.

In the absence of external labels, we propose the use of a two-dimensional
performance assessment framework, which we call Separation and Concordance
(SeCo). This was first introduced in [2, 3, 4] to assess K-Means and Adaptive
Resonance Theory (ART) models. The SeCo performance assessment is based
on ∆SSQ and Concordance measurements grouped per cluster number solu-
tions; by plotting Concordance versus ∆SSQ one may visualise how concordant
is a group of K solutions at the same time assessing the cluster Separation.
For K-Means, the Concordance measure is very important because of K-Means
strongly dependence on the centroids initialisation; however, the Concordance
is much less relevant for QC.

The unsupervised performance assessment can be done following the next
steps:

a) The first step is to run the QC over σ values between [0, 2] in regular
intervals.
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b) The second step is to measure the number of clusters per σ value; this
information shows how the potential V (x) evolves according to σ values,
and reveals where the data structure is more stable: the wider σ range
the more stable data structure. Figure 6 shows the solutions for the olive
oil data set.

2 3 4 5 6 7 8 9 10 11 12 13

Cluster number

0.35

0.4

0.45

0.5

0.55

0.6

S
ig

m
a 

ra
ng

e

Olive

2 4 6 8 10 12 14

Cluster number

100

101

102

103

S
ol

ut
io

ns
 p

er
 c

lu
st

er

Figure 6: Olive oil data set: Left graph shows the σ range per number of clusters. Right
graph shows the number of QC solutions per number of clusters. Solutions with clusters from
2 to 13 were filtered from the initial 1000 different σ values.

c) The third step is to obtain the SeCo framework. For every QC solution
grouped by number of clusters, the ∆SSQ and the internal Concordance
are calculated. The SeCo framework can be observed in figure 7 for the
olive oil data set. Unfortunately, the graph needs to zoom in to appreciate
each K in detail, and this justifies the plot of the next step.

d) In order to adapt the SeCo framework to QC, σ has been added as an
additional variable in the SeCo framework. Plotting ∆SSQ against σ, and
Concordance against σ, it is possible to observe all the relevant information
in a straightforward way. Figure 8 shows that representation for the olive
oil data set.

Section 6 will show a deeper analysis of the procedure to select the most
useful K and the corresponding solution. The process of finding a sufficiently
good solution for unknown data consists in two parts; firstly, a selection of an
appropriate K, and secondly, a solution within all K-groups’ solutions. The
criterion to select K has been based on choosing the lowest K (for simplicity)
that improves considerably the Separation and has a good Concordance (not
necessarily the best).
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Figure 7: SeCo representation for the olive oil data set. The plots contains the Separation
and the Concordance for each number of clusters, marking the solution with the best Jaccard
score for each cluster number, using two sets of external labels: Js1 stands for the solution
corresponding with three regions and Js2 for the case of nine areas. For example, for cluster
numbers K = 3 and 4, a better ∆SSQ score is achieved with the smallest value of σ for that
K, which is highest on the y-axis. Although it is not obvious from the value of ∆SSQ, the
best Jaccard score for 3 labels, Js1, occurs for K = 4. And the best for 9 labels, Js2, for
K = 8.
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Figure 8: SeCo vs. σ for the olive oil data set. Top graph shows ∆SSQ vs. σ. Bottom
graph internal Concordance vs. σ. Additionally it is possible to appreciate the σ range as
an estimation of cluster stability in the quantum potential V (x). This figure illustrates three
main points: First, there is a value of σ where the Separation stabilizes. In this case it is
K = 6. Second, within the range of K with high Separation, i.e. 6 and above, there is an
increase in internal Concordance for K = 8. Thirdly, the value of K finally selected to be
optimal for this data set, also has a wide range of values of σ. This confirms K = 8 in this
case.
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The external labels with the Jaccard scores can help to verify the conclusions
obtained in this framework. For each K, three main solutions can be extracted,
the solution with highest Separation, the solution with highest Concordance and
the solution with highest Jaccard score (knowing the true labels). Comparing
between them it is possible make an inference about which is the most relevant
criterion. For instance, in Figure 9 they can be compared for the olive oil data
set, where one may see that the solution with the best Separation (∆SSQ) is
frequently almost as good as the one with the best Jaccard score.

6. Discussion of the experimental results

This section is focused on the SeCo vs. σ plots for the different data sets
described in Section 3. The rest of the graphs presented in the previous section
have been omitted to limit the length of the paper, and also because SeCo
vs. σ is the most relevant plot in order to decide a useful K. To support the
conclusions, the Jaccard score plots of the true labels are presented, as well.

6.1. Synthetic data sets

6.1.1. Artificial data set #1 (4 clusters)

This dataset is designed to produce a Concordance conflict when K 6= 4
because there are three groups of equidistant clusters, one group contains two
close clusters and the other two have a single cluster. The Concordance conflict
is due to different label assignments when they are equally probable. At least,
this is the expected behaviour for K-Means.

Figure 10 shows the SeCo vs σ. Here the expected conflict in Concordance is
not as significant as it would be in K-Means. QC depicts the K = 4 as the widest
σ range and it has constant high Concordance compared with other K values,
what reveals the importance of the σ range as a cluster stability estimation.

In QC, the Concordance is not as relevant as it is in other algorithms be-
cause QC does not depend on random initialisations; every solution at σi is a
slight variant of the solution at σi−1 when σ values are sufficiently similar. The
exception happens in the point when the cluster number changes, then again
the solutions evolve gradually till the next K.

Figure 11 shows that any K ≥ 4 is a suitable K; the solution with highest
∆SSQ has the same performance as the one with highest Concordance, given
any K.

6.1.2. Artificial data set #2 (10 clusters)

In this data set, SeCo vs σ plot in Figure 12 shows a curve plateau in the
representation of ∆SSQ, thus suggesting that the solutions for K ≥ 4 are quite
separated. Attending the group Concordance, the best are K ∈ [5, 8], all have
a reasonably wide σ range compared with K > 8. Thus, the chosen solution
should be one of the K ∈ [5, 8], depending on the desirable number of clusters.

Comparing these results with the supervised Jaccard score plot in Figure 13,
it is observable the increasing performance with K even for values greater than
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Figure 9: Jaccard score for three and nine regions of the olive oil data set. There are three
solutions, the one with best Jaccard score for that K, the one with best Separation and the
one with best internal Concordance. These solutions may not be the same, i.e. they may
have different values of σ for the same K. Refer to Figure 7. This figure shows that, in
general, a) the σ with best Separation (∆SSQ) has a better Jaccard score than the σ with
best Concordance, and b) the value of K selected by the proposed method, i.e. K = 4 and 8,
have strong Jaccard scores.
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Figure 10: SeCo vs. σ for the artificial data set #1 (4 clusters). Top graph shows ∆SSQ vs
σ. Bottom graph internal Concordance vs. σ. Additionally it is possible to appreciate the σ
range as an estimation of cluster stability in the quantum potential V (x).
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Figure 11: Jaccard score for four external labels on artificial data set #1 (4 clusters). There
are three solutions, the one with best Jaccard score for that K, the one with best Separation
and the one with best internal Concordance.

the actual number of clusters, although the Jaccard score performance for K ∈
[5, 8] is close to the plateau curve.

In any case, it is remarkable the poor performance in general of the QC for
this dataset, with scores lower than 0.35. Other interesting aspect is the per-
formance differences for the best Concordance solution and the best Separation
solution with K > 8, being better for the latter.

6.2. Real data sets

6.2.1. Olive oil

Figure 8 shows a considerable improvement in terms of ∆SSQ when the
cluster number passes from K = 2 to 3 and so on, but ∆SSQ seems to stabilize
in K = 6. This is a common pattern observed in all the tested datasets, there
is a certain K where the ∆SSQ reaches the curve plateau. In this point QC
already has found the main clusters, but beyond this point, more K only splits
some clusters in additional subdivisions without really improving ∆SSQ. This
is the main hint to indicate a suitable K beyond this point.

Next hints to pay attention are the internal Concordance and the σ range
per K. From solutions with K ≥ 4, the K with the highest internal Concordance
as a group would be a good candidate. Next priority should be to give priority
to those values of K with a wider σ range, for instance avoiding K = 3, 5, 9, 10
or 12. With those priorities, the best candidate should be K = 8. Regarding
which is the best solution within K = 8, the priority should be the solution with
highest ∆SSQ. This statement is based on the observation of the Jaccard score
plots shown in Figure 9, where the solution with highest ∆SSQ is always closer
to the best Jaccard score solution than the one with highest Concordance.
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Figure 12: SeCo vs. σ for the artificial data set #2 (10 clusters). Top graph shows ∆SSQ vs.
σ. Bottom graph internal Concordance vs. σ. Additionally it is possible to appreciate the σ
range as an estimation of cluster stability in the quantum potential V (x).
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Figure 13: Jaccard score for 10 external labels in the artificial data set #2 (10 clusters). There
are three solutions, the one with best Jaccard score for that K, the one with best Separation
and the one with best internal Concordance.

21



6.2.2. Wine

The results of this dataset can be observed in figure 14; they are different
from those obtained with the olive oil data set. The first difference is in the
number of solutions, the main reason is due to the narrow σ range; for K ∈
[2, 13], σ ∈ [0.452, 0.493]; this situation helps to explain how difficult is to find
a suitable value of σ with the KNN approach.

Other aspects to remark are the unexpected valley in the ∆SSQ curve or the
K fluctuation for adjacent σ values. These aspects point to a bad performance
of QC in this dataset, and in fact, if one observes the Jaccard score (Figure 15),
a poor performance is observed. The wine data set is supposed to have easily
separable clusters, but QC does not work well, probably because the hyper-
sphere space transformation overlaps two labels when in the raw data it does
not occur. In addition, the ratio observations / features is quite low, 174/13.

In any case, a suitable K based on SeCo vs σ plot would be K = 8 because
it is the first K with high ∆SSQ and with good Concordance, despite its low
σ range.
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Figure 14: SeCo vs. σ for the wine data set. Top graph shows ∆SSQ vs. σ; bottom graph
internal Concordance vs. σ. Additionally it is possible to appreciate the σ range as an
estimation of cluster stability in the quantum potential V (x).

6.2.3. Iris

For the results corresponding to Iris data set, shown in Figure 16, and fol-
lowing the ∆SSQ priority, the chosen K would be K = 4, which has a good
Concordance and a wide σ range. However, Figure 17 shows that the solutions
for K = 2 or 3 have a higher Concordance and a higher Jaccard score than the
chosen ones with K ≥ 4, although this information would be unknown in an
unsupervised scenario.
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Figure 15: Jaccard score for three external labels in the wine data set. There are three
solutions, the one with best Jaccard score for that K, the one with best Separation and the
one with best internal Concordance.
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Figure 16: SeCo vs. σ for the Iris data set. Top graph shows ∆SSQvs.σ. Bottom graph
internal Concordance vs. σ. Additionally it is possible to appreciate the σ range as an
estimation of cluster stability in the quantum potential V (x).
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Figure 17: Jaccard score for three external labels in the Iris data set. There are three solutions,
the one with best Jaccard score for that K, the one with best Separation and the one with
best internal Concordance.

6.3. Summary of results

Table 1 summarizes the main results obtained in the tested datasets. The
∆SSQ row indicates the chosen K according to the separation measure. The Cv
row depicts those K which have the highest Cramér’s V, revealing a possible
underlying hierarchical structure. The Js row shows which K has the QC
solution with the highest Jaccard score compared with the true labels, and
finally, the last row shows the number of clusters of the true labels.

6.4. Methodology to find the value of K

This section describes a schematic procedure for finding the most suitable
K and its QC solution for unknown data.

The algorithm 1 describes the methodology to find the SeCo parameters.
Once the parameters have been obtained, the value of K with consistently best
separation should be selected; then, the value of σ for the best separation is the
QC of choice for that value of K. High values of the concordance measure for
different number of clusters indicate the presence of a hierarchical structure.

6.5. Scalability

Regarding the time complexity of QC, it should be considered that QC
depends on the length of the observations that generate the potential, ngen,
the number of points where the potential is computed, nalloc, the dimension
of the data, dim, and the number of steps applied in the stochastic gradient
descent (SGD), stepsSGD. Therefore, an estimation of its time complexity is
O(ngen ∗ nalloc ∗D ∗ stepsSGD).

The SeCo framework increases the time complexity in a factor that depends
on the number of different σ to be sampled, being a time complexity of O(ngen ∗
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Table 1: Cluster number K identified by different criteria with corresponding Jaccard scores
against true labels shown within [ ].

Maximal
criterion

Artificial
dataset 1

Artificial
dataset 2

Olive oil
data

Wine
data

Iris
data

∆SSQ 6 [0.81] 6 [0.34] 8 [0.75] 5 [0.4] 5 [0.49]

Cv 6 [0.81]
5 [0.32]
6 [0.34]

5 [0.70]
8 [0.75]

2, 3, 6
All [0.34]

2 [0.58]
6 [0.44]

Js ≥4 [0.79-0.81] 10 [0.35]

4 [0.85]
vs 3 lab.
8 [0.75]
vs 9 lab.

4, 5, 7
All [0.43]

2, 3
Both [0.58]

Number
of true
clusters

4 10 3, 9 3 4

Algorithm 1 Get N QC solutions and SeCo parameters

1: σN ← N-vector evenly distributed ∈]0, 2[
2: for i = 1 : N do
3: Solutioni ← QC(σi) . Solution: QC outcome (vector of labels)
4: ∆SSQi ← SSQ1cluster − SSQSolutioni
5: CNi ← Cluster Number(Solutioni)
6: end for
7: Filter Solutions with CNi ∈ [CNmin, CNmax] . To avoid excessive CN
8: for CNj = CNmin : CNmax do
9: Solj = Solutions with CN = CNj

10: for i = 1 : max(Solj) do
11: CVi = median(Cramer′sV (Solji, SolCNj )) . Internal Concordance
12: end for
13: end for
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nalloc ∗D∗stepsSGD ∗#σ); in particular, 1,000 sigma samples have been used in
the experiments presented in this paper. Nevertheless, this work has not been
focused on time complexity or scalability, which are undoubtedly relevant topics
for future research.

7. Conclusions

This paper has proposed two figures of merit to characterise the quality of
solutions obtained by QC, from which cluster numbers can be identified which
maximise the fit against true cluster labels. Maximisation of cluster separation
identifies clusters with consistently high Jaccard score against true labels, while
high values of cluster consistency provide insights about hierarchical cluster
structures. The proposed framework provides useful guidance to set an optimal
value for the length scale parameter σ for each data set.

Two approaches have been proposed to find the best σ, and in turn, the
correct number of clusters. The first one is based on the variance of K-Nearest
Neighbours, and the second one on sampling QC solutions to apply the SeCo
framework. The results yielded by the former approach do not suggest its use
as a rule of thumb, due to three main reasons:

• It offers only one solution.

• The σ confidence intervals are too wide for the QC variability.

• The estimated σ strongly depends on the data structure, being very diffi-
cult to establish a general procedure.

The SeCo framework approach is based on measures of Separation (∆SSQ),
internal Concordance and σ range per cluster. The σ range parameter subtracts
importance from the Concordance. Although the Concordance is very impor-
tant in other algorithms like K-Means, it is less critical in QC due to its unique
solution per σ value. The SeCo framework approach involves a higher compu-
tational cost than the KNN approach because of the need to run the algorithm
multiple times. However, the results offer a consistent method to make a perfor-
mance assessment in an unsupervised way. The SeCo plots have been adapted
to the QC, adding an extra parameter: σ. The advantage of the SeCo vs σ plots
is that they depict the data structure and the most suitable QC solutions in a
straightforward way.

A procedure to select the appropriate K and the most suitable solution based
on the empirical results has been proposed in Section 6.4.

Future work is needed to introduce better local tuning of the local variances
across the data points, together with a principled approach to allocate points
to clusters and for detection of outliers.

A rigurous analysis of time complexity and scalability for complex data sets
will also be considered in our future research.
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[15] S. Tasoulis, L. Cheng, N. Välimäki, N. J. Croucher, S. R. Harris, W. P.
Hanage, T. Roos, J. Corander, Random projection based clustering for
population genomics, in: Big Data (Big Data), 2014 IEEE International
Conference on, IEEE, 2014, pp. 675–682.

[16] R. Varshavsky, M. Linial, D. Horn, COMPACT: A Comparative Package
for Clustering Assessment, in: ISPA Workshops 2005, LNCS 3759, 2005,
pp. 159–167.

[17] UCI Machine Learning Repository (July 4th 2016,
https://archive.ics.uci.edu/ml/datasets.html).

[18] D. Cook, D. F. Swayne, Interactive and Dynamic Graphics for Data Anal-
ysis, Springer Verlag, Berlin, Germany, 2007.

[19] M. Forina, C. Armanino, S. Lanteri, E. Tiscornia, Food Research and Data
Analysis, Applied Science Publishers, 1983, Ch. Classification of Olive Oils
from their Fatty Acid Composition, pp. 189–214.

28




