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a b s t r a c t 

Today, failure modes characterization and early detection is a key issue in complex assets. This is due to 

the negative impact of corrective operations and the conservative strategies usually put in practice, fo- 

cused on preventive maintenance. In this paper anomaly detection issue is addressed in new monitoring 

sensor data by characterizing and modeling operational behaviors. The learning framework is performed 

on the basis of a machine learning approach that combines constrained K-means clustering for outlier 

detection and fuzzy modeling of distances to normality. A final score is also calculated over time, con- 

sidering the membership degree to resulting fuzzy sets and a local outlier factor. Proposed solution is 

deployed in a CBM+ platform for online monitoring of the assets. In order to show the validity of the ap- 

proach, experiments have been conducted on real operational faults in an auxiliary marine diesel engine. 

Experimental results show a fully comprehensive yet accurate prognostics approach, improving detection 

capabilities and knowledge management. The performance achieved is quite high (precision, sensitivity 

and specificity above 93% and κ = 0 . 93 ), even more so given that a very small percentage of real faults 

are present in data. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Unexpected incidental failures imply an important impact in

erms of risks, costs, resources and service loss that should be

inimized [1] . The growing complexity of industrial equipment,

ystems and installations results in an ever-increasing amount of

ealth monitoring information, which eventually exceed the capac-

ty of most fault detection systems and makes the design of suc-

essful maintenance methodologies more challenging. Moreover, it

s important to provide a better understanding of monitored sys-

ems and to efficiently characterize the normal behaviors from a

uge amount of historical data. The lack of knowledge about the

ehavior of complex assets makes the problem of maintenance

ery difficult. 

Naval sector, for instance, is traditionally focused on preven-

ive strategies, usually divided by 3–4 maintenance difficulty level

roups: vessel crew, vessel base, shipyard, and manufacturer [2] .
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rew and base level maintenance tasks are planned and carried

ut during vessel operating time; however, shipyard and manu-

acturer tasks are done in programmed dock periods. The whole

essel life cycle is divided by long operating periods separated by

hort maintenance periods, some of them dry-dock. When an im-

ortant unexpected breakdown occurs during operation (at both

hipyard or manufacturer level), vessel activity stops and planned

issions have to be cancelled. Additionally, important repair costs

ust be envisaged. In such cases it is often necessary to open

ismantling routes aiming to remove defective parts. Sometimes

 cesarean in the vessel hull or even a dry-dock have to be per-

ormed to extract the involved equipment. Therefore, total costs

ay include: defective parts, reparation manpower, dismantling

oute procedures and a cesarean or a dry-dock. Indirect tasks

re usually more expensive than normal component reparation

rocesses. Moreover, when a failure arises while a mission is in

rocess, objectives could not be fulfilled or the mission might be

ancelled and vessel is returned to base. But the worst-case sce-

ario is that in which vessel or crew safety are threaten. 

This work is an effort to implement a novel machine learn-

ng based approach that aims to minimise the negative effects of

nexpected breakdowns, providing a reliable fault detection and
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prediction strategy. This approach has been applied over real op-

erational data acquired from an auxiliary diesel engine during real

vessel operation, since it is one of the most critical vessel com-

ponents: it supplies propulsion and energy to the vessel and its

behavior is complex, as it is a reciprocating engine matched with a

turbocharger. A study in-depth was carried out into the possibility

of improvement through the use of data-driven machine learning

techniques to statistically model the normal behavior of the en-

gine, in a fully automated unsupervised fashion. To do so, behav-

ior characterization and fuzzy modeling are applied to monitoring

sensor data. Moreover, knowledge models generated are compre-

hensive, yet accurate methods to anticipate potential critical faults.

Resulting models and all available information are integrated in a

specific CBM+ (Condition Based Monitoring) system, which com-

bines CBM, RCM (Reliability Centered Maintenance) and AI (Artifi-

cial Intelligence) capabilities. Although the study is focused on the

exploitation of operational parameters, it must be mentioned that

the proposed approach can be also applied to other types of oper-

ational parameters that can be used as failure indicators, such as

vibrations, fluids analysis, thermography information, in-cylinder

pressure or ultrasonic information. 

The rest of the article is organized as follows. Section 2 presents

a review of related and previous works under the use of condi-

tion based maintenance methods and strategies for improving as-

sets reliability, and the position of the present work in the context

of previous ones. Sections 3 and 4 explain the machine learning

based approaches used to characterize asset behavior and detect

anomalies, based on constrained clustering and fuzzy modeling, re-

spectively. In Section 5 the test scenario is presented and the ex-

perimental results obtained are discussed. Finally, the conclusions

achieved in this study are given in the last section. 

2. Related work 

Condition based maintenance aims to anticipate a maintenance

operation based on evidences of degradation and deviations from

normal asset behavior. When observing the condition of a partic-

ular system a set of monitoring devices and sensors must be con-

sidered. Intelligent monitoring of equipment by means of sensors

is essential in order to acquire relevant data, containing the char-

acterization of operational faults in physical signals: acoustic and

ultrasonic sensors, accelerometers, current measurements or ther-

mocouples are usually employed [3,4] . In addition to this data, en-

vironmental conditions and contextual information, such as tem-

perature, pressure or humidity also provide very useful additional

information to enrich the modeling process [5] . From such infor-

mation, specific Key Performance Indicators (KPIs) are calculated

and analysed to discover trends and knowledge of interest that can

lead to a potential critical fault. 

A traditional preventive strategy may obtain high reliability lev-

els if it is well designed [6] . However, it sometimes implies over-

maintaining the assets. This is due to the fact that equipment man-

ufacturers are always conservative in their maintenance policies so

that reliability is achieved, but assuming high maintenance costs. It

is well known that failure probability of many components is high

at the beginning and end of its operational life, following the bath-

tub failure pattern [7] . Therefore, unnecessary maintenance tasks

increase failure rate when a defective item is installed or due to

a human mistake. Moreover, preventive strategies do not take into

account operational context such as load profiles, number of starts

or environmental parameters, which strongly affect components

lifetime. Finally, preventive maintenance is erroneously based on

the idea that the probability of occurrence of operational faults

increases exponentially at a certain time. In preventive strategies

components are replaced or repaired before that moment occurs.

This assumption is not true in many cases, since there are several
ailure patterns in which failure probability does never increase

8] . In such cases failure probability is constant in time. Thus, a

omponent could fail at any time. Especially relevant examples of

his phenomenon are failure patterns of electrical and electronic

omponents, in which reparation and substitution tasks at planned

eriods of time does not imply an improvement in terms of reli-

bility. For all these reasons there still exists important reliability

ncrease and cost reduction margins. 

In order to improve reliability and to reduce costs an optimal

aintenance strategy should provide a set of predictive, preven-

ive and corrective procedures as a result of a technical and eco-

omic analysis of every failure mode, taking into consideration the

elated consequences [9] . Reliability Centered Maintenance (RCM)

trategies include a Failure Mode, Effects and Criticality Analysis

FMECA). Once failure modes are identified and criticality classi-

ed, maintenance tasks to be undertaken are established to avoid

aults consequences [10] . When predictive maintenance is techni-

ally possible and is economically worth it, compared to preventive

nd corrective ones, it is applied. Maximum reliability is obtained

hen a robust and trustworthy failure indicator parameter is mon-

tored. When it is not technically possible or it is not affordable,

reventive maintenance strategies are adopted. Corrective mainte-

ance is only envisaged in case predictive and preventive main-

enance strategies are not feasible. If that is the case, the conse-

uences of a fault are critical and only corrective maintenance is

easible. In those situations, the use of safety devices to apply ap-

ropriate troubleshooting tasks or redesigning affected asset (e.g.

nstalling a standby component) is required. 

When the aim is to achieve maximum reliability an appropriate

BM+ system with monitoring capabilities must be adopted, gath-

ring and combining all kind of useful sources of information si-

ultaneously and providing the prognostics needed to assure the

orrect operation of the assets (e.g. the critical components of a

aediatric emergency department) [11] . Thus, resulting CBM+ sys-

em must include data acquisition and processing, diagnostics and

rognostics and decision making functionalities [12] . Generated

ata-driven models for diagnostics and prognostics must be de-

loyed in a monitoring platform with online data acquisition and

nspection capabilities [13] . Several commercial CBM+ systems are

lready available, most of them using a wide variety of potential

ailure indicators, separately [14,15] . 

Data-driven prognostics models are the core of the whole pro-

ess since they apply the behavioral and statistical methods for

ault prediction and classification [16] . Artificial neural networks

17] and support vector machines [18,19] are usually applied to an-

lyze data and infer such models. The use of projection methods

e.g. linear, nonlinear and orthogonal projections to latent struc-

ures, kernel methods or PCA) for dimensionality reduction and re-

ression can highly support the prediction process [20–22] . Never-

heless, depending on the application and whenever it is possible,

t may be beneficial to instead incorporate specific knowledge di-

ectly into whichever algorithm is applied. 

In this regard, one of the most challenging objectives is

ow to explicitly and automatically represent and model expert’s

nowledge [23] , characterizing different behaviors of interest and

inking them to critical faults in assets and equipment of the

ea vehicle. Nowadays, this kind of methodologies are not yet

ommonly integrated in maritime sector, due to either compa-

ies’ agnosticism about their benefits or to integration draw-

acks in terms of both time and costs [24] . However, as new re-

earch works and even commercial systems under development

rise, demonstrating important improvements on reliability when

omparing them to traditional strategies and showing appealing

eturn of Investment (RoI) levels, companies and maintenance

uppliers show an increasing level of acceptance of such novel

echnologies. 
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. Behavior characterization 

Data-driven behavior characterization consists on grouping sim-

lar data into data sets, which physically represent the same opera-

ional condition. Within formed groups, there exists data points far

rom the pattern, which corresponds to the mean point. Such pat-

ern could be very significant in order to classify or to identify be-

aviors linked to the data, or in order to detect or to infer possible

aults or anomalous operational conditions. Big groups, or groups

hat are close together, usually imply normal behaviors. Whereas

mall groups or events that are far from the pattern (of the same

roup or regarding a big group), imply anomalies or outliers (e.g.

oise and transient data). It must be noted that the learner is only

rovided with unlabelled examples. When labels are available, su-

ervised learning and reinforcement learning can be applied to

rain a classifier. However, it is often very difficult to obtain a large

ata set containing real faults. 

.1. Constrained K-means clustering 

In the proposed constrained K-means approach, k value is auto-

atically provided based on cluster distribution and cluster data

ariance as established by He et al. and Wu et al. [25,26] . It is

omputed as a previous step of the clustering process. Variance ex-

lained of resulting classification model, or clusters compactness,

mp , is calculated until C mp k − C mp k −1 ≤ 0 . 5 . As Euclidean dis-

ance is applied [27] , it becomes coherent to average cluster scat-

ering index [28] . The member of each cluster should be as close

o each other as possible. The clusters compactness is computed as

t can be seen in Eq. (1) . 

mp = 

1 

k 

k ∑ 

i =1 

|| σ(C i ) || 
|| σ(X ) || 

σ(C i ) = 

⎡ 

⎢ ⎣ 

σ 1 
C 1 
. . . 

σ m 

C k 

⎤ 

⎥ ⎦ 

σ(X ) = 

⎡ 

⎣ 

σ 1 
X 
. . . 

σ m 

X 

⎤ 

⎦ (1) 

here k is the number of clusters; σ(C i ) is the variance of cluster

 i with σ p 
C i 

= 

1 
| C i | 

∑ n 
j=1 (x 

p 
j 
− C 

p 
i 
) 2 and σ(X) is the data variance with

p 
X 

= 

1 
n 

∑ n 
i, j=1 (x 

p 
i 

− x 
p 
j 
) 2 , i � = j. 

When knowledge regarding the system behavior to be modeled

s available in addition to the data instances themselves, the algo-

ithm can be modified to make use of this knowledge [29] . A con-

trained that consists on specifying an asset main input feature, X f ,

s thus considered so that instances are grouped on the basis of X f 

on-parametric distribution. Given the number of clusters, k , their

idth in terms of X f values are estimated as w = 

max (X f ) −min (X f ) 

k 
.

hen, for each cluster C i , i = (1 , ..., k ) , u k = min (X f ) + (i + 1) ∗ w

nd l k = u k −1 , with u 0 = min (X f ) , are set as upper and lower limits

n X f values, respectively. Then, a local distance-based outlier de-

ection can be accurately performed considering the asset status,

etermined by its main input feature values. 

Given a set of m features, X = { X 1 , ..., X m 

} where each feature X i 

an take a value from its own set of possible values χ i , and n fea-

ure vectors or instances, x i = (x 1 , ..., x m 

) ∈ χ = (χ1 , ..., χm 

) , with

 = 1 , ..., n, L 2 normalization is calculated for each instance x i in

he data set in order to minimise the impact of having different

ange of values of raw data in the resulting classification model. It

s computed as the root of the sum of its squared elements, as it

an be seen in Eq. (2) . 

 2( x i ) = 

√ 

m ∑ 

l=1 

| x 2 il | (2) 
Once the normalization of data samples is performed using L 2,

nd in order to calculate the distance between instances, x i and x j ,

uclidean metric is computed (see Eq. 3 ). 

 ( x ′ i , x 
′ 
j ) = || x ′ i − x ′ j || = 

√ 

m ∑ 

l=1 

(
x ′ il − x ′ jl 

)2 
(3)

here x ′ 
i 
= 

x i 
L 2( x i ) 

and x ′ 
j 
= 

x j 
L 2( x j ) 

are the L 2-normalized instances

 i and x j , respectively. 

The convergence criteria is established as a maximum number

f iterations and a stability threshold, which checks the clusters

ompactness variation of resulting classification model from i th it-

ration to iteration i + 1 (see Eq. 1 ). 

An iterative outlier detection loop is then performed, so that

rom groups of instances formed during the constrained-learning

tage, outliers are detected and isolated and behaviors of inter-

st given a certain asset main input feature values are character-

zed. They are represented by instances that belong to a certain

roup but differs notoriously from the pattern. For each iteration

n the outlier detection process and for each cluster, C i , an anomaly

hreshold is calculated based on the distances of instances grouped

n C i to the centroid, as it can be seen in Eq. (4) . 

 h (C i ) = 

1 

| C i | 
∑ 

x j ∈ C i 
D ( x ′ j , c i ) + 3 

√ √ √ √ 

∑ 

x j ∈ C i 
D ( x ′ j , c i ) 

2 

| C i | − 1 

(4)

here c i = 

1 
| C i | 

∑ 

x j ∈ C i x 
′ 
j 

is the centroid of cluster C i and x j , j =
 1 , .., | C i |} , is the j th instance grouped in cluster C i . 

Events whose distance to the centroid are over the anomaly

hreshold are set as outliers. Consequently, for each iteration dur-

ng the outlier detection process and for every cluster, centroids

re recalculated filtering out detected outliers. The process stops

hen no more outliers are detected. Outliers detected within a

luster and small clusters could imply abnormal asset behaviors

nd operational faults. 

The overall algorithm can be seen in Algorithm 1 . 

lgorithm 1 Constrained K-means clustering for outlier detection.

nput: a set of m features, X = { X 1 , ..., X m 

} 
1: Compute k using Equation 1 

2: Select an asset main input feature X f ∈ X = { X 1 , ..., X m 

} 
3: Compute w = 

max (X f ) −min (X f ) 

k 
4: for all C i , i = (1 , ..., k ) do 

5: Find u k = min (X f ) + (i + 1) ∗ w and l k = u k −1 , with u 0 =
min (X f ) 

6: for all x j ⊂ { l k , u k } do 

7: x j → { C i } 
8: end for 

9: end for 

10: outliers = {} 
11: while ouliers found do 

12: for all C i , i = (1 , ..., k ) do 

13: Compute T h (C i ) using Equation 4 

14: if D ( x ′ 
j 
, c i ) > T h (C i ) then 

15: x j → outliers 

16: Remove x j from C i 
17: end if 

18: end for 

19: end while 

Although constrained K-means clustering is a known algorithm

n the literature [30,31] , the main novelty in this work lies in suc-

essfully applying the proposed approach in practice, to a complex

ndustrial scenario. 
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Fig. 1. Proposed fuzzy partition. 
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4. Anomaly detection 

In this section the anomaly detection process is presented. It is

performed on the basis of behaviors characterized from data by ap-

plying constrained K-means clustering and on outliers found. The

most important behavior to be considered is normality. 

4.1. Fuzzy partition 

Fuzzy rules generation process and inference engine are based

on work proposed by Cingolani et al. [32] . Fuzzy controllers are

currently considered to be one of the most important applications

of the fuzzy set theory proposed by Zadeh [33] . This theory is

based on the notion of the fuzzy set as a generalization of the or-

dinary set characterized by a membership function μ that takes

values from the interval [0, 1] representing degrees of membership

in the set. Fuzzy controllers typically define a non-linear mapping

from the system’s state space to the control space. Thus, it is pos-

sible to consider the output of a fuzzy controller as a non-linear

control surface reflecting the process of the operator’s prior knowl-

edge. A fuzzy controller is a kind of fuzzy rule-based system that

is composed by the following parts: 

• a knowledge base that comprises the information used by the

expert operator in the form of linguistic control rules, 
• a fuzzification interface, which transforms the crisp values of

the input variables into fuzzy sets that will be used in the fuzzy

inference process, 
• an inference system, which uses the fuzzy values from the

fuzzification interface and the information from the knowledge

base to perform the reasoning process, and 

• the defuzzification interface, which takes the fuzzy action from

the inference process and translates it into crisp values for the

control variables. 

The knowledge base encodes the expert knowledge by means

of a set of fuzzy control rules. 

In order to consider each group of similar events, normal and

outliers, in a relevant way, a fuzzy partition in two fuzzy sets is

defined over the universe U i of the Euclidean distances to centroid

in cluster C i . Let d i be the Euclidean distance of event x i to centroid

of cluster C i , computed as it can be seen in Eq. (3) . The member-

ship function of these fuzzy sets, respectively denoted as μn and

μo are defined in Eq. (5) and Eq. (6) . 

μn (d i ) = 

{
T h (C i ) −d i 

T h (C i ) −min n 
if d i ∈ [ min n , max n ] 

0 otherwise 
(5)

μo (d i ) = 

{
d i −T h (C i ) 

max o −T h (C i ) 
if d i ∈ [ min o , max o ] 

0 otherwise 
(6)

where min n and max n and min o and max o are the minimum and

maximum values in fuzzy sets normal and outlier , respectively,

μn ( d i ): d i → [0, 1] quantifies the degree of membership of d i to

normal and μo ( d i ): d i → [0, 1] quantifies the degree of member-

ship of d i to outlier . Obtained fuzzy partition is described in Fig. 1 .

Note that considering a membership degree allows to provide ex-

perts with more interpretable information about the real status of

the asset. 

4.2. Event score 

In order to distinguish between outliers and real faults, a lo-

cal outlier factor is computed for each event distance, as it can be

seen in Eq. (7) . It is based on the work proposed by Breunig et al.

[34] and it measures the degree of isolation of a point with re-

spect to its neighbors. Thus, the local density is also considered
hen determining if an outlier is an actual anomaly. 

OF (d i ) = 

∑ 

d j ∈ N(d i ) 

LRD (d j ) 

LRD (d i ) 

| N(d i ) | (7)

here LRD ( d i ) is the local reachability distances of d i , computed

or the closest subset of distances N ( d i ) of size max 

{ | C i | 
10 , 1 

} 

, as it

s shown in Eq. (8) . LRD ( d j ) is calculated likewise. 

RD (d i ) = 

⎛ 

⎜ ⎜ ⎝ 

∑ 

d j ∈ N(d i ) 

reachDist(d i , d j ) 

| N(d i ) | 

⎞ 

⎟ ⎟ ⎠ 

−1 

(8)

here reachDist(d i , d j ) = max { K − dist(d i ) , d j } and K − dist(d i ) is

he K−distance neighborhood of d i , with K = |{ outliers }| for each

luster, being K = max 

{ | C i | 
100 , 1 

} 

in the case that no outliers are

ound in cluster C i . 

The score of event x i is then defined as a combination of the

embership function to fuzzy sets normal and outlier and the local

ensity of distances to the normal behavior. 

core ( x i ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

μn (d i ) ∗ LOF (d i ) 

max { LOF } if d i ∈ [ min n , max n ] 

−μo (d i ) ∗ LOF (d i ) 

max { LOF } if d i ∈ [ min o , max o ] 
(9)

here LOF = (LOF 1 , ..., LOF n ) , calculated for the whole set of dis-

ances d = (d 1 , ..., d n ) . 

An event will be considered as anomaly if its score falls below

0 . 5 . Fig. 2 shows an example of the evolution of the resulting

vent score calculated over time. The proposed event score is an

ptimal method for reducing false positives in anomaly detection

rocess. It also allows users to access results quickly and efficiently.

. Test scenario 

The main goal of the present work is to improve anomaly de-

ection and prediction capabilities of existing condition monitoring

trategies. In this sense, proposed approach should be able to im-

rove current mathematical models and preventive strategies put

n practice. Once the knowledge models are learned and validated,

hey are deployed in the CBM+ system to automatically anticipate

eal-time faults in an online fashion. 

.1. Experimental setup 

In order to evaluate proposed approach, several experiments

ere conducted on a real scenario, processing operational data ac-

uired from an auxiliary marine diesel engine for onshore/offshore

enset application. Its main specifications can be seen in Table 1 . 
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Fig. 2. Event score example. 

Fig. 3. Bar chart of resulting clusters distribution. 
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A set of operational features were monitored, collected and

nalysed. From these parameters the engine behavior and its

ealth status can be established. They are shown in Table 2 . Then,

he data processing techniques proposed are employed to learn

tatistical models from historical data, which will allow identify-

ng and modeling normal behaviors, isolating outliers and detect-

ng operational faults. 

An event is collected every minute and it is composed by val-

es of all monitored parameters at a specific time instant. The
Table 1 

Auxiliary marine diesel engine main specifications. 

Parameter Value 

Number of cylinders 12V 

Rated maximum power 1200 kW 

Rated operating speed 1800 rpm (constant) 

Bore 165 mm 

Stroke 185 mm 

Compression ratio 15.5 
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BM+ system automatically transfers asset sensors’ readings in

uffer mode to an on-board database. These data are daily sent in

treaming mode to a ground control database for further analysis.

rognostics models learnt from historical data are then applied in

eal-time for the intelligent monitoring of the asset, checking new

vents on-board. 

Main input parameter is the inlet fuel flow, which is the pri-

ary engine source of energy. Alternatively, main output param-

ters are torque and speed, which can be considered as the me-

hanical energy produced by the engine. In addition, there are sec-

ndary input parameters that may affect engine efficiency, which

re: ambient air pressure, humidity, input air temperature, sea wa-

er temperature and fuel temperature. The engine load is set by

he alternator active power, which is selected to build up the con-

trained clustering-based model, but alternatively it can be also set

y the cylinders and turbo temperatures. Exhaust temperatures are

roportional to heat generated by the fuel combustion in cylinders.

dditionally, auxiliary systems are in charge of keeping appropriate

ubrication and refrigeration conditions. They can be used to detect

 more critical problem before it really occurs. Raw data is filtered
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Table 2 

Monitored auxiliary diesel engine parameters. 

Type of variable Parameters 

Contextual variables Environmental pressure and temperature 

Relative humidity 

Circulation seawater temperature and pressure 

Engine input variables Inlet and return fuel flow 

Fuel pressure 

Engine speed 

Cooling water pressure and temperature 

Oil pressure and temperature 

Cooling water temperature 

Intake manifold charge air pressure and temperature A 

Starting air pressure 

Engine output variables Exhaust temperature of cylinders 1A to 6A and 1B to 6B 

Inlet exhaust temperature of turbochargers A and B 

Outlet exhaust temperature of turbochargers A and B 

A and B turbo temperature drop 

Generator input variables Alternator cooling air temperature 

Generator output variables Alternator frequency 

Alternator reactive and active power 

Alternator voltage and intensity 

Alternator winding temperature in phases R, S and T 

Alternator bearing temperatures 

Table 3 

Percentage of variance explained for each number 

of clusters. 

Number of clusters % of explained variance 

2 76.03 

3 88.23 

4 93.46 

5 95.32 

6 95.91 

7 96.52 

8 96.96 
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so that time regions where the engine is not working are not con-

sidered, since they have no significance regarding operational fail-

ure modes. 

Domain experts’ contribution takes place when identifying the

asset input feature in the constrained K-means clustering step.

Then, the proposed approach is automatically applied and anoma-

lies found at the end of the process are checked and validated by

the same experts. To do so, meetings and interviews with experts

must be held. 

The software platform used is Java Platform Enterprise Edi-

tion from Oracle. It is based on the Java programming language.

Experiments were conducted in the Java-based Eclipse RCP (Rich

Client Platform, Kepler version) environment on Ubuntu-Linux

14.04 (64bits), on a CORE i5 desktop PC with 4 GB of RAM

memory. 

In the following subsection the analysis process followed by the

proposed methodology is shown over a real dataset. Moreover, a

cylinders leaking problem characterised by low exhaust gas tem-

perature in cylinders, and an alternator problem characterised by

high intensity and reactive power are detected and discussed. 

5.2. Experimental results 

The proposed methodology has been tested on two months’

time operational data, from January to February 2015, of an auxil-

iary diesel engine. A total of 17,377 events are analyzed. The num-

ber of clusters, k , is set to 8 given the percentage of explained

variance, as it can be seen in Table 3 . Although other complemen-

tary tests were performed with different k values (e.g. k = 6 and
 = 10 ), results obtained were less accurate in terms of the num-

er of false negatives and false positives. 

As a result of the constrained K-means clustering-based out-

ier detection process, a total of 78 events are isolated from nor-

al patterns. The resulting cluster distribution can be seen in

able 4 and in Fig. 3 . 

More in detail, events grouped in each cluster can be seen in

ig. 4 . The dashed line represents the cluster centroid and opera-

ional parameters values are represented by dots, being each event

 set of dots (one value per operational parameter) at a specific

ime instant. Operational parameters values are normalized be-

ween 0 and 1. It can be seen as a simplified Kohonen map or net-

ork with a small number of nodes, from lower to higher engine

oad, and no neighborhood function when updating the BMU (best

atching unit) at each iteration [35] . 

As it can be expected, clusters containing stable engine load

onditions grouped the majority of events. That is the case, for in-

tance, of Cluster 3, 4 and 5. Outliers detected in such clusters are

ore likely to imply real system faults. However, and depending

n nature and type of system fault, a problem can also occur when

he engine is not in stable operating conditions. That behavior can

e observed in relation to Cluster 0, when the engine is starting

p. In Fig. 5 a typical normal engine behavior under stable oper-

tion is shown. It corresponds to normal events grouped within

luster 3. 

Among outliers found, some events correspond to abnormally

ow exhaust temperatures in cylinders, probably due to a scavenge

re and/or a defective fuel valve, both of which are caused by a

uel system fault. This fault was present in a total of 13 events dis-

ributed in different clusters. In Fig. 6 an example of such behavior

n three events of one of the clusters formed can be appreciated.

n alternator system symptom was also detected in 2 events in

wo different clusters. It is characterized by extremely high alter-

ator intensity and reactive power at a normal engine load, as it

an be seen in Fig. 7 . It is usually produced during docking ma-

oeuvres and could lead to critical system failure or compromised

ecurity. 

The obtained confusion matrices are presented in Table 5 . As it

an be seen, only very few events correspond to the real fault un-

er study: 15 in total, distributed throughout different engine load

roups. This is one of the main difficulties in the anomaly detec-

ion process: how to distinguish between outliers and real faults.
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Fig. 4. Events grouped in each cluster. 
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Table 4 

Clusters distribution. 

Cluster 0 1 2 3 4 5 6 7 

Total number of events 330 13 751 2098 10,550 3265 286 6 

Outliers Found 9 0 13 7 33 15 1 0 

Fig. 5. Normal engine behavior. 

Fig. 6. Fuel System fault detected at a normal engine load. 
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Fig. 7. Alternator System fault detected at a normal engine load. 

Table 5 

Results obtained per cluster. 

Cluster 0 1 2 3 4 5 6 7 

Real normal 326 13 750 2094 10,547 3263 285 6 

Predicted normal 328 13 750 2094 10,547 3263 285 6 

Real fault 

Fuel system 4 0 1 3 3 2 0 0 

Alternator system 0 0 0 1 0 0 1 0 

Predicted fault 2 0 1 4 3 2 1 0 

Table 6 

Global confusion matrix. 

78 outliers found Predicted normal Predicted fault 

Real Normal TN = 17,362 FP = 0 

Real Fault FN = 2 TP = 13 
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Table 7 

Global precision, sensitivity, specificity and κ coefficient. 

Real normal Real fault Global results 

Precision 99.99% 100% 99.98% 

Sensitivity 100% 86.67% 93.34% 

Specificity 100% 

κ 0.93 
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o quantify the number of anomalous events in each cluster, an

vent is considered as a real fault if its score is below −0 . 5 . Given

hat the test case scenarios showing the fuel system and alterna-

or faults were deliberately chosen to be difficult to detect, it is

till encouraging that the classification of faulty events rises above

he false positive rate, accurately distinguishing real faults among

utliers found. 

Then the approach for anomaly detection was tested on a 10-

old cross-validation basis for each cluster, by segmenting the total

et of cluster events into 10 equal parts. Thus, the confusion matrix

resented in Table 6 is obtained, containing the average results of

he 10 folds. Note that the constrained K-means clustering step is

erformed on the whole data set only once, in order to establish

he different engine load operational ranges that will be used to

solate the outliers and predict the real faults. 

In order to evaluate the results, the precision, sensitivity and

pecificity of the detection process are calculated. They are three

idely used quality measures in this kind of processes. As it is
hown in Table 7 , precision, sensitivity and specificity are glob-

lly above 93%, so the approach accurately limits false anoma-

ies and undetected faults. The inter-rater agreement statistic co-

fficient (Cohen’s kappa, κ) is also computed aiming to evaluate

he agreement between normal and fault events [36] . The result-

ng κ coefficient is 0.93, therefore a high strength of agreement is

chieved. 

By taking into account estimations made by this approach and

ext asset maintenance periods, usage planning, spare parts avail-

bility and manpower resources, optimal maintenance strategies

an be suggested. 

. Conclusions 

This work presents a data-driven prognostics approach to pre-

ict and identify anomalies and operational faults. Experimental
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results show the potential of the proposed approach to successfully

address fault modes characterization problem, providing a finer

and easier to interpret technique for experts to anticipate potential

failures on the basis of the health status of the asset from moni-

toring sensor data. The complexity of such assets (e.g. marine en-

gines and industrial machinery) makes their behavior difficult to

understand and interpret. Under such circumstances it is particu-

larly challenging to anticipate abnormal behaviors that often fore-

see significant and costly faults. 

It was found that machine learning methods can highly support

the traditional diagnostics and prognostics condition-based main-

tenance strategies. The combination of constrained K-means clus-

tering for outlier detection and behavior characterization, the fuzzy

modeling of distances to patterns found and the final LOF-based

event score provide a fully comprehensive yet accurate prognostics

approach. Discussed test scenario shown an accurate detection of

critical faults in an auxiliary diesel engine, characterized by abnor-

mal exhaust temperatures in cylinders regarding fuel system and

by extremely high alternator intensity and reactive power in al-

ternator system. The performance achieved is quite high (global

precision, sensitivity and specificity above 93% and κ = 0 . 93 ), even

more so given that a very small percentage of real faults are

present in data. 

The deployment of discussed data-driven models in a CBM+

system results in important benefits in terms of fault detection

and prediction. The monitoring and analysis of additional opera-

tional parameters (e.g. in-cylinder pressure, torque, turbocharger

speed, cylinder heads vibration, main bearings vibration and flu-

ids analysis), and environmental conditions (e.g. weather variabil-

ity from Arctic Sea to Red Sea waters), will allow increasing pre-

diction accuracy and system capabilities as more failure modes are

considered. This will allow maximizing reliability and minimising

risks and unnecessary costs derived from unexpected breakdowns.

Moreover, predictions and diagnosis obtained by adopting this ap-

proach can serve as input for an optimal decision making support

and planning of maintenance operations, which will lead to impor-

tant benefits in the reliability, safety and performance of the assets.
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argeting important sectors such as maritime, renewable energy, railway, agro-food,
ivil structures and machine-tool. 
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