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Abstract

Although many algorithms have been proposed, no single algorithm is better

than others on all types of problems. Therefore, the search characteristics of dif-

ferent algorithms that show complementary behavior can be combined through

portfolio structures to improve the performance on a wider set of problems. In

this work, a portfolio of the Artificial Bee Colony, Differential Evolution and

Particle Swarm Optimization algorithms was constructed and the first parallel

implementation of the population-based algorithm portfolio was carried out by

means of a Message Passing Interface environment. The parallel implementa-

tion of an algorithm or a portfolio can be performed by different models such as

master-slave, coarse-grained or a hybrid of both, as used in this study. Hence,

the efficiency and running time of various parallel implementations with different

parameter values and combinations were investigated on benchmark problems.

The performance of the parallel portfolio was compared to those of the single

constituent algorithms. The results showed that the proposed models reduced

the running time and the portfolio delivered a robust performance compared

to each constituent algorithm. It is observed that the speedup gained over the

sequential counterpart changed significantly depending on the structure of the

portfolio. The portfolio is also applied to a training of neural networks which

has been used for time series prediction. Result demonstrate that, portfolio is
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able to produce good prediction accuracy.

Keywords: Algorithm portfolios, global optimization, neural networks,

parallel computing.

1. Introduction

In the last few decades, different kinds of EAs have been developed. These

algorithms have shown excellent search abilities but usually their performance

may vary considerably according to the problem. No single algorithm performs

better than others. Therefore, selection of the most appropriate algorithm for5

a particular problem needs considerable time. In this case, to solve problems

efficiently, researchers use a combination of different algorithms, which is usu-

ally referred to as Portfolio Algorithm (PA) [1, 2, 3, 4]. The main aim of these

portfolio algorithms is to improve the performance and to make a more stable al-

gorithm by combining the advantages of the optimization algorithms. Although10

these portfolios provide better results than the single algorithms of the consti-

tuting portfolios, their main problem is that their running times to solve large

scale problems are unacceptable. Parallel computing systems, which emerged

as a result of recent hardware developments, can be employed to overcome this

problem. Parallel computing divides tasks into smaller parts and operates the15

parts on multiprocessor hardware architectures simultaneously. In this way, in-

creased computing needs are met and the solutions are obtained faster. On the

other hand, parallel programming has grown even more in popularity because

of the availability of multi-core CPUs and it is known that EAs can explore

efficiently the use of parallel concepts to speed the process. The main purpose20

of parallel EAs is to solve a given problem in less time.

Although the portfolio idea is not new, there has not been much research

done in parallel implementation of portfolios. A parallel portfolio of algorithms

is a collection of different algorithms running on different CPUs. The main aim

of the parallel portfolio is not only to enhance the performance of the component25

algorithms but also to reduce the computation time.

2
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In this study, a Parallel Portfolio Algorithm (PPA) was proposed on dif-

ferent parallelization models through a Message Passing Interface (MPI) [5]

among multiprocessing units. We study the possibility of combining algorithms

into portfolios and implementing a parallel portfolio including the Artificial Bee30

Colony (ABC) [6], Differential Evolution (DE) [7] and Particle Swarm Opti-

mization (PSO) [8], which are recent evolutionary computation techniques and

of which the speedup performance are analyzed with these parallelization mod-

els. Many different versions of these algorithms based on different models have

been proposed and used to solve different optimization problems in the liter-35

ature. Some survey papers have summarized these studies [9, 10, 11, 12] and

some papers carried out a review on main metaheuristics and presented their

similarities and differences [13].

As mentioned before, no one algorithm outperforms all other algorithms on

all types of problems. Some problems that are unsolvable by superior algo-40

rithm can be solved with an inferior one. This fact has encouraged researchers

to work on portfolio algorithm structures. The earliest portfolio algorithm ap-

proach was proposed by Gomes and Selman [1] and Huberman et al. [2] in

1997. These studies applied a portfolio of two or more Las Vegas algorithms to

certain combinatorial problems and obtained significant performance improve-45

ment. Fukunaga proposed combining different genetic algorithm instances with

different control parameter sets and applied them to solve the traveling salesmen

problem [3]. Subsequent work focused on showing the computational advantage

of a portfolio approach on hard combinatorial search problems [4]. In the fol-

lowing years, a portfolio algorithm for numerical optimization was proposed by50

Peng et al. [14]. This study emphasized that, selecting the best algorithm is

very difficult in a limited budget time and that distributing the time budget to

multiple algorithms can reduce this risk. Vrugt and Robinson proposed an adap-

tive method approach that combine genetic algorithm, evolution strategy and

particle swarm optimization in one framework [15]. Some studies that combine55

a variety of genetic algorithms use population partitioning techniques to obtain

better performance [16, 17]. Some studies focused on integrating multiple search

3
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operators or algorithms in a portfolio [18, 19, 20]. Samulowitz et al. developed

an algorithm portfolio tool called snappy that is provide a strong baseline and

easily extended by its users [21]. More recently, Tang et al. [22] proposed al-60

gorithm portfolios based on the Estimated Performance Matrix (EPM-PAP),

which is equipped with a novel constituent algorithms selection module. In this

paper the proposed model can successfully identify the appropriate constituent

algorithm and achieve better results than all the single algorithms considered

in their study. Not only selection of the most appropriate algorithm but also65

their associated control parameter settings for a particular problem needs con-

siderable time. Extensive studies have been done on appropriate setting of the

control parameters of EAs [23, 24, 25, 26, 27]. Also some studies focused on

adaptive strategies for control parameter selection [28, 29]. Also portfolio al-

gorithm is related to ensemble methods that use multiple learning algorithms70

to obtain better predictive performance [30, 31]. In ensemble methods while

some studies combine different algorithm like algorithm portfolio [32, 33], the

others combine same algorithms with different parameters or adaptive strate-

gies [34, 35, 36]. Zhao et al. proposed an ensemble of different neighborhood

sizes with online self-adaptation to enhance the multiobjective evolutionary al-75

gorithm based on decomposition [37]. Shang et al. proposed a multi-population

based cooperative coevolutionary algorithm to solve the multi-objective capaci-

tated arc routing problem [38]. Portfolio algorithm is both effective and robust,

but their parallel implementation has received relatively little attention. Petrik

and Zilberstein [39] proposed a method for finding a static parallel portfolio of80

algorithms, in which the share of processor time allocated to each algorithm is

fixed. Yun and Epstein [40] proposed an approach that constructs algorithm

portfolios for parallel runs based on a combination of a greedy algorithm, and

three heuristics. Also portfolio algorithm has been applied to solve various

optimization problems from various fields, such as satisfiability problem [41],85

classification and prediction [42, 43, 44], and scheduling problem [45].

As a result, portfolio algorithms and ensemble methods naturally attract

increasing attention. The application of the techniques in previous literature

4
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is aimed to improve the performance of EAs while our study is aimed to not

only on improving the performance of the constituent algorithms but also on90

investigating the PPAs running time in a parallel implementation context. For

this purpose, we performed different parallelization models such as master-slave

and coarse-grained and made a comparison among the serial and parallel PPAs.

The other purpose of the study is to employ the proposed model to a real-

world problem. The real-word problem, training a artificial neural network95

for predicting Mackey Glass and Box Jenkins time series. Althought many

algorithms have been applied successfully for prediction problems [46, 47, 48, 49],

parallel portfolio algorithms is not available in the literature yet.

The rest of the paper is organized as follows. In Section II, the EAs which

are used in the proposed model are described briefly. Section III provides a100

description of the parallel implementation concept and the proposed parallel

implementation portfolio is explained. The experiments and results are pre-

sented in Section IV. Section V contains some conclusions.

2. Algorithms

Some recent EAs include ABC, DE and PSO. A brief description of these105

algorithms is presented in the following paragraphs.

2.1. Artificial bee colony

The ABC algorithm was introduced by Karaboga in 2005 and is inspired

by the foraging behavior of honey bees [6]. The working process of the ABC

algorithm contains three different phases. The first phase is that of the employed110

bees which are responsible for exploiting all the sources. The second phase is

that of the onlooker bees which use potentially rich sources. The third phase is

that of the scout bees which are responsible for exploring undiscovered sources.

“Limit”, which is a parameter of the ABC algorithm, uses exhausted sources. In

the ABC algorithm, employed bees and onlooker bees use the same perturbation115

strategy which is defined by Eq. (1).

5
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xij(t + 1) = xij(t) + rand()(xij(t)− xr1j(t)) (1)

where r1 is the randomly selected solution vector (r1 6= i) and j is the

randomly selected index. The rand() function generates a uniformly distributed

random variable ∈ [0, 1]. Detailed information on the ABC algorithm can be

found in [6, 50].120

2.2. Differential evolution

The DE algorithm was introduced by Storn and Price in 2005 [7]. It uses

different recombination operators to improve the population. In this paper we

use the DE/rand/1/bin configuration. This configuration’s update formulas are

given by Eqs. (2) and (3).125

vi(t) = xr1(t) + F (xr2(t)− xr3(t)) (2)

xi(t + 1) =





vi(t) if rand() ≤ CR

xi(t) else
(3)

The weighting factor F ∈ [0, 2] controls the amplification of differential vari-

ation. The crossover rate CR ∈ [0, 1] probabilistically controls the amount of

recombination. xr1 , xr2 and xr3 are randomly selected solution vectors (r1 6=
r2 6= r3 6= i). The rand() function generates a uniformly distributed random

variable ∈ [0, 1]. Detailed information on the DE algorithm can be found in [7].130

2.3. Particle swarm optimization

The PSO algorithm, which was introduced by Kennedy et al. in 1995, in-

spired by social and cooperative behavior displayed by various species like birds,

fish etc [8]. It modifies velocities based on personal best and global best. The

modification of velocities and positions are obtained by using Eqs. (4) and (5).135

xid = xid + vid (4)

6
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vid = wvid + c1r1(xpb
i − xid) + c2r2(xgb − xid) (5)

where xid is the ith particle’s position and vid is the velocity for the ith par-

ticle. xpb and xgb are the personal best and global best positions respectively. w

is the inertia weight, which determines how the previous velocity of the particle

influences the velocity in the next iteration. c1 and c2 are acceleration constants.

r1 and r2 are the uniformly generated random number in the range of ∈ [0, 1].140

Detailed information on the PSO algorithm can be found in [8].

3. Parallel models of portfolio algorithms

Parallel EAs can be performed based on different models which are cate-

gorized depending on the synchronization and the communication behaviors of

subtasks. In this section, we briefly introduce parallel EA models and discuss the145

differences between them. In general, there are tree different well-known models

for the parallelization of EAs which was named master-slave, fine-grained and

coarse-grained [51]. These models are shown in Figure 1.

MPParameters
Objective

Values

SP3SP2SP1 ... SPn

Subpop2

Subpop5Subpop6 Subpop4

Subpop1 Subpop3

(a) (b) (c)

Figure 1: Parallel computing models, a)Master-slave, b)Fine-grained, and c)Coarse-Grained

(MP:Master processor, SP:Slave Processor)

In the master-slave parallelization approach, while the evaluation process of

each individual in the population is performed on a different slave processor, the150

selection and recombination processes take place in the master processor as given

in Figure 1(a). The fitness value of each individual is independent of the others

and there is no communication during the evaluation of the objective function.

After evaluation, the slave processor sends its results to the master processor

and the master processor performs the selection and recombination operations155

7
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to create offsprings. The offsprings are distributed to slave processors to be

assigned a fitness value, and the process continues in this way. Communication

occurs only when each slave sends the fitness value and receives its subset of

individuals to evaluate.

In the fine-grained parallelization model, the population is distributed over160

the processors. Parallelism and communication are realized among some individ-

uals a local neighborhood structure as given in Figure 1(b). The improvement

when more processors used is limited. Using more processors for a small problem

increases the running time significantly as a result of excessive communication

between processors. That is, an individual can only compete and mate with its165

nearby neighbors. The topology of the neighborhood and the number of indi-

viduals in the neighborhood affects the performance of the parallel algorithm.

This model is initially designed for working in massively parallel machines.

In the coarse-grained parallelization model the algorithms are executed con-

currently on several independent subpopulations and they regularly exchange170

some individuals with those from other subpopulations during their search as

given in Figure 1(c). In this model, new control parameters such as the num-

ber of individuals to migrate, the migration interval that controls the migration

frequency and the topology which defines the neighbors of each island need to

be set carefully.175

Many hybrids have been defined by combining the above models, such as

coarse-grained and fine-grained, coarse-grained and master-slave, and coarse-

grained at two levels. The hybrid approach allows the advantages of two models

to be combined.

All parallelization models have advantages and disadvantages. Parallel im-180

plementation of EAs may be complex and there are some problems with regard

to selecting the parallel computing model and its optimum parameter setting.

In the master-slave model, the algorithms’ search behavior does not change,

it is exactly like a serial. As with other models, this model does not require addi-

tional parameters. This model is most suitable whenever the fitness evaluations185

are significantly expensive. The communication overhead between the master

8
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processor and the slave processors becomes significant. The fine-grained model

is designed for working in massively parallel machines and it can easily paral-

lelize many features of EAs such as selection, mating, survival etc. The speedup

and performance of the algorithms may significantly change the models’ param-190

eters: topology, neighborhood size and complicated shape. The coarse-grained

model is easy to implement. When the fitness function is computationally inex-

pensive, this model is probably the most preferred. It needs less communication

between nodes, so its efficiency may be better than those of other models. How-

ever, when EAs are parallelized based on the coarse-grained model, more control195

parameters are introduced to the approach, as mentioned before. The speedup

and performance of the algorithms based on the coarse-grained model may sig-

nificantly change due to the differences in the algorithms’ behaviors. Therefore,

additional control parameters need to be set carefully. Hybrid models generally

to achieve the combined advantages of two models and give better performance200

than any of them alone.

3.1. Parallel population-based algorithm portfolios

A parallel portfolio of algorithms is a collection of different algorithms run-

ning on parallel computing systems. Their parallel implementation can be per-

formed by different models. In this study, we explored two types of these models:205

coarse-grained and a hybrid model.

In our first model, the coarse-grained parallelization model was used to im-

plement the parallel portfolio algorithm, in which each node runs the different

algorithms independently and is initialized by its own set. Migration of individ-

uals among sub-algorithms is performed in a certain interval to encourage the210

exchange experience of each independent algorithm among the sub-algorithms.

The migration scheme adopted in the study uses a global sorting step in which

the worst individual in mth sub-algorithms is replaced with the best individual

of each of the (m− 1)th sub-algorithms. The pseudo code of the PPA based on

the coarse-grained parallelization model is shown in Algorithm 1.215

In our second model, the hybrid parallelization model was used to imple-

9
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Algorithm 1 Pseudo code of the PPA based on the coarse-grained paralleliza-

tion model
1: Initialize algorithms’ parameters

2: Initialize each of sub-algorithms of solutions;

3: Evaluate each population in popABC , popDE , popPSO;

4: Counter =1;

5: while Counter 6= MaximumCycleNumber do

6: for each of sub-algorithms do . Begin parallel block

7: if Counter(mod frequency) = 0 then

8: Send the best ind. to the next neighbour (MPI Send);

9: Receive the best ind. from the previous neighbour (MPI Recv);

10: Replace individuals in the population;

11: end if

12: Run each sub-algorithm with new population;

13: Evaluate solutions in the populations;

14: Memorize the best solution;

15: end for . End parallel block

16: Counter = Counter +1

17: end while

10
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ment the two level parallel portfolio algorithm. In this hybrid model, the upper

level it is coarse-grained, and the lower level it is master-slave. At the upper

level each node runs the different algorithms independently, and at the lower

level the master processor sends the offspring to the slave processors and per-220

forms selection/updates only. The pseudo code of the PPA based on the hybrid

parallelization model is shown in Algorithm 2.

Algorithm 2 Pseudo code of the PPA based on the hybrid parallelization model

1: Initialize algorithms’ parameters

2: Initialize each of sub-algorithms of solutions;

3: Evaluate the objective function in parallel (Alg. 3.);

4: Counter =1;

5: while Counter 6= MaximumCycleNumber do

6: for each of sub-algorithms do . Begin parallel block

7: if Counter(mod frequency) = 0 then

8: Send the best ind. to the next sub-algorithm (MPI Send);

9: Receive the best ind. from the previous sub-algorithm (MPI Recv);

10: Replace individuals in the population;

11: end if

12: Run each sub-algorithm with new population;

13: Evaluate the objective function in parallel (Alg. 3.);

14: Memorize the best solution;

15: end for . End parallel block

16: Counter = Counter +1

17: end while

4. Simulation Results

4.1. The experimental environment

The computer platform used to perform the experiments was based on AMD225

Opteron 6172 with the number of 12 CPU cores and 128 GB 1333 DDR3 RAM

computers with a scientific Linux operating system at TUBITAK ULAKBIM

11
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Algorithm 3 Evaluation of fitness in parallel

1: for all the slaves process do

2: Send an individual to a slave process (MPI Send);

3: end for

4: while individual without fitness value do

5: Receive result from a slave process (MPI Recv);

6: Send an individual to a slave process (MPI Send);

7: end while

8: for all the slaves process do

9: Receive result from a slave process (MPI Recv);

10: end for

High Performance Computing Center. The proposed algorithm was imple-

mented in C++ using the MPI library.

MPI is a communication protocol for the development of wide variety of par-230

allel computers. MPI’s goals are high performance and scalability on all plat-

form. So it provides a platform independent message transfer standards. In this

study basic MPI functions were used. The functions MPI Init and MPI Finalize

are used to initiate and shut down an MPI computation, respectively. The func-

tions MPI Send and MPI Recv are used to send and receive a message, respec-235

tively. At last, the MPI Comm Size is used determine the number of processes

in a computation and the MPI Comm Rank is used determine the identifier of

current process.

4.2. The benchmark suite

The proposed algorithms were tested on twenty CEC2010 special session240

benchmark functions [52]. All functions were given for the special case of di-

mension D=1000. The test suite includes separable functions, partially separa-

ble functions, partially separable functions that consist of multiple independent

subcomponents, each of which is m-nonseparable, and fully nonseparable func-

tions.245

12
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4.3. Experimental settings

In the experiments, synchronous versions of the basic ABC, DE and PSO

algorithms were used. The values of the same parameters used in each algorithm,

such as population size and maximum number of evaluations, were chosen to

be the same as specified in competition [52]. Population size was 100 and250

the maximum number of function evaluations was 3.000.000; all the runs were

repeated 30 times to compare the algorithms statistically. In ABC, the limit

was set to 1000. In DE, strategy was set to DE/rand/1/bin, the weighting

factor was set to 0.5 and crossover weight was set to 0.3 as recommended in

[23, 24, 25]. In PSO, the learning factors were both set to 1.8 and inertia weight255

was set to 0.6 as recommended in [26]. Table 1 presents the distribution of the

population sizes for all PPA instantiations.

Table 1: Sizes of subpopulations allocated to the constituent algorithms of each instantiation

of PPA

Algorithm Algorithm ABC DE PSO

PPA21 ABC+DE 50 50 -

PPA22 ABC+PSO 70 - 30

PPA23 ABC+PSO 40 - 60

PPA24 DE+PSO - 70 30

PPA25 DE+PSO - 40 60

PPA31 ABC+DE+PSO 26 50 24

PPA32 ABC+DE+PSO 30 30 40

4.4. Performance metrics

Various methods and metrics are used to measure the performance of a

certain parallel algorithm. Some performance metrics, such as speedup and260

efficiency are most frequently used to measure the performance of a parallel

algorithm. Speedup is the ratio of sequential execution time to parallel execution

time (Eq. 6) [53]. The optimal value for the speedup is equal to the number

of processors. Efficiency is the ratio of speedup to the number of processors

(Eq. 7) and the ideal value for it is 1 [53].265

13
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Figure 2: The performance ranking of serial algorithms with a different number of population

a) ABC, b) DE and c) PSO (NT: The number of times the algorithm ranked first)

speedup =
execution time on one processor

execution time on m processor
(6)

efficiency =
speedup

m
(7)

4.5. Effect of the population size to the algorithms

Firstly, we analyzed which size of population is better for the constituent

algorithms’ serial models on CEC2010 test functions. For this purpose, the

population size is investigated for four different cases: 25, 50, 75 and 100. The

experimental results are given in Table 2 for the ABC, DE and PSO algorithms.270

Also, to be able to make good a comparison, the performance ranking of serial

algorithms is given in Figure 2.

From Table 2 and Figure 2, it can be concluded that as the population size

increases, the PSO algorithm generally produces better results while ABC and

DE algorithms generally produces worse results. For the test problems employed275

in this work, the population size of 75–100 can provide acceptable results for

PSO and 25–50 can provide acceptable results for ABC and DE algorithms. This

experiment helps to decide the optimum individual number of the population

in the PPA.

4.6. Coarse-grained PPA280

In the second experiment, we analyzed coarse-grained PPA combinations

of two and three constituent algorithms. The statistical indicators (mean and

14
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Table 2: Function error values of the solutions obtained by ABC, DE, PSO for the benchmark

functions

Function

Population Size

25 50 75 100

ABC DE PSO ABC DE PSO ABC DE PSO ABC DE PSO

f1 3.64E-14 6.30E+04 1.21E+10 3.34E-14 2.29E+02 9.19E+09 6.96E-09 1.07E+02 9.47E+09 2.52E-06 3.45E+01 9.35E+09

f2 7.77E-01 3.56E+00 8.63E+03 8.29E-01 2.34E-01 8.12E+03 2.09E+01 6.75E-02 7.84E+03 7.12E+01 1.27E-02 7.67E+03

f3 2.09E-12 2.39E-01 1.96E+01 4.40E-10 1.03E-01 1.95E+01 1.28E-05 3.89E-02 1.95E+01 1.45E-03 2.21E-02 1.95E+01

f4 4.17E+13 5.30E+13 4.51E+12 4.01E+13 6.67E+13 3.46E+12 4.10E+13 7.56E+13 2.57E+12 4.04E+13 8.56E+13 3.02E+12

f5 6.00E+08 5.13E+08 3.60E+08 5.85E+08 5.02E+08 3.41E+08 5.62E+08 5.21E+08 3.27E+08 5.66E+08 5.37E+08 3.16E+08

f6 1.99E+07 1.97E+07 1.07E+07 1.99E+07 2.01E+07 6.48E+06 2.00E+07 2.03E+07 4.23E+06 2.01E+07 1.97E+07 4.31E+06

f7 3.81E+10 4.73E+10 3.67E+10 4.24E+10 5.84E+10 2.61E+10 4.34E+10 6.56E+10 1.95E+10 4.65E+10 6.89E+10 1.49E+10

f8 7.64E+06 2.29E+07 1.63E+14 5.22E+06 2.06E+07 6.73E+13 5.86E+06 3.23E+07 2.89E+13 1.58E+07 5.74E+07 7.31E+13

f9 3.60E+08 9.37E+08 6.94E+09 4.84E+08 1.26E+09 6.61E+09 6.02E+08 1.52E+09 6.10E+09 7.17E+08 1.74E+09 5.98E+09

f10 7.24E+03 6.50E+03 8.98E+03 7.12E+03 6.89E+03 8.53E+03 7.17E+03 7.13E+03 8.32E+03 7.27E+03 7.41E+03 8.22E+03

f11 2.00E+02 2.04E+02 2.14E+02 2.01E+02 2.05E+02 2.13E+02 2.01E+02 2.05E+02 2.13E+02 2.02E+02 2.07E+02 2.12E+02

f12 3.64E+05 8.90E+05 1.26E+06 5.23E+05 1.08E+06 1.05E+06 6.39E+05 1.22E+06 8.37E+05 7.38E+05 1.32E+06 9.16E+05

f13 6.40E+02 1.56E+04 1.24E+10 4.72E+02 7.69E+03 1.26E+10 4.65E+02 1.85E+03 8.16E+09 6.32E+02 2.62E+03 8.59E+09

f14 8.05E+08 2.71E+09 1.74E+09 1.16E+09 3.69E+09 1.45E+09 1.49E+09 4.48E+09 1.66E+09 1.82E+09 5.04E+09 1.67E+09

f15 1.47E+04 1.40E+04 9.13E+03 1.46E+04 1.48E+04 8.64E+03 1.45E+04 1.53E+04 8.47E+03 1.46E+04 1.58E+04 8.51E+03

f16 3.99E+02 4.10E+02 3.89E+02 4.01E+02 4.14E+02 3.89E+02 4.03E+02 4.17E+02 3.89E+02 4.05E+02 4.16E+02 3.89E+02

f17 6.93E+05 1.94E+06 1.22E+06 1.03E+06 2.41E+06 1.12E+06 1.26E+06 2.70E+06 1.05E+06 1.46E+06 2.92E+06 1.12E+06

f18 1.04E+04 2.12E+04 4.95E+10 7.74E+03 4.50E+03 4.08E+10 6.55E+03 6.46E+03 3.56E+10 7.11E+03 1.00E+04 3.37E+10

f19 5.72E+06 5.03E+06 1.92E+06 6.88E+06 8.60E+06 2.09E+06 7.80E+06 1.06E+07 2.37E+06 8.54E+06 1.22E+07 2.53E+06

f20 1.22E+01 3.31E+04 5.37E+10 1.49E+01 3.38E+03 4.85E+10 8.50E+01 2.78E+03 4.34E+10 5.33E+02 3.48E+03 4.31E+10

standard deviation values) and average running time for 30 runs of the ABC,

DE, PSO and all PPA instantiations are given in Table 4. The performance

ranking of the coarse-grained PPA and its two and three constituent algorithms285

are given in Figures 3 and 4 respectively. Running time comparison between the

coarse-grained PPA and its constituent algorithms on the 5 test functions with

shortest running time (f3, f7, f8, f13, f20) and 5 test functions with longest

running time (f9, f14, f15, f16, f19) for all PPA instantiations are given in

Figures 5- 8.290

The portfolio of the basic models of the ABC, DE and PSO algorithms

does not achive the best performance on the CEC2010 functions which take

so much time to solve. However, each constituent algorithm delivers the best

performance on some problems while it tends not to be successful on others,
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Figure 3: The performance ranking of coarse-grained PPA and its 2 constituent algorithms

a) PPA21, b) PPA22, c) PPA23, d) PPA24 and e) PPA25 (NT: The number of times the

algorithm ranked first)
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Figure 4: The performance ranking of coarse-grained PPA and its 3 constituent algorithms a)

PPA31 and b) PPA32 (NT: The number of times the algorithm ranked first)
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Figure 5: Running time (s) comparison between the coarse-grained PPA21 and its 2 con-

stituent algorithms on the 10 test functions a) 5 test functions with shortest running time (f3,

f7, f8, f13, f20), b) 5 test functions with longest running time (f9, f14, f15, f16, f19)
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Figure 6: Running time (s) comparison between the coarse-grained PPA22, PPA23 and its 2

constituent algorithms on the 10 test functions a) 5 test functions with shortest running time

(f3, f7, f8, f13, f20), b) 5 test functions with longest running time (f9, f14, f15, f16, f19)
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Figure 7: Running time (s) comparison between the coarse-grained PPA24, PPA25 and its 2

constituent algorithms on the 10 test functions a) 5 test functions with shortest running time

(f3, f7, f8, f13, f20), b) 5 test functions with longest running time (f9, f14, f15, f16, f19)
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Table 3: Running time values obtained by ABC, DE, PSO for the benchmark functions

Function

Population Size

25 50 75 100

ABC DE PSO ABC DE PSO ABC DE PSO ABC DE PSO

f1 512.71 534.02 1164.26 482.41 518.13 1022.68 486.13 537.05 1002.39 481.53 526.45 993.62

f2 319.94 301.09 891.06 325.06 339.81 630.72 347.53 374.00 605.79 355.50 378.64 600.57

f3 223.12 264.95 850.30 235.73 270.44 570.51 265.76 297.38 537.20 280.96 304.99 530.67

f4 692.27 713.19 1487.05 662.38 705.00 1284.56 668.50 741.51 1200.27 661.57 718.28 1160.67

f5 532.14 535.89 1110.68 516.31 546.35 856.97 537.12 581.55 828.27 541.72 579.52 817.82

f6 445.38 455.53 1062.10 432.77 467.30 898.30 455.52 506.42 865.19 467.33 505.61 848.53

f7 163.91 202.20 968.50 157.94 201.30 869.31 159.95 217.88 816.28 158.64 205.73 779.34

f8 145.19 183.74 958.73 139.89 182.47 863.69 142.66 183.50 813.20 142.10 178.56 758.06

f9 1440.27 1431.61 2023.72 1388.95 1422.52 1930.11 1411.86 1429.26 1908.85 1392.27 1436.02 1882.60

f10 1318.60 1304.78 1808.96 1275.28 1310.63 1556.91 1303.40 1318.72 1529.69 1292.82 1337.41 1521.97

f11 1231.24 1236.26 1719.37 1199.81 1245.93 1468.96 1230.58 1249.32 1453.20 1227.34 1277.74 1452.88

f12 397.47 426.79 909.29 383.65 427.16 793.23 392.22 423.19 762.64 384.40 437.88 767.29

f13 211.37 248.04 835.18 207.00 243.59 686.43 212.17 244.36 660.46 208.32 255.08 644.27

f14 2283.64 2232.15 2819.67 2199.11 2245.18 2692.04 2235.92 2242.65 2662.26 2202.63 2249.56 2641.05

f15 2202.55 2155.61 2610.22 2119.90 2169.39 2371.22 2152.96 2186.23 2343.24 2119.82 2190.69 2335.41

f16 2137.39 2097.79 2432.28 2057.04 2106.34 2273.50 2091.12 2117.13 2269.39 2064.19 2129.64 2276.08

f17 657.10 677.95 1211.36 631.86 679.24 1071.23 642.05 680.81 1038.45 633.04 697.33 1036.42

f18 298.97 317.91 815.54 284.15 323.72 660.30 286.29 328.58 654.12 300.52 326.66 648.41

f19 10219.82 9853.06 10234.31 9808.20 9852.01 10125.19 9962.01 9859.02 10123.75 9811.42 9878.49 10093.88

f20 267.68 284.20 815.48 255.50 285.67 653.41 265.12 288.18 630.50 256.80 291.38 628.80

while the portfolio delivers a robust performance. The results in Table 4 and295

performance ranking figures in Figures 3 and 4 show that, in most of the cases,

the portfolio is in rank 1 or 2 while the constituent algorithms ranking changes

according to the function considered. These results indicate that all proposed

PPA instantiations have a robust performance.

It was seen that each algorithm has different running times and the running300

time of the PSO algorithm in large scale problems is much more compared to DE

and ABC due to its perturbation operator which changes all parameters, while

those the others change only some parameters. Distribution also has effect on

both the performance and the running time of the portfolio. If more individuals

are assigned to the fastest algorithm while less individuals are assigned to the305

slower ones, a gain is obtained in the running time of the portfolio, as expected.
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Figure 8: Running time (s) comparison between the coarse-grained PPA31, PPA32 and its 3

constituent algorithms on the 10 test functions a) 5 test functions with shortest running time

(f3, f7, f8, f13, f20), b) 5 test functions with longest running time (f9, f14, f15, f16, f19)

However, assigning more individuals to the fastest algorithm may not always

yield the best performance in terms of solution quality.

The speedup in the parallel implementation of the coarse-grained model is

expected to be linear since a CPU communicates to only one other CPU and then310

there is not much communication between CPUs as compared to other models

(master-slave, fine-grained and hybrid). The linearity of the running time of a

portfolio is measured by the running time of the portfolio versus the constituent

algorithms. Because the constituent algorithms have different running times, the

linearity of the speedup of the subpopulation varies depending on the control315

algorithm. If the control algorithm is chosen as the slowest algorithm, the

speedup is linear while the speedup is less when one of the other algorithms is

chosen as the control algorithm.

4.7. Hybrid PPA

In this section, we analyzed the hybrid PPA with respect to the running320

times. Because of the proposed model includes three different algorithms and

each algorithm needs at least two CPUs such that one is master and one is

slave, the minimum number of cores for proposed model can be 6. To test the

efficiency of the parallelism, the PPA is executed on 6, 9, 12 and 24 processors.

The average running times of the hybrid PPA are given in Table 5. Figure 9325
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show the graph of the parallel efficiency results based on PSO algorithm on the

5 test functions with the shortest running time (f3, f7, f8, f13, f20) and the 5

test functions with the longest running time (f9, f14, f15, f16, f19) for PPA31.
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Figure 9: Efficiency result for hybrid PPA31 algorithm based on PSO algorithm on the 10

test functions a) 5 test functions with shortest running time (f3, f7, f8, f13, f20), b) 5 test

functions with longest running time (f9, f14, f15, f16, f19)

Because the hybrid model is a composition of both the coarse-grained and

master-slave models, the performance depends on all the factors by which each330

model is affected, such as the running time of constituent algorithms, distribu-

tion of the population and the number of CPUs. The average running times

in Table 5 and parallel efficiency graph in Figure 9 show that the efficiency in

this model is less for functions with low computation times (f3, f7, f8, f13,

f20) and much more for functions with high computation times (f9, f14, f15,335

f16, f19). The average parallelization efficiency is about 70% for the f19 func-

tion, which has the highest computation cost. Also, increasing the number of

CPUs dramatically provides no more gain and even causes the parallelization

efficiency to decrease, especially in cases with shortest running times. These re-

sults clearly show that the function evaluation time and communication between340

the processors play an important role. Using more processors for a small prob-

lem increases the running time as a result of excessive communication between

the processors. Thus we can say that the hybrid PPA algorithm can achieve a
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reasonable speedup for expensive fitness functions with a moderate number of

processors.345

4.8. PPA for Time Series Predection Problems

In the last experiment, the performance of the PPA algorithm was applied

on two well-known time series prediction problems: Mackey Glass (MG) time

series and Box-Jenkins (BJ) time series which have been in literature to compare

the performance of different neural networks and neurofuzzy systems.350

The MG time series is a sequence produced by a nonlinear time delay differ-

ential equation [54]. The task of this benchmark is to predict the value of the

time serie at the point (t + 6) from the earlier points (t− 18), (t− 12), (t− 6)

and (t). The BJ time series was recorded from a combustion process of methane

air mixture [55]. The input u(t) is the gas flowing rate and the output y(t) is355

CO2 concentration. In most of the studies, it has been stated that the best set

of input variables for predicting y(t) is y(t − 1) and u(t − 4), which is used in

our study.

In this study, log-sigmoid transfer function, Mean Squared Error (MSE)

performance function and seven network structures that include one hidden360

layer MLP networks with 2,4,6,8,12,16 and 20 hidden nodes were used. The

maximum generation was set to 1000 and the other parameters of PPA were

set to default values in experimental settings. The data were normalized to

the range [0, 1] and shuffled randomly before training of the network. All the

experiments are implemented for 30 runs. The neural networks were performed365

using 450 training data, 500 testing data points for MG time series and 140

training data, 150 testing data points for BJ time series. In Table 6 average

MSE values of the neural networks with different structures trained using the

PPA algorithm are presented. The performance of the PPA were compared

with back propagation (BP), PSO, cooperative random learning particle swarm370

optimization (CRPSO), and genetic algorithm (GA) results data is from recently

reported publication [56] in Table 7.

Table 6 shows that on the prediction problems, the MPL that showed the
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best performance is the topology using 12 hidden nodes for MG and 8 hidden

nodes for BJ time series. From Table 7, it is observed that in both training375

and testing cases PPA performed better than the other algorithms used in our

study. So, it can be concluded that PPA is effective for time series problems.

5. Conclusions

We have proposed a method for enhancing the robustness of optimization

algorithms by running more algorithms in parallel to solve the same optimization380

problems. For this purpose, we constructed the PPA with basic models of the

ABC, DE and PSO algorithms. The PPA does not guarantee the best results.

However, each constituent algorithm delivers the best performance on some

problems while it tends not to be successful on others, while the PPA delivers

a robust performance. The results clearly showed that the PPA has advantages385

when a number of different problems need to be solved. Also, the performance

of the PPA is quite sensitive to the distribution of the constituent algorithms.

However, description of any one portfolio which is the best, is very difficult. In

particular, if you use more constituent algorithms in a PPA, finding the optimal

PPA is not possible.390

We explored two types of parallel implementation model: coarse-grained

and a hybrid model. These models are very suitable for portfolio structures.

Empirical studies demonstrated that each implementation of the PPA gained

speedup when compared to the sequential counterparts. In addition, we explored

how to affect the constituent algorithms’ distribution in the population in terms395

of running time. The result clearly showed that, distribution not only affects the

PPAs performance but also affects the running time significantly. We can clearly

say that when the number of the slow algorithms’ individuals increases in the

population, the running time of the PPA increases. Similarly, if the number

of the slow algorithms’ individuals decreases, the running time of the PPA400

decreases because communication between algorithms requires synchronization.

We also investigate the performance of the PPA for training seven different
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architectures of neural networks in a two time series prediction problems. This

study represents that portfolio algorithms are able to produce good prediction

accuracy.405

In the future we would like to study different optimization algorithms which

complement each other significantly and apply the proposed parallel models to

different real-world problems.
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Table 4: Function error values of the solutions obtained by ABC, DE, PSO and seven PPA

instantiations for the benchmark functions

Function
Algorithms

ABC DE PSO PPA21 PPA22 PPA23 PPA24 PPA25 PPA31 PPA32

f1 2.52E-06 3.45E+01 9.35E+09 3.42E-05 4.45E-06 1.46E-04 2.18E+08 2.33E+08 1.52E-03 1.43E-03

f2 7.12E+01 1.27E-02 7.67E+03 8.90E+01 8.56E+01 9.39E+01 3.43E+03 3.47E+03 9.01E-02 4.13E-01

f3 1.45E-03 2.21E-02 1.95E+01 4.62E-03 2.50E-03 4.13E-03 1.61E+01 1.63E+01 7.01E-04 3.22E-04

f4 4.04E+13 8.56E+13 3.02E+12 3.50E+13 3.76E+12 3.09E+12 5.17E+12 3.23E+12 3.60E+12 3.85E+12

f5 5.66E+08 5.37E+08 3.16E+08 5.33E+08 3.42E+08 3.23E+08 3.52E+08 3.25E+08 3.66E+08 3.41E+08

f6 2.01E+07 1.97E+07 4.31E+06 2.00E+07 9.54E+06 4.57E+06 7.21E+06 5.40E+06 6.27E+06 5.64E+06

f7 4.65E+10 6.89E+10 1.49E+10 3.20E+10 6.23E+09 4.09E+09 1.06E+10 1.20E+10 5.15E+09 6.66E+09

f8 1.58E+07 5.74E+07 7.31E+13 2.65E+07 9.46E+06 9.36E+06 4.50E+11 3.47E+11 1.73E+07 1.75E+07

f9 7.17E+08 1.74E+09 5.98E+09 6.83E+08 6.61E+08 6.60E+08 9.89E+08 8.69E+08 6.91E+08 6.57E+08

f10 7.27E+03 7.41E+03 8.22E+03 7.28E+03 4.65E+03 4.57E+03 7.10E+03 6.88E+03 4.69E+03 4.57E+03

f11 2.02E+02 2.07E+02 2.12E+02 2.03E+02 1.96E+02 1.95E+02 2.13E+02 2.12E+02 1.97E+02 1.94E+02

f12 7.38E+05 1.32E+06 9.16E+05 7.11E+05 4.97E+05 3.98E+05 3.97E+05 3.64E+05 4.66E+05 3.81E+05

f13 6.32E+02 2.62E+03 8.59E+09 1.00E+03 7.89E+02 1.23E+03 3.24E+07 3.08E+07 1.72E+03 1.51E+03

f14 1.82E+09 5.04E+09 1.67E+09 1.77E+09 1.78E+09 1.71E+09 2.05E+09 1.69E+09 1.68E+09 1.68E+09

f15 1.46E+04 1.58E+04 8.51E+03 1.45E+04 8.73E+03 8.52E+03 8.69E+03 8.53E+03 8.84E+03 8.64E+03

f16 4.05E+02 4.16E+02 3.89E+02 4.05E+02 3.90E+02 3.89E+02 3.90E+02 3.89E+02 3.91E+02 3.89E+02

f17 1.46E+06 2.92E+06 1.12E+06 1.48E+06 1.23E+06 1.10E+06 1.22E+06 1.12E+06 1.27E+06 1.16E+06

f18 7.11E+03 1.00E+04 3.37E+10 1.19E+04 9.55E+03 1.54E+04 2.03E+08 1.92E+08 9.24E+03 9.62E+03

f19 8.54E+06 1.22E+07 2.53E+06 7.32E+06 2.92E+06 2.66E+06 2.85E+06 2.66E+06 3.00E+06 2.83E+06

f20 5.33E+02 3.48E+03 4.31E+10 1.15E+03 8.55E+02 1.54E+03 2.67E+08 2.26E+08 1.89E+03 1.85E+03

Table 5: Average running times (s) of serial PSO and PPA31 algorithms for hybrid model

Alg. CPU(s)
Functions

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

PSO 1 993.62 600.57 530.67 1160.67 817.82 848.53 779.34 758.06 1882.60 1521.97

PPA31

6 226.31 164.55 145.21 251.06 265.34 177.37 171.00 165.26 413.31 421.48

9 157.60 141.31 102.99 208.13 221.24 144.18 115.74 115.00 306.79 355.04

12 140.97 122.79 80.68 168.37 202.52 130.99 118.92 118.79 220.08 274.26

24 135.27 125.93 88.94 148.52 183.87 121.99 127.61 118.77 190.23 229.08

Alg. CPU(s)
Functions

f11 f12 f13 f14 f15 f16 f17 f18 f19 f20

PSO 1 1452.88 767.29 644.27 2641.05 2335.41 2276.08 1036.42 648.41 10093.88 628.80

PPA31

6 313.77 188.24 172.22 596.62 613.06 523.78 284.64 204.70 2357.72 173.97

9 266.23 171.32 127.80 420.74 485.54 360.24 230.04 141.36 1520.00 147.04

12 182.86 134.08 127.26 298.20 359.44 266.86 180.34 132.60 1180.98 122.66

24 170.22 128.08 128.34 215.46 297.28 187.10 158.54 127.00 619.10 123.34
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Number of Hidden Nodes
Mackey Glass Box Jenkins

Train Test Train Test

2 3.4945E-03 3.5128E-03 8.9114E-04 9.1565E-04

4 1.3430E-03 1.4180E-03 6.6052E-04 7.9206E-04

6 6.9713E-04 7.7762E-04 6.1556E-04 7.9727E-04

8 5.7153E-04 6.2639E-04 6.0978E-04 7.0342E-04

12 5.4804E-04 6.1113E-04 5.9920E-04 7.2255E-04

16 6.0202E-04 7.0184E-04 5.7387E-04 7.3291E-04

20 7.5745E-04 8.9585E-04 5.8302E-04 9.0047E-04

Table 7: The comparison results of MSE values for the time series

Time Series Method BP PSO CRPSO GA PPA31

Mackey Glass
Train 0.0038 0.0017 5.2504E-04 5.9584E-04 5.4804E-04

Test 0.0041 0.0018 5.4910E-04 6.2173E-04 6.1113E-04

Box Jenkins
Train 0.0030 0.0029 0.0017 0.0018 6.0978E-04

Test 0.0056 0.0054 0.0021 0.0023 7.0342E-04
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