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                                                                     a b s t r a c t 

Recent biological studies have focused on understanding animal interactions and welfare. To help biolo- 

gists to obtain animals’ behavior information, resources like wireless sensor networks are needed. More- 

over, large amounts of obtained data have to be processed off-line in order to classify different behaviors.

There are recent research projects focused on designing monitoring systems capable of measuring some

animals’ parameters in order to recognize and monitor their gaits or behaviors. However, network unre- 

liability and high power consumption have limited their applicability.

In this work, we present an animal behavior recognition, classification and monitoring system based on

a wireless sensor network and a smart collar device, provided with inertial sensors and an embedded

multi-layer perceptron-based feed-forward neural network, to classify the different gaits or behaviors

based on the collected information. In similar works, classification mechanisms are implemented in a

server (or base station). The main novelty of this work is the full implementation of a reconfigurable

neural network embedded into the animal’s collar, which allows a real-time behavior classification and

enables its local storage in SD memory. Moreover, this approach reduces the amount of data transmitted

to the base station (and its periodicity), achieving a significantly improving battery life. The system has

been simulated and tested in a real scenario for three different horse gaits, using different heuristics and

sensors to improve the accuracy of behavior recognition, achieving a maximum of 81%.
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                        1. Introduction

The study and monitoring of wildlife has always been a subject

f great interest since the quantitative measurement of animal be-

avior is an important tool for understanding their reproduction,

urvival, welfare and interaction with other animals. It is impor-

ant to study the motion patterns of wild animals and how they

ay be affected by changes in weather, flora or by the introduc- 

ion of non-native species. Learning such details about wildlife re-

uires long-term activity logs as well as other biometric data such

s heart rate, body temperature, movement speed and frequency 

f feeding. Therefore, the design and deployment of a monitoring 
ystem capable of obtaining behavioral information from animals 

as been the focus of several studies [1–5].  

Collecting and processing relevant information from wildlife is 

a hard technological task [6–8] due to several factors that need to 

r  

w  

a  

s  
e solved: (1) the development of lightweight and lower power-

onsumption devices to attach to the animal, (2) the design and

mplementation of a wireless network to collect the information

rom those devices, and (3) storing the data and its further pro-

essing mechanisms. 

The behavioral parameters of an animal can be measured using

ifferent types of sensors. With this data, different communication

trategies can be deployed to send the collected information. The

raditional Very High Frequency (VHF) radio-tracking system col-

apses as soon as it starts using multiple collars due to the scarcity

f frequencies assigned. Using this kind of radio-tracking, the re-

earchers have to move through the experimental area with a re-

eiver antenna looking for collared animals. Therefore, data collec-

ion is infrequent and limited to daylight hours or to research op-

rating hours [9] . Satellite localization mechanisms are so expen-

ive that only migratory animals were used, as in [10] . There are

ecent studies that have aimed at designing wireless sensor net-

orks that are capable of measuring specific behavioral parameters

nd transmitting them over a wireless network to a central base

tation [3,5,11] . This strategy overcomes the disadvantages of the

http://dx.doi.org/10.1016/j.neucom.2017.03.090
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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Table 1

Qualitative study between relevant works in the area.

Used sensor Collected data Recognition method Output classes Real-time classification

Ref. [16] 2-axis accel. Online MLP ANN 5 No

Ref. [17] GPS & 3-axis accel. Online Decision tree 5 No

Ref. [18] 3-axis accel. Offline Decision tree 3 No

This work 3-axis accel. Online Embedded MLP ANN 3 Yes

Fig. 1. Network topology architecture.
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two previous ones. Global positioning systems (GPS) is the most

popular sensor used in outdoor environments to estimate the tem-

poral and spatial distribution of animals [1–3,8,9,12] . Some of these

studies also infer animal activity from GPS tracking data [1–3] . In

[2] , the position and acceleration obtained from the GPS is used

to infer different activity states from cattle. In this study, discrimi-

nant analysis classification agreed with human observation for at

least 74% of the data while regression tree classification agreed

with human observation for at least 84% of the data. In [1] , the

authors compared the classification results from human observers

with those obtained from discriminant analysis of GPS data and

found that the two were in agreement for 71% of the data. Both

papers classify between three different behaviors: grazing, travel-

ling and resting. In the research carried out in [3] , the behavior of

a herd of dairy cows is classified using the animal tracking data

obtained from the GPS into two classes (active and inactive) using

a k -means classifier. 

When using the GPS sensor for animal monitoring, high capac-

ity memory cards to store the information and long life-batteries
re needed because of the power consumption, which usually are

ot lightweight. Therefore, high-power consumption and frequent

oss of connection with the satellites in the areas of a field cov-

red by obstacles (e.g., trees) are the main drawbacks of GPS-based

onitoring systems. In addition, current studies have identified the

ifficulty of balancing data resolution with technical limitations,

articularly the power and memory requirements of the animal-

ttached device [3,8] . 

The use of inertial sensors, like the accelerometer, gyroscope

nd magnetometer, overcomes the disadvantages of GPS and al-

ows to obtain information about the entire range of the animal’s

ody movements [4,5,13,14] . In [13] a body attitude (orientation)

stimation for free ranging animals using an Inertial Measurement

nit (IMU) is described. In [14] the authors placed offline pitch-

oll sensors around the neck of each sheep in a herd. The data was

nalyzed using three classification methods: a linear discriminant

nalysis, a classification tree method, and a manually developed

ecision tree consisting of four “if then” loops. All three meth-

ds provide very good classification predictions with more than
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Fig. 2. Mote device without battery.
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0% accuracy, distinguishing between two activity categories: ac-

ive and inactive. 

Regardless of the type of sensors used to monitor animals,

arge amounts of data are needed when studying their behavioral

atterns, implying important analytical and interpretative steps to

rocess the information. Algorithms that look for particular behav-

oral patterns based on the input data usually conduct this kind

f recognition or classification. Some of these algorithms are Neu-

al Networks (NN), Support Vector Machines (SVM) or even com-

lex statistical methods, which can detect specific behaviors such

s sleeping, running, copulating, etc. Generally, the computational

osts of some of these algorithms are high enough to require spe-

ific platforms capable of parallelizing computations for this clas-

ification. Supervised neural networks, such as feed-forward net-

orks, are particularly well suited for modeling and controlling dy-

amic systems, classifying noisy data, and predicting future events

15] .

In [16] , a 2.4-GHz ZigBee-based mobile ad hoc wireless sensor

etwork to collect information from sheep and send it to a base

tation is presented; and, also, a multilayer perceptron (MLP) based

rtificial neural network (ANN) to obtain the corresponding behav-

or from the gathered data in an online way is described. The accu-

acy rate of the network is 76.2% (classifying between five different

lasses: grazing, lying down, walking, standing and others). 

In this work, we propose a hierarchical wireless sensor network

o collect information about animals activity using low-power con-

umption intelligent devices placed on them which contain a neu-

al network implementation to classify their behavior based on

ensory information. Therefore, we propose an online monitoring

ystem capable of real-time classification of the animal behavior.

he NN is designed and trained offline using a software tool and

hen all of its training parameters and configuration are used on

n embedded version of the NN, which is implemented on a low-

ower microcontroller. The main novelty of this work with respect

o related studies lies on the in-collar behavior classification. 

Table 1 summarizes a qualitative study between the most rele-

ant works in this area and this work, comparing the used sensor,

uch as methods and features, as real-time classification capability.

As can be seen, all works use an accelerometer as sensor, and

ost of them collect the samples online, i.e., it is not necessary to

ake off the device from the animal, since they are sent by wireless

etwork. As recognition method, decision tree and MLP based ANN

re commonly used because both are able to achieve a good hit

verage, classifying between three or five classes in these cases.

eal-time classification is only achieved by this work, and it is the

ain novelty in comparison with the others. 

MINERVA is a research project whose main aim is to study

nd classify wildlife behavior inside Doñana National Park [19] .

owadays, tracking and classification systems for wildlife used in

oñana National Park obtain positional information using a GPS

nd transmit it via GSM (by SMS). However, to reduce the power

onsumption, the position is obtained between two and five times

 day. These solutions are not enough for biologists interests: they

eed more information to recognize animal behaviors. To solve this

ack of information, two solutions can be implemented: the sys-

em can be adapted to transmit information more regularly (since

ommunications consume in average more than 80% of battery life,

hich makes this option inefficient); or, on the other hand, this

nformation can be processed locally in order to classify the ani-

al behavior and transmit only the behavior itself. Therefore, in-

tead of sending the information after every sensor read, the com-

unication to the network only occurs after several sensor reads;

his fact increases battery life but keeps the information of ani-

al behaviors. Viability and power consumption studies for these

wo approaches have been carried out by the authors in [20] . This

roject has the additional aim of developing an infrastructure for
ollecting this information and make it accessible through the in-

ernet. The pattern recognition of the sensed data is performed in

eal time by the microcontroller using a low-power implementa-

ion of a NN that classifies three different horse gaits [21] (motion-

ess, walking and trotting). This information is transmitted using a

esh wireless multisensory network distributed on collars placed

n some animals. This multisensory network reads data from the

ensors and sends them to a network of motes, which acts as a

outer and retransmits these packets to a base station. This base

tation receives the information through the network and uploads

t to a remote server database using Doñana National Park’s Wi-

i connection. Researchers can access this data using a web-based

ser interface and track the animal activity and its location in real

ime without the necessity of being in Doñana National Park [19] . 

The paper is structured as follows: Section 2 presents the wire-

ess sensor network and its architecture. Section 3 describes the

ollar device. Then, Section 4 presents the Fast Artificial Neu-

al Network library. Section 5 describes the experiments that

ave been carried out, the testing scenario and their results. In

ection 6 , the authors discuss the results obtained and previous

tudies related with this and future works using the current state

f the project as a starting point. Finally, Section 7 presents the

onclusions. 

. Network topology

The main aim of the network is to obtain behavioral informa-

ion from wildlife and store it in a remote database server. This

ay, researchers can access this information through a website for

urther research and studies. The classification information is col-

ected and sent through the network by collars that are placed

n the animals and that consist of several sensors, while a set of

otes transmit it to the base station, which is located in the park.

ue to the fact that capturing a wild animal to replace its collar

s very expensive, the whole system is designed to have the low-

st power consumption possible. That is why the behavioral clas-

ification is done in an embedded neural network on the collar,

ransmitting only the classification result instead of the obtained

nformation from each of the sensors that the collars have. The

tudy that the authors have carried out in [20] shows that the data

ransmission is, by far, the action that consumes more battery life.

n this study, a 2.4-GHz ZigBee-based [22,23] wireless sensor net-

ork is used. Fig. 1 shows the WSN topology architecture. 

ZigBee defines three different device types: Coordinator, Router

nd End Device which correspond with the ones that have been

sed in this network: base station, motes and collars, respec-

ively. The main goal of the base station is to receive data pack-

ts from the collars and retransmit them to a remote database

erver using Doñana National Park’s Wi-Fi connection. Moreover,



Fig. 3. BridgeBoard (left) and base station (right).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Collar device prototype.
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the base station has other important functionalities, focused on

controlling park environmental conditions, like temperature or hu-

midity. This device consists of several elements, such as an Intel

NUC barebone, 1 a 60A battery to power the system, a solar panel

( 1476 × 659 × 35 mm) to charge the battery during daylight and a

printed circuit board (PCB) called BridgeBoard which contains dif-

ferent sensors and the XBee module to receive packets from col-

lars and motes. The battery, NUC and BridgeBoard are protected

by a metallic waterproof box, which allows to place the base sta-

tion outdoors without any risk. Everything has been mounted on a

dedicated metallic structure designed to avoid the effects of hard

weather conditions. The motes are XBee devices configured as Zig-

Bee routers which are placed surrounding the base station. Their

main goal is to expand the coverage area and provide a commu-

nication spot between collars and the base station in case that the

collars are out of the coverage range of the base station. Figs. 2 and

3 show the mote device and the base station, respectively. 

Although each device in this network has a very important role

in the MINERVA project, in this work we will focus on the collars,

which are the most relevant ones in terms of the classification of

wildlife behavior. More information about all these elements can

be found in [20] . 

3. Collar

The collar collects information from the animal on which it is

placed by using different sensors. It has a MinIMU-9V2 inertial

measurement unit (IMU), which consists of a LSM303DLHC 3-axis

accelerometer, a L3GD20 3-axis gyroscope and a 3-axis magne-

tometer. An I2C interface accesses nine independent rotation, ac-

celeration, and magnetic measurements that can be used to calcu-

late the sensor’s absolute orientation. All of these sensors have 12-

bit resolution for a more precise data acquisition. The IMU is used

in addition to a GPS, which provides location and time information

in all weather conditions. The main aim of the collar is, using the

information obtained from the IMU, to classify the animal’s behav-

ior (between three different gait patterns) using this data as an in-

put for a feed-forward neural network implemented on the collar’s

microcontroller unit (MCU). The periodical measures of each sen-

sor are carried out using a low power microcontroller (STM32L152

[ref]) with a real-time operating system (RTOS) which is powered

using a four AAA battery pack (1.5 V, 1155 mAh each). 

The collar prototype (see Fig. 4 ) has an XBee module (XBee

PRO S2B [6] ) that can transmit data through a wireless network.
1 http://www.intel.com/content/www/us/en/nuc/nuc- kit- d54250wykh.html .

 

p  

m  
Bee modules are integrated solutions based on ZigBee, which is

n open global standard of the IEEE 802.15.4 MAC/PHY [22,23] . This

evice family allows to implement a mesh network of motes (or

outers) where collars (or devices) send information, and other el-

ments (coordinators) of the network redirect these packets to a

eb server. The main objective is to transmit sensed information

o the nearest router of the network, so that it can reach the coor-

inator and upload this information to the database server. If the

ignal cannot reach a valid point to transmit, i.e., the animal is out

f the network coverage, the collar carries a microSD card where

he information is stored, so that the animal behavioral informa-

ion can be accessed later or offline, avoiding data loss. Using the

Bee module the collar will send the recognized gaits to a base

tation that will upload this information to a database server on

he internet. 

Due to the fact that capturing a semi-wild animal is very ex-

ensive and difficult, the microcontroller is able to switch to sleep

ode if there are no routers in the network coverage capable of

http://www.intel.com/content/www/us/en/nuc/nuc-kit-d54250wykh.html
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eceiving this collar’s information, increasing battery life. Moreover,

he measures are transmitted periodically according to a frequency

alue that is established and that can be modified, reducing radio

ransmissions and thus, reducing power consumption. 

. Fast Artificial Neural Network library

The main goal of project MINERVA is to monitor wild animals,

et the behavior information based on their activity levels, which

re obtained from the sensors that are placed on the collar that

as described in the previous section, and then, send this infor-

ation to a database server on the Internet for further research by

oñana’s biologist staff. For this purpose, a classifier system needs

o be used in order to predict which one of the studied behaviors

motionless, walking and trotting) is the animal performing based

n the sensor information. Since neural networks are presently of-

ering better accuracies at solving these classification problems, we

ave explored their use in this work by embedding them into an

mbedded system. 

The neural network has been deployed in the collar’s microcon-

roller using the Fast Artificial Neural Network library [24] , which

s a free open source neural network library that implements mul-

ilayer artificial neural networks in C programming language. It is

asy to use, well documented, versatile and allows to use both

oating point and fixed point numbers. It also has bindings with

ore than 20 programming languages and several graphical user

nterfaces (GUIs), although in this paper the standard C library

ith neither wrappers nor GUIs is used. Fixed point numbers are

sed in this work due to the microcontroller’s lack of Floating

oint Unit (FPU) because of low-power consumption requirements.

Two different versions of the library are used in this work.

he first one is the full fixed point FANN library, which can be

ownloaded from the Github page of the project. This version is

sed for training the neural network and, after this step, test the

ataset with the configuration that has been obtained in the train-

ng phase. This whole simulation process is done in the PC just for

esting how good the classification results would be before deploy-

ng the neural network configuration on the microcontroller. 

The second version of the FANN library that we have used cor-

esponds to a modified version we have performed. In this second

ase, we have improved the performance and removed some parts

or power saving, such as: training, floating point operations and

ther non-necessary classes and functionalities when it comes to

btaining the classification results. This second version fits in the

ollar’s microcontroller. The reasons why the training functional-

ty has been removed from the vanilla version of the FANN library

re: (1) the microcontroller has limited processing capabilities and

emory; (2) the computational cost of the training step (which re-

uces battery life); and (3) the training process will still be done

n the PC due to the fact that, for this purpose, the training step

oes not need to be done in the collar. 

In general, tests (which will be detailed in the next section)

ere performed using a multi-layer perceptron feedforward neural

etwork [15] . This kind of NN is the standard algorithm in pattern

ecognition tasks, trained by a backpropagation algorithm. It con-

ists of three or more layers: an input layer, an output layer, and

ne or more hidden layers. In this work, an input layer with three,

ix or nine inputs (depending on the data set used), one hidden

ayer with ten, twenty or thirty neurons (to see if it improves) and

n output layer with three neurons (it always has three outputs,

ne per gait) was implemented, trained and tested using the data

ollected in Doñana. 

The FANN library allows to choose between different activation

unctions: linear, threshold, threshold symmetric, sigmoid step-

ise, sigmoid symmetric stepwise, linear piece and linear sym-

etric piece [25] . However, in this work, we have used Sigmoid
ymmetric Stepwise due to the fact that it is the same as the one

hat we used in the experiments that were carried out in [5] , so

hat the results can be compared using exactly the same network

rchitecture. This activation function gives an output that is be-

ween −1 and 1. It is a stepwise linear approximation to symmetric

igmoid and faster than symmetric sigmoid, but a bit less precise.

or training, FANN supports a set of training algorithms, but the

efault and most used one is the backpropagation algorithm [26] .

nitialization algorithms, such as the Nguyen–Widrow [27] , have

ot been used in this work due to the initialization process being

rovided by the FANN library. However, good results were obtained

n the first tests, so this step will not be considered in the future.

ome parameters like the mean squared error (MSE) and the num-

er of epochs can be configured to improve the resulting accuracy,

nd they will be set experimentally as tests will be performed. 

. Experimental results and comparison

In this section, we present the experimental results obtained

rom the classification system using the FANN library, varying

oth the number of neurons in the hidden layer and the input

ataset between raw (unprocessed) and different filtered sensor

ata. These tests were performed in three different testing scenar-

os: (1) training and testing the NN using the full FANN library on

he PC, (2) training the NN on the PC using the same library and

esting it on the embedded version of the FANN library running

nside the collar, and (3) using the same training parameters that

ere obtained in previous experiments and testing the network on

 different real scenario (the collars are placed on different horses

nd, after the experiment is done, the average accuracy ratio is

alculated). A comparative study of the performance between the

ANN library and a previous work performed by the authors in [5] ,

n which we used the Matlab Neural Network Toolbox for classi-

ying between the same three horse gaits that are intented to be

lassified in the present study, was conducted in order to deter-

ine which library behaves better using the same NN architecture,

raining and datasets. 

.1. Simulation tests 

The first part of this study is to train the classifier system us-

ng the FANN library and to perform several simulation tests, us-

ng both a PC and a collar (which is not placed in a horse), where

he same NN architectures are implemented. These architectures

re MPL-based feed-forward NNs with three layers: the input layer,

ne hidden layer and the output layer. The input layer contains 3,

 or 9 neurons (depending on which sensors are used from the in-

ut dataset), and the number of neurons in the hidden layer is set

o 10, 20 or 30 neurons. The output layer consists of 3 neurons,

orresponding to the three behaviors to be classified (motionless,

alking and trotting). The transfer function used is the Sigmoid

ymmetric Stepwise, as said in the previous section. 

To train the NN, the widely used backpropagation algorithm is

sed, as it is the default training mechanism that FANN imple-

ents, which also is the same that was used in the Matlab Neu-

al Network Toolbox in the previous work [5] . The length of the

hole dataset for both the training and the test is 30,0 0 0 sam-

les, which were obtained during different visits to Doñana’s Na-

ional Park from the IMU sensors inside the collar while a horse

erformed three different behaviors: motionless, walking and trot-

ing. The sensors described in Section 3 gathered data every 33 ms,

o the sampling frequency is 30 Hz. The data was obtained at dif-

erent seasons of the year between which the weather conditions

ere definitely not the same. The horses used for the collection of

ata had approximately the same characteristics in terms of height,

eight and age. The samples were randomly divided into three



Table 2

Hit rate percentages using the full version of the FANN library and unprocessed (raw) sensor data as input.

Neurons in hidden layer Classes Sensors used

Acceler. (%) Gyro. (%) Magnet. (%) A&G&M (%) A&G (%)

10 Trotting 75.58 49.6 55.74 77.04 74.62

Motionless 81.98 69.26 55.40 82.54 83.16

Walking 81.12 54.46 66.14 82.34 81.58

Average 79.56 57.79 59.12 80.64 79.79

20 Trotting 75.00 53.18 58.08 76.68 74.98

Motionless 81.34 69.62 58.50 86.44 86.62

Walking 80.38 56.12 67.70 82.36 81.98

Average 78.91 59.64 61.43 81.83 81.19

30 Trotting 75.84 53.48 58.42 76.32 74.74

Motionless 81.52 70.18 58.64 87.50 86.42

Walking 80.30 56.98 68.30 82.50 81.68

Average 79.22 60.21 61.79 82.11 80.95

Table 3

Hit rate percentages using the full version of the FANN library and fil- 

tered sensor data as input.

Neurons in hidden layer Classes Applied filter

Kalman (%) FreeIMU(%)

10 Trotting 88.84 61.54

Motionless 97.32 53.04

Walking 99.98 63.00

Average 95.38 59.19

20 Trotting 89.67 62.74

Motionless 96.59 57.90

Walking 99.99 66.92

Average 95.42 62.52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

n  

d  

p  

i  

s

 

o  

n  

t

 

b  

c  

w  

r  

d

 

s  

t  

T  

t  

i  

l  

w

5

 

t  

h  

i  

c  

t

 

b  

f  

l  

(  

a  

T  

h  

t  

i

 

g  

h  

l  
sets; the following cross-correlation scheme is used for every ex-

periment in this work: 70% for training, 15% for validation and 15%

for testing the network. 

5.1.1. Using the full version of the FANN library 

The first performance test used the raw sensor data, thus the

NN has three, six or nine inputs ( x, y and z for each 3-axis sensor

of the IMU). To evaluate the importance of each IMU sensor when

it comes to recognizing animal behaviors, the NN was trained and

tested with different combinations of these sensors. On the other

hand, for the second performance test, Kalman and FreeIMU pre-

processing algorithms were used. These samples were obtained

when applying Kalman and FreeIMU filters to the accelerometer,

gyroscope and magnetometer raw data in real-time when the col-

lar MCU collected this information [28] . In this case, three neurons

are used in the input layer of the NN (these algorithms obtained

three values: pitch, roll and yaw from the IMU sensors). 10, 20 and

30 neurons were used in the hidden layer in both experiments. 

For each NN architecture that has been presented, several

training-testing steps were performed to calculate the results in

terms of average accuracy ratio. The results of these tests using

both sensor raw data (unprocessed) and Kalman and FreeIMU fil-

ters are presented in Table 2 and Table 3 , respectively. 

The results that can be seen in Table 2 show that the ac-

celerometer is the sensor that has the most valuable information

about the horse movement, while the gyroscope and magnetome-

ter improve the pattern definition. The classifier system has an ac-

curacy of 82.11% using 30 neurons in the hidden layer. In Table 3 ,

the hit rate of our classification system using Kalman filtered data

is around 95.4% regardless of the number of neurons in the hidden

layer. 
.1.2. Using the embedded version of the FANN library 

The aim of this test is to determine if the performance for run-

ing the embedded version of the FANN library inside the collar

iffers from running the full version of the FANN library in a com-

uter. For this purpose, the same experiments that were performed

n the previous subsection were carried out using this library in-

ide the collar. 

The NN was trained in a computer and, after that, the weights

f the connections and the rest of the training parameters that are

ecessary to create the NN were generated and implemented in

he collar. 

As can be seen in previous tests, for each architecture that has

een presented, several training-testing steps were performed to

alculate the results in terms of average accuracy ratio. The collar

as not placed on the animal. The results of these tests using both

aw sensor data (unprocessed) and Kalman and FreeIMU filtered

ata are presented in Table 4 and Table 5 , respectively. 

From Table 4 , these results show that the accelerometer is the

ensor with better information about the horse movement, while

he gyroscope and magnetometer improve the pattern definition.

he classifier system has an accuracy of 82.41% with 30 neurons in

he hidden layer. In Table 5 , the hit rate obtained by the NN us-

ng Kalman filtered data is 95.39% using 20 neurons in the hidden

ayer, which is almost the same as the one obtained when tested

ith 10 neurons. 

.2. Real test 

After the simulations were performed, the next step was to test

he embedded NN implementation into the collar placing it on a

orse and obtaining classification results in real-time. By perform-

ng this test, we can obtain the hit rate accuracy of the NN and

ompare these results with the ones obtained on the simulations

hat were performed in the previous subsection. 

For this test, the same NN architectures were trained and em-

edded into a collar. These architectures were MPL-based feed-

orward NNs with also three layers: the input layer, one hidden

ayer and the output layer. The input layer contains 3 or 9 neurons

depending on which sensors were used from the input dataset),

nd the number of neurons in the hidden layer is fixed to 10.

he output layer consists of 3 neurons, corresponding to the three

orse gaits to be classified (motionless, walking and trotting). The

ransfer function used is the Sigmoid Symmetric Stepwise, as said

n the previous section. 

The results obtained in simulation tests show that there is no

reat difference when between using 10, 20 or 30 neurons in the

idden layer, in terms of average hit rate. For this reason, a hidden

ayer with 10 neurons was used in this test to save memory and



Table 4

Hit rate percentages using the embedded version of the FANN library and unprocessed sensor data as input.

Neurons in hidden layer Classes Sensors used

Acceler. (%) Gyro. (%) Magnet. (%) A&G&M (%) A&G (%)

10 Trotting 75.37 23.77 55.31 77.92 75.52

Motionless 88.70 58.72 59.40 87.76 86.70

Walking 76.62 81.71 68.03 77.52 79.15

Average 80.23 54.73 60.91 81.07 80.46

20 Trotting 74.01 34.86 58.23 79.48 77.40

Motionless 89.65 57.02 58.45 84.86 85.69

Walking 77.59 78.29 68.80 80.46 81.65

Average 80.42 56.72 61.83 81.72 81.58

30 Trotting 75.45 35.66 58.06 77.64 77.76

Motionless 89.31 57.23 59.13 86.80 87.70

Walking 77.55 78.04 68.38 82.81 80.48

Average 80.77 56.98 61.86 82.41 81.98

Table 5

Hit rate percentages using the embedded version of the FANN library and

filtered sensor data as input.

Neurons in hidden layer Classes Applied filter

Kalman (%) FreeIMU (%)

10 Trotting 98.56 58.01

Motionless 83.86 53.47

Walking 99.99 64.13

Average 94.14 58.54

20 Trotting 89.46 62.12

Motionless 96.72 57.80

Walking 100 67.81

Average 95.39 62.57

Fig. 5. Horse used for real tests.
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Table 6

Hit rate values obtained in the real scenario.

Neurons in hidden layer Classes Sensors used Applied filters

Acceler. (%) A&G&M (%) Kalman (%)

10 Trotting 64.05 64.44 75.03

Motionless 66.81 67.93 84.38

Walking 66.12 67.42 83.64

Average 65.66 66.60 81.01
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educe calculations. The datasets collected by the sensors, which

ere used as input to the NN, were accelerometer, accelerometer-

yroscope-magnetometer and the output of a real-time Kalman fil-

er. 

To train the NN, datasets used in the previous section were

sed, where the length of the whole dataset for both the train-

ng and the test are 30,0 0 0 samples. The samples were randomly

ivided into three sets; the following cross-correlation scheme was

sed for every experiment in this work: 70% for training, 15% for

alidation and 15% for testing the network. The collar was placed

lose to the jaw of the horse, as can be seen in Fig. 5 . 

The horse that was used in this test belongs to a different breed

rom that of the horses used to collect data for performing the

imulation tests and training the NN. 
Once the NN was trained in the PC by using the FANN library,

onnections’ weights were obtained and loaded into the collar, al-

owing to perform the test, where the horse was performing the

hree gaits to be classified (motionless, walking and trotting) in

eal-time. The results of these tests using both raw sensor data

unprocessed) and Kalman filtered data are presented in Table 6 . 

The results obtained in these tests show that the hit rate values

re about 15% lower than the ones achieved in the simulation. The

est accuracy value obtained by the NN was using Kalman filtered

ata as input, with a hit rate percentage of 81.01%, whereas using

AW data only achieved 66.60% in the best case. 

.3. Comparative study of the obtained results 

The results that were obtained from the NN simulation on

he PC using the full FANN library and from the NN simulation

n the collar using the embedded version of the FANN library

 Sections 5.1.1 and 5.1.2 ) show that there is no difference between

hese two approaches in terms of accuracy ratio. The results from

hese two simulations were compared by calculating the average

ifference of the hit rate percentage values considering every ar-

hitecture and case presented in the corresponding tables. The cal-

ulated average accuracy percentage difference is 1.00473684% and

he typical deviation is 1.03962797%, proving that, with the same

nput dataset, the results obtained in the PC and in the collar are

ractically the same. 

Comparing these simulations with the ones that were done in

 previous work using the Matlab Neural Network Toolbox [5] and

he same input dataset, it can be seen that the results obtained

ith FANN hardly differ from them. Therefore, it can be concluded

hat FANN library can, at least, obtain the same performance as

he Matlab Neural Network Tookbox and thus it could be a good

hance. 

Since the real test was performed with a horse from a dif-

erent breed than that of the ones that had been used to train

he network, worse accuracy results were expected. However, even

n this case, the NN achieves 81.01% hit rate when using Kalman

lter, which is around 14% lower than that of the simulation



Fig. 6. Hit rate comparison between the real test and the simulations performed in

the collar.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7

Hit average obtained.

Recognition method Classified classes Hit average (%)

Ref. [16] MLP based ANN 5 76.2

Ref. [17] Decision tree 5 85.5

Ref. [18] Decision tree 3 82.2

This work MLP based embedded ANN 3 81.1
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on the collar, but still a very decent accuracy ratio. Using the

accelerometer and all the IMU sensors as input, the NN achieved

15% less accuracy but, in these cases, 65.66% and 64.60% are not

considered to be good values when it comes to monitoring ani-

mals. Fig. 6 presents a bar graph displaying the hit rates from the

simulations done in the collar and the real test performed with the

horse. 

As is described before, it makes sense that the real test exper-

iments obtained worse classification results, due to the fact that

the horse in which these tests were performed is from a different

breed than that of the ones that were used to train the NN. 

6. Discussion

The comparison between the classification results obtained

from the simulation of the embedded version of the FANN library

in the collar and the ones obtained from the simulation of the full

FANN library on the PC shows that deploying a NN in the devices

that are pltor wildlife (capturing a wild or semi-wild animal to

change the battery from its collar is a difficult and expensive task).

This approach is a novelty and it is not considered in the previous

studies that have been discussed in this manuscript. These results

are very similar to the ones obtained in [5] , in which the authors

carried out different simulations on a PC with the same NN ar-

chitecaced on animals is not only viable, but also the best solution

in terms of power consumption [20] , which is a very important

fact when it comes to monituring and preprocessing steps on the

data input as the ones that have been done in this manuscript but

using the Neural Network Toolbox from Matlab. Therefore, for this

purpose, the performance of the developed embedded version of

the FANN library proves to be as good in terms of results as the

Matlab Toolbox or even the full version of the library, but over-

coming two main disadvantages: (1) it can be implemented and

deployed on a MCU and (2) it is optimized for low-power con-

sumption. 

The results obtained from the real tests in which the collar was

placed on a horse were around 14% less accurate than the ones ob-

tained in the simulations. This is not caused by the performance of

the NN but by two facts: (1) the horse in which these tests were

performed is from a completely different breed than that of used

to train the NN, and (2) a slight change on the collar’s position

while placing it on the horse makes the inertial sensors gather

completely different values, which affects the classification results.

In the near future, the authors will focus on solving these two

issues. The first one can be solved by training the network with

more data from different horse breeds. We have already started

working on solving the second issue, studying the best place and
ay to position the collar and using time windows to calculate the

ifference produced in the sensor information. Using this informa-

ion instead of the raw data obtained by the inertial sensors as

nput to the NN reduces the errors that are caused by the position

f the collar. 

Even though several problems happened in the real test, the

lassification system with an embedded ANN presented in this

ork not only improves the results obtained in other related works

uoted in Section 1 (introduction), as can be seen in Table 7 , but

t performs the classification in real time. 

Focusing on the communications network, previous works have

sed wireless sensor networks [4,7,9,11,13,16] , but none of them

ave implemented the embedded sensor systems placed on the

nimals as end devices. With this configuration, these devices only

ommunicate with the rest of the network when transmitting the

athered information instead of also working as routers (receiv-

ng information from other devices and retransmitting them to

he next hop of the network). This solution dramatically increases

attery life [20] , which is an important factor in animal monitor-

ng systems that previous works have not taken into account (not

sing low-power consumption devices or energy-harvesting tech-

iques). 

Classification results are obtained in real-time and stored in an

nline database server where the information can be accessed by

esearchers, biologists and other staff members from Doñana Na-

ional Park. 

In [4] , over-the-air programming (OTAP) is used to adaptively

odify the network sampling rate. This mechanism has a great po-

ential and will be definitely considered in future works, where

t could be used to modify the ANN training configuration and

onnection weights with new parameters that improve the accu-

acy of the classification or even allowing to classify new behaviors

hat are not trained yet in the current development status of the

roject. 

. Conclusions

In this work, we propose an embedded MLP-based ANN system

laced on semi-wild animals to classify their behavior using the

nformation collected by inertial sensors. For this purpose, several

xperiments have been carried out to test the classification accu-

acy of three different horse gaits (motionless, walking and trot-

ing) using different NN architectures, input data and preprocess-

ng algorithms. The results have been obtained from a simulation

n the PC using the FANN library, from a simulation on the collar

sing a light and embedded version of the FANN library that has

een developed by the authors and from real experiments where

he collar was placed in different horses. Deploying a NN on an

mbedded device for animal monitoring in real time is a novelty

nd it had not been done so far for this purpose. The in-collar

lassification reduces the number of transmissions in the commu-

ication, which greatly increases battery life, as has been stated in

revious works by the authors. In addition, the use of ANNs makes

t possible to have more adaptable and configurable systems, since

nly the weight matrix should be changed for adapting the col-

ar to be used with other species or detecting new gaits. Statisti-

al methods usually work by setting thresholds manually (which is



p  

u

 

l  

h  

t  

w  

c  

1  

w  

l  

t

 

t  

a  

e  

t  

f  

t  

c  

V  

f  

a  

r  

w  

i

A

 

d  

t  

u  

C

t

R

 

 

 

 

 

 

 

 

 

 

 

 

[

 

[

[

[

[

[

 

[

roblematic and dependant on the data set), while an ANN picks

p the threshold automatically. 

The results obtained in the simulation tests show that the FANN

ibrary (both the full and the embedded versions) achieved a great

it rate percentage, obtaining around 82% in the best case when

he raw dataset was used, and 95% when filtered sensor data

as used. The hit rate difference of these two simulations was

alculated, obtaining an average of 1.0047% (typical deviation of

.0396%). These results were compared with the simulations that

ere performed by the authors in a previous work using the Mat-

ab Neural Network Toolbox, showing that, in terms of accuracy ra-

io, there is no difference between using these two approaches. 

The results obtained from a real test where the collar with

he embedded NN implementation was placed on a horse show

 decrease of approximately 15% in the hit rate from what it was

xpected after the simulations. This decrease could be caused by

he fact that the horse used to perform this test was from a dif-

erent breed than that of used to train the NN. Also, other ex-

ernal factors, like the collar’s position on the horse, could be

ritical to the performance of the behavior classification system.

ery good results were obtained when simulations tests were per-

ormed (82.41% using accelerometer, gyroscope and magnetometer

s input; and 95.39% using Kalman filtered data as input). These

esults will be taken into account as a reference for future works

here the collar positioning system and the NN training will be

mproved to obtain better results in real time scenarios. 
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