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Abstract

In addition to feature-based representations that characterize objects with fea-
ture vectors, relation-based representations constitute another type of data rep-
resentation strategies. They typically store patterns as a knowledge graph (KG),
consisting of nodes (objects) and edges (relationships between objects). Given
that most KGs are noisy and far from being complete, KG analysis and com-
pletion is required to establish the likely truth of new facts and correct unlikely
ones based on the existing data within the KG. An effective way for tackling
this, is through translation techniques which encode entities and links with hid-
den representations in embedding spaces. In this paper, we aim at improving
the state-of-the-art translation techniques by taking into account the multiple
facets of the different patterns and behaviors of each relation type. To the best
of our knowledge, this is the first latent representation model which consid-
ers relational representations to be dependent on the entities they relate. The
multi-modality of the relation type over different entities is effectively formu-
lated as a projection matrix over the space spanned by the entity vectors. We
develop an economic computation of the projection matrix by directly provid-
ing an analytic formulation other than relying on a more consuming iterative
optimization procedure. Two large benchmark knowledge bases are used to
evaluate the performance with respect to the link prediction task. A new test
data partition scheme is proposed to offer better understanding of the behavior
of a link prediction model. Experimental results show that the performance of
the proposed algorithm is consistently among the top under different evaluation
schemes.
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1. Introduction

There are two main ways for representing objects, of which one characterizes
an object with a continuous or discrete feature vector of attributes, while the
other describes the object via its relationships to other objects. The feature-
based representation is usually stored as a data matrix with rows or columns cor-
responding to the feature vectors of different objects. Differently, the relation-
based representation is usually stored as a graph, consisting of nodes (objects)
and edges (relationships between objects). The edges can be labeled with dif-
ferent relation types or can be associated with numerical quantities. Many ma-
chine learning algorithms work directly on feature-based data representations,
e.g., typical classification, clustering and ranking algorithms [1, 2, 3], or feature
mapping algorithms [4, 5]. Some algorithms convert feature-based data to a
graph that models pairwise neighborhood relationships among objects, and then
they further process and learn from the constructed graph representation[6, 7].
Relational learning algorithms are a group of techniques specialized at handling
multi-relational data [8] by processing objects interlinked by various relation
types. The main resource of multi-relational data is the web-based knowledge
graphs (KGs), also referred to as knowledge bases [9]. A KG stores information
in a graph structured format, such as a directed graph whose nodes (entities)
represent the objects and edges (links) correspond to the relation types between
objects. An example of a small KG is shown in Figure 1.

Figure 1: Real world facts stored as a KG, of which the triplet form is expressed as
(head entity, link, tail entity), i.e. (chris noth, starred in, sex and the city), sex and the city,
is a, tv show).

In the recent years, much work has been invested into the construction of
large KGs, including Wordnet [10], YAGO [11], DBpedia [12], Freebase [13],
NELL [14] and the Google’s Knowledge Vault project[15]. These contain highly
structured information and are useful in many artificial intelligence related tasks,
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i.e. word-sense disambiguation [16] [17], search engine [18] [19], question answer-
ing [20]. However, despite being very large (usually containing millions of nodes
and billions of edges), most KGs are very noisy and far from being complete,
because large databases are either constructed collaboratively by an open group
of volunteers or automatically extracted from unstructured or semi-structured
text via rules, regular expressions, or machine learning and natural language
processing techniques [21]. Taking Freebase as an example, which is a large
collaborative knowledge base harvested from resources, such as individual and
user-submitted Wiki contributions, there are 71% of around 3 million people
with no known place of birth [22] within the database. Consequently, one ma-
jor goal of KG analysis is to develop numerical models that suggest the likely
truth of new facts and correct unlikely facts based on the existing data within
KGs.

Since the KGs can correspond to massive volumes of knowledge, it is often
prohibitively expensive to subject them for processing to symbolic models [23]
[24] [25] or inference models [26] [27] [28] [29] [30] [31] [32] [33]. Latent rep-
resentation models have therefore been receiving increasing attention. These
are capable of embedding entities into a continuous vector space and converting
links to mathematical operations (e.g., linear, bilinear transformation, etc.) be-
tween entity vectors with reasonable computational costs [34] [35] [36] [37][38].
TransE [39] is a representative of such models, that requires minimal parameter-
ization and achieves very good performance. It assumes that the relationships
in KGs are hierarchical and uses translations to represent them, where a single
low-dimensional vector is employed to represent each targeted relationship. Its
intuitive, highly scalable and effective design has driven the development of a
number of translation-based algorithms [40] [41] [42] [43] [44], of which main
benefits include constraining the translations within the relation-specific space
and incorporating extra information (i.e., relation paths over the knowledge
graphs) into the translation-based energy function.

In this work, we focus on further improving translation-based relation model-
ing. Our key idea is that more complex link representations could be constructed
to reflect more accurately the different roles of each relation type. This is fun-
damentally different from the assumption made in most existing works, that
only distinguish the link representations among different relation types. In real-
world applications, the entity can always have exactly one meaning facilitated
by the KG construction stage. However, links can be more complex and they
usually correlate with each other, which makes them much harder to analyze.
Therefore, more careful design is required to model link representations. Here,
we show an example that the same link can possess different characters when
being involved with different entity pairs, by considering the typical hierarchical
link of “descendantOf”. For instance, if both facts of (person A, descendantOf,
person B) and (person B, descendantOf, person C) are true, (person A, descen-
dantOf, person C) must also be true according to the hierarchical property of
the ”descendantOf” relationship, although it takes a longer range of dependen-
cies than the former two triplets. It is obvious that “descendantOf” has as a
direct link role with (person A, person B) and an indirect role with (person A,
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person C). Existing works do not explicitly consider the different roles of the
same link in different entity pairs. We propose a new translation strategy to
address this, which although maps the entities and links within the same uni-
fied vector space, it models the multiple facets of each link by projecting the
link vector on the relevant entity pair space to create more flexible interactions.
The proposed algorithm is referred to as Translating on Pairwise Entity Space
(TransPES). It is trained on a ranking based objective function using stochas-
tic gradient descent, and is compared with multiple state-of-the-art methods in
the field, using two commonly used benchmark datasets on link prediction. To
facilitate a deeper analysis of the link prediction behavior, we also propose a
new way for partitioning the testing relational triplets that demonstrates how
the algorithm behaves on different arrangements of test data.

The remainder of this paper is organized as follows. In Section 2, a review of
the previous works is provided for multi-relational learning. The mathematical
formulation of our model and the associated analysis are presented in Section
3. Related experiments and evaluations are conducted in Section 4. The work
is concluded along with future directions in the Section 5.

2. Related work

Early works on modelling multi-relational data employ graphical models,
such as Bayesian clustering frameworks [26] [27] [28] [29] [30] or Markov logic
networks [31] [32] [33]. Most of these models cannot be applied to analyze large-
scale relational databases due to their high cost of inference. Another line of
work treats the multi-relational data as 3-dimensional adjacency tensors, and
applies tensor factorisation techniques [45] [46] [34] to analyze its link struc-
ture. One representative work is RESCAL [34], which models entities as latent
feature vectors and relation types as matrices containing pairwise interaction
weights between entities, and optimizes efficiently the model variables via alter-
nating least squares. It achieves state-of-the-art accuracies for many benchmark
datasets, and has been applied for link prediction on entire KGs, such as YAGO
and DBpedia [11] [12].

Although the size of the adjacency tensor for modelling KGs can be very
large, only a small fraction among all possible relations between entities are
likely to be correct. For example, there are over 450,000 thousands actors and
over 250,000 movies stored in Freebase [13], but each actor stars only in a
few movies [47]. To efficiently deal with the sparse relationships in KGs, struc-
tured embedding (SE) model [35] introduces a powerful ranking loss for learning
entity embeddings. This stimulates the development of a group of neural net-
work models, such as latent factor model (LFM) [36], neural tensor networks
[37], and semantic matching energy (SME) models [38], which design respective
score functions to fit the likely true relations utilizing different operations be-
tween the latent entity representations. These models seem to be appropriate
as they attempt to model any kind of interactions through universal numerical
operations. However, they are computationally expensive and are likely to suffer
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from overfitting with regard to very sparse relations, and this fails to capture
intrinsic properties of the relations leading to weak model interpretability.

It has been shown in [48] that the word vectors learned from free text, co-
incidentally represent some hierarchical relationships as translations between
word vectors; e.g., vec(“Germany”) + vec(“capital”) is closest (translated) to
vec(“Berlin”). This motivates the first translation-based (or called distant)
model TransE [39], which is light on parameterization, but outperforms all for-
mer methods in link prediction on very large KGs. The appealing performance
and scalability of this simple model has inspired the development of many others
[40] [41] [42] [43] [44] that build upon the translation operations. Specifically,
TransH [41] and TransR [42] assume that there is a link space for each relation
type and project the entity embeddings to each link space before translation.
They have shown consistent and significant improvements compared to TransE
on some very large KGs. A thorough survey on relational learning techniques
for analyzing KGs can be found in [9].

3. Proposed Method

A knowledge graph D consists of a set of links between a fixed set of entities.
Let E = {e1, . . . , eNe

} denotes the entity set and R = {r1, . . . , rNr
} the link set.

Relation information indicated by D can be converted to relation triplets such
as (eh, r`, et), where eh, et ∈ E are referred as the head and tail, respectively, and
r` ∈ R the link (or relation type). For example, (Champa, formOfgoverment,
Monarchy) is one of such relation triplets, where the head entity “Champa” and
the tail entity “Monarchy” is linked by the relation type “formOfgoverment”.
For convenience, we denote the relation triplet (eh, r`, et) as (h, `, t) by referring
only to the indices of the entities and links. Given a set of known links within D,
the goal is to infer unknown links and correct known but mistaken links in order
to complete D. One way to solve this task is to learn an energy function E(h, `, t)
on the set of all possible triplets in E × R × E , so that a triplet representing a
true existing link between two entities is assembled with a low energy, otherwise
with a high energy.

3.1. Motivation

Given the effectiveness, efficiency and plausible interpretability of the trans-
lation based relational learning technique, we aim to model the KG information
more accurately by addressing limitations of existing works. The most com-
monly used translation model TransE [39] employs the following energy function

E(h, `, t) = ‖eh + r` − et‖, (1)

where ‖ · ‖ denotes a norm of the input vector, e.g., the Euclidean norm, and
eh, r`, et are the embedding vectors of head entity, relation type and the tail
entity, respectively, distributed in the same representation space. A correct
relation triplet (h, `, t) possesses a low energy value while an incorrect one high.
This means that, in the ideal case, et should be the nearest neighbor of the
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vector eh + r` for a true triplet (h, `, t), or should be far away from et for an
incorrect triplet. This assumption posed by Eq. (1) can be oversimplified when
processing one-to-many links. These are defined as links ` contained in many
correct triplets (h, `, t1), (h, `, t2), . . . , (h, `, tn). One example, is the “isa” link
extracted from the sentence “Bob Dylan was a song writer, singer, performer,
book author and film actor”, based on which the following list of relation triplets
can be generated

head link tail
(BobDylan, isa, SongWriter),
(BobDylan, isa, Singer),
(BobDylan, isa, Performer),
(BobDylan, isa, BookAuthor ),
(BobDylan, isa, FilmActor).

For this type of links, TransE will return equal embeddings et1 = et2 = . . . = etn
in the ideal case of zero error. Such an output fails to distinguish between
different tail entities. Similarly, it can also fail to distinguish different links that
are valid for the same entity pair; for instance, equal embeddings will be returned
for the two different links of “presidentOf” and “placeOfbirth” to represent the
two triplets of (Obama, presidentOf, USA) and (Obama, placeOfbirth, USA) in
the ideal zero error case.

To overcome this shortcoming, various modifications of the above energy
function have been proposed. For instance, TransM [40] allows more flexibility
to model the one-to-many links by introducing a link-specific weight w`, with
which the modified energy function is defined as

E(h, `, t) = w`‖eh + r` − et‖. (2)

It imposes smaller weights to one-to-many links to prevent zero error cases, so
that their associated many-side entity embeddings (i.e., et1 , et2 , . . . , etn for the
one-to-many link l) could possess different representations. Another modifica-
tion is TransH [41], which assumes that an entity should be assigned to different
representations when being involved with different links. The entity embeddings
eh and et are first projected to the hyperplane of the link `, denoted as e⊥`

h and

e⊥`
t , based on which the energy function is formulated as

E(h, `, t) = ‖e⊥`

h + r` − e⊥`
t ‖22. (3)

In this case, different representations are allowed to represent the many-side
embeddings for the one-to-many link l even for the zero case as long as they
share the same projected representation e⊥`

t1 = e⊥`
t2 = · · · = e⊥`

tn . TransR [42]
further expands this idea by allowing entities and links to be distributed in
different spaces of different dimensions d and k, respectively. It introduces a
set of k × d projection matrices {Pl}Nr

l=1 to align the two spaces over each link,
leading to the following energy function

E(h, `, t) = ‖Pleh + r` −Plet‖22. (4)
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In distance calculation, both TransH and TransR employ a fixed embed-
ding representation for each link, but parameterize an entity in different ways
to reflect the role difference between links, that is, e⊥` by TransH and Ple
by TransR. However, it is more reasonable to fix the embedding representa-
tion for entities, but allow the opportunity to propagate relation information
through entities. This is because of the true nature of a KG, where entity
has exactly one meaning or refers to exactly one thing, but links can corre-
late with each other. Assume there exist entities c1, c2, . . . , d1, d2, . . . , e1, e2, . . .
belonging to three classes of C,D,E, and assume that the class structure can
be reflected by the link information. Another advantage of characterizing enti-
ties with fixed embedding representation is to show naturally the within-class
closeness and between-class dispersion in the same space, so that it is possible
to transfer the instance-based inference to the class-based inference, e.g., from
(ci, r1, dj) ∧ (dj , r2, , ek) ⇒ (ci, r3, ek) to (C, r1, D) ∧ (D, r2, E) ⇒ (C, r3, E).
A third advantage of representing entities with fixed embeddings but varying
the link representation for different entity pairs, is that it offers the potential
of addressing better the hierarchical relation structure. For example, the rela-
tion type like “descendentOf” can appear in multiple relation triplets such as
(person A, descendentOf, person B) and (person B, descendentOf, person C),
based on which (person A, descendentOf, person C) can be inferred. Existing
translation-based algorithms, as mentioned above, may not perform well to in-
fer such relation, because their model expressive power can be limited by fixing
the link representation of “descendentOf” regardless of which entity pairs it is
involved with. Instead, by using different representations for “descendentOf”,
the model can become more flexible and formulate more accurately the interac-
tion between“descendentOf” and different entity pairs of (person A, person B),
(person B, person C) and (person A, person C).

3.2. The Proposed Method

3.2.1. Model Construction

The energy function of an input relation triplet is parameterized over not
only three individual k-dimensional embedding vectors of its head, tail and link,
but also a set of k× k transformation matrices {Pht}h,t. Different matrices are
constructed for different head-tail entity pairs (h, t) to create a bespoke link
representation for a given entity pair. We formulate the energy function as

E(h, `, t) = ‖eh + Phtr` − et‖2, (5)

where, apart from the l2-norm, other ones or dissimilarity measures can be used.
To reduce the computational cost, instead of optimizing the transformation

matrices, each Pht is computed as a matrix that projects a k-dimensional vector
onto the space spanned by the two (typically independent) k-dimensional entity
vectors eh and et. Letting the columns of the k×2 matrix Eht be the two entity
embedding vectors eh and et, Pht is then defined as the orthogonal projector

Pht = Eht

(
EThtEht

)−1
ETht. (6)
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To regularize and make the process more numerically flexible, Eq.(6) is modified
according to

Pht = Eht

(
EThtEht + ξI

)−1
ETht, (7)

where ξ > 0. Using Eq.(7), for sufficiently small ξ, the transformed vector Phtr`
lies very close to the entity subspace spanned by eh and et. This can be seen
because

ETht (I−Pht) r`

=ETht

(
r` −Eht

(
EThtEht + ξI

)−1
EThtr`

)

=EThtr` −
(
EThtEht + ξI− ξI

)(
EThtEht + ξI

)−1
EThtr`

=ξ
(
EThtEht + ξI

)−1
EThtr`, (8)

which shows that for any r` we have limξ→0 E
T
ht (I−Pht) r` = 0.

In TransR, different dimensionalities for the two embedding spaces of (d)
entities and (k) links are allowed, and a set of k×d transformation matrices are
employed to align the two spaces over links. Differently here, we assume equal
dimensionality (k) of the two spaces, and employ a set of k × k transformation
matrices to align the two spaces over entity pairs. The benefit of using equal
dimensionality, is that it enables to derive an analytic form of the projection
matrix as in Eq.(7) without additional effort to optimize it. For TransR, when
d > k, the information stored in an entity embedding is compressed to a lower-
dimensional vector. When d < k, the entity embedding is expanded to a higher-
dimensional vector. However, all the expanded entities are distributed within a
subspace of the link space, of which the rank of the expanded entity matrix is
no more than d. Also, given the fact that the number of existing links (relation
types) is usually much less than the number of existing entities in a KG, it is not
necessary to increase the freedom of the link space, e.g., a higher dimensionality
than the entity space. Thus, setting d ≥ k is more reasonable than d < k, and
d = k allows the minimal information loss, which is also the adapted setting
reported in the TransR work. Because of these, we enforce equal dimensionality
between the two spaces, aiming at obtaining a more mathematically convenient
solution for the projection matrices without sacrificing the expressive power of
the model.

3.2.2. Model Training

Given a set of known links between entities, a set of valid triplets can be
constructed, which is referred to as the positive triplet set and denoted by
D+. For each positive triplet (h, `, t) ∈ D+, a set of corrupted triplets can be
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generated by replacing either its head or tail entity with a different one, as

D−h,l,t =
{

(h
′
, `, t)|h′ ∈ {1, 2, . . . , Ne}, (h

′
, `, t) /∈ D+

}
∪

{
(h, `, t

′
)|t′ ∈ {1, 2, . . . , Ne}, (h, `, t

′
) /∈ D+

}

Minimizing the energy function in Eq.(5) parameterized via the entity and link
embeddings, is equivalent to the optimization of these embedding vectors to en-
courage the maximum discrimination between the positive and negative triplets.
To achieve this, a margin-based ranking loss is employed, given as

Lm =
∑

(h,`,t)∈D+

∑

(h′ ,`,t′ )∈D−h,`,t

[
γ + E(h, `, t)− E(h

′
, `, t

′
)
]
+
, (9)

where [x]+ , max(0, x) denotes the positive part of the input x, and γ > 0 is a
user-set margin parameter.

A length constraint ‖ei‖2 ≤ 1 for each entity embedding is considered to pre-
vent the training process from trivially minimizing Lm by arbitrarily increasing
the scale of the entity embedding. This constraint can be incorporated into the
cost function Lm as

∑Ne

i=1

[
‖ei‖22 − 1

]
+

. We also add a regularization term for

the link embedding vectors {rj}Nr
j=1. This leads to the regularized cost function

L = Lm + λ1

Ne∑

i=1

[
‖ei‖22 − 1

]
+

+ λ2

Nr∑

j=1

‖rj‖22, (10)

where λ1 > 0 is the scale control parameter and λ2 > 0 is the regularization
parameter. Finally, the following optimization problem is to be solved

argmin
{ei}Ne

i=1,{rj}Nr
j=1

L
(
{ei}Ne

i=1, {rj}Nr
j=1, θ

)
, (11)

where θ = {γ, ξ, λ1, λ2, k} comprises the user parameter set, that includes one
margin parameter, three regularization ones, and the embedding dimensionality.

The pseudocode for the proposed algorithm is provided in Algorithm 1.
Similar to the optimization procedure used in [39], a stochastic gradient descent
approach in minibatch mode is used. All embedding vectors for entities and re-
lations are first initialized following the random procedure in [49]. At each main
iteration, a set of positive triplets for minibatch training is randomly sampled
from the training set and the corresponding corrupted triplets are generated
from each individual positive triplet in this set. After a minibatch, the gradient
is computed and the model parameters are updated. The algorithm terminates
after a fixed number of iterations.

3.2.3. Discussion

Here we conduct some further analysis and discussion of the proposed algo-
rithm with regard to its connections to TransE. It can be seen from Eqs.(1) and
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Algorithm 1 Pseudocode for TransPES

Input: Training set D = {(h, `, t)}, entity and link sets E and R, user-provided
parameter set θ = {γ, ξ, λ1, λ2, k}, triplet minibatch of size b.

1. Initialisation:

r ← uniform (− 6√
k
, 6k ) for each r ∈ R

r ← r/‖r‖ for each r ∈ R
e← uniform (− 6√

k
, 6k ) for each e ∈ E

e← e/‖e‖ for each e ∈ E
2. Loop:

Dbatch ← sample from D
Tbatch ← ∅
for (h, l, t) ∈ D do

(h
′
, `, t

′
)← sample from D−(h,l,t)

Tbatch ← Tbatch ∪ {((h, `, t), (h
′
, `, t

′
))}

end for

Ebatch ← head and tail set from Tbatch
Rbatch ← link set from Tbatch
Gradient descent update of embeddings using Ebatch and Rbatch
end loop

10
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(5) that TransE formulates a true relation triplet as r` = et−eh, while the pro-
posed algorithm as Phtr` = et − eh to enable the modeling of more complexed
relations. For instance, given three true triplets (h, `,m), (m, `, t) and (h, `, t),
a potential solution of TransE with low energy can be self-contradictory, e.g.,
r` = em − eh = et − em = et − eh in the ideal case of zero error. By allowing
different representation Phtr` for the same link r for different entity pairs (h, t),
TransPES can overcome this effect.

On the other hand, assume the relation ` adheres to some deterministic rules,
e.g., (h, `, t) can be inferred from (h, `,m) and (m, `, t). This transitivity pattern
can be potentially modeled by using three planes H1, H2 and H3, on which the
projected embeddings r`1 , r`2 , r`3 for link ` satisfy r`1 + r`2 = r`3 . This can
be achieved by the proposed algorithm with the entities eh, em, et pairwisely
spanning these three planes, that is, a spanned space Hhm of eh and em “close”
to the plane H1, Hmt “close” to H2, and Hht “close” to H3. By “close”, we
mean that the angle between the two planes is small. Subsequently, the learned
lower energies of triplets (h, `,m) and (m, `, t), will lead to the lower energy of
(h, `, t), because

‖eh + Phtr` − et‖ ≈ ‖eh + r`3 − et‖
= ‖eh + r`1 − em + em + r`2 − et‖
≤ ‖eh + r`1 − em‖+ ‖em + r`2 − et‖
≈ ‖eh + Phmr` − em‖+ ‖em + Pmtr` − et‖. (12)

This indicates the possibility of encoding (h, `,m) + (m, `, t)⇒ (h, `, t) into the
three spanned spaces that satisfy Phmr` ≈ Phmr` + Pmtr`.

Let e1, e2, . . . , en denote the entities that appear together with link ` in
the true relation triplets. If one only considers to reduce the energy of correct
triplets in TransE, the optimal link vector r∗` must be contained in the subspace
spanned by the corresponding entity embeddings. Any components added to
the link embedding that are not in this subspace will increase the energy of
correct triplets in TransE. However, during the training based on ranking loss,
the energy of incorrect triplets is also to be maximized by seeking appropriate
solution for r`. This will inevitably drag the learned link embedding vector
r` away from the optimal one r∗` . Differently, the proposed algorithm has the
potential to learn from an incorrect triplet in the complementary space of its
corresponding correct one, so that its influence over the optimal link vector r∗`
is automatically ignored. This enables the reduction of the energy for correct
triplets and the increase of the energy for incorrect ones, simultaneously. To en-
courage consideration of incorrect triplets, a smaller λ2 can be used to suppress
the regularization term of λ2

∑Nr

j=1 ‖rj‖22 as in Eq.(10) by amplifying the effect
of link embeddings.

3.3. Data Partition Scheme for Evaluation

When evaluating a link prediction task given a KG, in addition to computing
an overall performance using all the test relation triplets, reseacrhers are looking
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Table 1: Examples of reverse triplets.

head relation type tail

E1
original /m/012hw /people/cause of death/parent cause of death /m/051 y
reverse /m/051 y /base/fight/crime type/includes crimes /m/012hw

E2
original /m/0hkb8 /architecture/structure/architectural style /m/0f447
reverse /m/0f447 /architecture/architectural style/examples /m/0hkb8

E3
original /m/0czp /award/award category/category of /m/0g w
reverse /m/0g w /award/award/category /m/0czp

in more detail into the different types of relation triplets and analyze how a
model behaves over these different triplet types. The work in [39] suggests to
group the relation triplets into the four categories of: 1-to-1, 1-to-many, many-
to-1 and many-to-many, according to the cardinalities of their head and tail
entities. For instance, a given triplet is classified into 1-to-many if its head
entity can appear together with many tail entities in other triplets, but its tail
entity only appears in this given triplet.

We propose here an alternative split of the relation triplets based on human
inference logic. Specifically, it is natural for human intelligence to infer the
existence of a reverse form of a given relation triplet. This can be denoted as
to infer (t, `−1, h) from (h, `, t), where `−1 denotes the inverse link of `. We
list three relation triplet examples in Table 1 that appear in Freebase [13]. In
each example, an original relation triplet and its reverse version that truly exist
in the database are displayed, e.g., “/base/fight/crime type/includes crimes”
is reverse of “/people/cause of death/parent cause of death”. Another type of
relation triplet that is natural for human to infer is the reciprocal relation, for
which swapping the positions of the head and tail entities does not affect the
validity of the relation triplet, e.g., links such as “MarriedTo” and “AliasTo”.
This can be denoted as to infer (t, `, h) from a known triplet (h, `, t) when the
link ` is reciprocal. Taking out these two types of straightforward inference, the
other inference requires more complex logic.

Our assumption is that, since human can easily infer the reverse and recip-
rocal triplet from the given original one, the link prediction model should be
able to achieve the same. Thus, it is interesting to group the relation triplets
to three categories of “reciprocal type”, “reverse type”, and “the other” that
requires more complex logic to infer. We define the collection of known relation
triplets for the model to learn from as the training set, and the testing triplets
for performance evaluation as the test set. The following split is applied to the
test set: If a testing triplet (h, `, t) is reciprocal, (t, `, h) should be found in the
training set. If a test triplet (h, `, t) belongs to the reverse type, its reverse form
(t, `−1, h) should appear in the training set. However, it is not easy to identify
the reverse relation for any given relation type due to the lack of information.
So we relax the condition to that, if (h, `, t) is a reverse type, (t, ∗, h) should
exist in the training set without specifying the involved link. After identifying
the reciprocal and reverse triplets, the remaining ones in the test set are cate-
gorized as “the others”. Individual evaluation over each category of the testing
triplet provides deeper insight on the studied model.
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4. Experiments

4.1. Datasets and Experimental Setup

The proposed algorithm is compared with ten state-of-the-art translation
models from the literature (see Table 3), evaluated using two benchmark link
prediction datasets of WN18 [38] and FB15k [35] extracted from the two large
real-world knowledge bases of Wordnet [10] and Freebase [13], respectively. We
provide below some brief description of WN18 and FB15K datasets, and show
their statistics in Table 2.

• The WN18 dataset contains a total of 40,943 entities, 18 relational types
and 151,442 relation triples. It is extracted from the large English lexical
database Wordnet, which groups words into sets of cognitive synonyms
(synsets) and interlinks these synsets by means of a small number of se-
mantic relations, such as synonymy, antonymy, meronymy and hypernymy.
One example of a typical triplet is ( range NN 3, hypernym, tract NN 1),
which means the third meaning of the noun ”range” is a hypernym of the
first sense of the noun ”tract”.

• The FB15k dataset contains a total of 14,951 entities, 1345 relation types
and 592,213 relation triples. It is created by adopting the frequently occur-
rent entities and relationships in Freebase, which is a massive online collec-
tion database consisting of general human knowledge. It organises the hu-
man knowledge data directly in the triplet form of (head, link, tail). Typ-
ical triplet examples are (Peasant Magic, album, Solipsitalism), (Barack
Obama, religion, Christianity) and (Orange France, place-founded, Paris).

Table 2: Statistics of datasets

Dataset WN18 FB15k
Relationships 18 1, 345
Entities 40, 943 14, 951
Train 141, 442 483, 142
Valid 5, 000 50, 000
Test 5, 000 59, 071

The proposed algorithm is compared with ten state-of-the-art translation
models in terms of link prediction performance. Essentially, every model is
trained by optimizing a score function (or an energy function in our case) to
assemble the likely relation triples with higher scores (or lower energies) than
the unlikely relations. This function can thus give its estimation of the likely
score (or energy) for every true triplet in the test set. The following evaluation
metrics based on the predicted score (or energy) are used:

• Mean rank measures how well the predicted scores (or energies) correlate
with the true triplets [35]. For each correct triplet in the test set, we
first construct the corrupt triples by replacing the head entity with all the
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entities in the knowledge base. The scores (or energies) of these corrupted
triples are first computed and then sorted in descending (or ascending for
energy) order, and the rank for the correct head entity is stored. This
procedure is repeated by replacing the tail entity of each correct triple
with all the entities in the knowledge base to obtain the rank for each
correct tail entity. The average of all these predicted ranks in the test set
is used to report the performance.

• Hits@10 is another measure of the correlation between the predicted scores
(or energies) and the true triplets [35]. Following exactly the same ranking
procedure as in the mean rank evaluation, hits@10 is the proportion of the
correct triplets ranked within top 10 of all the evaluated ones.

Previous work [39] suggests to filter out corrupted triplets that appear to be
valid ones in the given triplets (for all the training, validation and test sets),
as they should not be counted as errors. We conduct this filtering procedure
to calculate filtered mean rank and hits@10 performance. To distinguish per-
formance computed with and without the filtering procedure, we refer it as raw
without filtering and filtered with the filtering procedure.

The same training, validation and test splits provided by [39] are used to
evaluate the proposed model. The resulting performance is compared against
performance of the state-of-the-art models that is reported in the literature [39]
[41] [42] using their recommended settings as stated in the papers. Parameters
of TransPES were tuned using validation set based on simple grid searches.
The learning rate was searched among {0.1, 0.01, 0.002}, the dimension of the
entity and link embedding k among {20, 50, 100}, the regularization parameter
for scaling control λ1 was assigned as a constant value 1, batch size B among
{50, 100, 200}, the regularization parameter λ2 among {0.1,0.01,0.001} and the
margin γ betwen 0 and 1 with step size of 0.1. The regularization parameter ξ
is fixed as a small positive value 10−8. For both datasets, the epochs round was
set as not more than 1000 times. The best model among the last 100 epochs was
selected according to the mean rank and hits@10 performance of the validation
set. An open-source implementation of TransPES is available from the project
webpage1. The optimal configurations returned by the searching procedure are
k = 20, B = 100, λ2 = 0.01, γ = 0.7 for WN18 and k = 100, B = 100, λ2 =
0.01, γ = 0.4 for FB15k.

4.2. Performance Comparison

Performance of the proposed and competing methods are reported in Table 3.
The proposed TransPES provides in general better performance than the com-
peting ones, particularly for the larger and more complex dataset FB15k con-
taining 1, 345 relation types. Although TransR provides good performance for
the smaller dataset WN18, it performs less wells for the larger dataset FB15K.

1https://github.com/while519/TranPES.git
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In terms of optimization complexity, TransR requires to opitmize much more
variables than TransE and TransPES. We also demonstrate how the TransPES
performance changes against different settings of the embedding dimensionality
(k), regularization parameter (λ2) and margin parameter (γ) using the FB15K
dataset. In each implementation, two parameters are fixed as the ones in the op-
timal configuration, different settings of the third parameter within the search-
ing range are examined, for which the raw and filtered mean ranks, also the
filtered hits@10 performance for both the validation and test sets are reported
in Figure 2. It can be seen that TransPES is less sensitive to the regularization
parameter λ2 than to the embedding dimension k and margin parameter γ.

We further analyze the performance of the large dataset FB15K in detail
using the detailed evaluation protocol suggested in [39], which classifies the
hits@10 results according to four categories of relationship including 1-to-1 (1-
1), 1-to-many (1-M), many-to-1 (M-1) and many-to-many (M-M).The corre-
sponding results are shown in Table 4. It can be seen from the table that
the proposed algorithm consistently outperforms most the competing ones, pro-
vides similarly good performance as the cluster-based TransR (CTransR). As
expected, TransPES provides satisfactory performance to predict head entity
in the 1-to-1, 1-to-many relationships and predict tail entity in the 1-to-1 and
many-to-1 relationships.

We conduct deeper analysis for the FB15k dataset using the proposed evalua-
tion scheme as explained in Section 3.3, based on which 4,336 (7.3%) reciprocal
triplets and 41,481 (70.2%) reverse triplets are identified, and the remaining
triplets correspond to “the others” type. Most test triplets can find their recip-
rocal or repetitive forms in the training set to support the inference. In Table 5,
we compare the TransE and TransPES performance by examining how well they
infer the reciprocal and reverse type of triples in the test set in Table 5. It can
be seen from the table that the proposed algorithm achieves much better results
(58.8% vs. 82.1% on the reciprocal triplets and 56.9% vs. 72.4% on the reverse
ones). On the other hand, for the more challenging triplets of “the other” type,
both algorithms experience a very large decrease in the performance.

Table 3: Performance comparison for WN18 and FB15k datasets. The best performance is
highlighted in bold, and second best underlined.

Dataset WN18 FB15k

Metric
Mean Rank Hits@10(%) Mean Rank Hits@10(%)
Raw Filter Raw Filtered Raw Filtered Raw Filtered

Unstructured [38] 315 304 35.3 38.2 1, 074 979 4.5 6.3
RESCAL [34] 1, 180 1, 163 37.2 52.8 828 683 28.4 44.1

SE [35] 1, 011 985 68.5 80.5 273 162 28.8 39.8
SME(linear) [38] 545 533 65.1 74.1 274 154 30.7 40.8

SME(bilinear) [38] 526 509 54.7 61.3 284 158 31.3 41.3
LFM [36] 469 456 71.4 81.6 283 164 26.0 33.1

TransE [39] 263 251 75.4 89.2 243 125 34.9 47.1
TransH [41] 318 303 75.4 86.7 211 84 42.5 58.5
TransR [42] 232 219 78.3 91.7 226 78 43.8 65.5

CTransR [42] 243 230 78.9 92.3 233 82 44 66.3
TransPES 223 212 71.6 81.3 198 66 48.05 67.3
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Figure 2: Illustration of the performance change of TransPES against each of its three al-
gorithm parameters (k, λ2, γ) in terms of the raw and filtered mean rank, also the filtered
hits@10 measurements, evaluated using validation and test sets marked as “valid” and “test”
respectively in each plot.
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Table 4: Detailed Evaluation on FB15k. Best performance is highlighted in bold.

Tasks Predicting Head (Hits@10) Predicting Tail (Hits@10)
Relation Category 1-1 1-M M-1 M-M 1-1 1-M M-1 M-M
Unstructured [38] 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6

SE [35] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
SME(linear) [38] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME(bilinear) [38] 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8
TransE [39] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH [41] 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8
TransR [42] 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1

CTransR [42] 78.6 77.8 36.4 68.0 77.4 37.8 78.0 70.3
TranPES 78.0 88.6 38.9 67.3 78.9 42.1 84.2 69.8

Table 5: Link prediction comparison between TransE and TransPES over the reciprocal,
reverse and other triplets in the test set of FB15k data.

Methods TransE TranPES
Metrics MAR Hits@10(%) MAR Hits@10 (%)

Reciprocal 46 58.8 10 82.1
Reverse 75 56.9 28 72.4
Others 157 48.9 204 46.6

5. Conclusion

We have presented a new translation-based relational learning algorithm to
encode relation triplets in KGs using link and entity embeddings, under the con-
straint of employing simple operations, such as vector addition and projection
to encode interlinkages in KGs and maintain very low computational cost and
better model interpretability. Facing the challenge of accurately modeling com-
plex relation logic via simple operations, the key is to unfold the relation logic by
determining appropriate subspaces to work on. The proposed TransPES allows
multiple representations for a single relation type to model its multimodality
behavior when interacting with different entity pairs, and employs fixed embed-
ding representation for entities to permit smooth propagation of information
across the graph. Interactions between links and entities are formulated in dif-
ferent spaces spanned by different entity pairs to offer bespoke link presentation
for a targeted entity pair. Performance comparison with state-of-the-art meth-
ods and deep analysis of the algorithm behavior based on different test data
partitions demonstrate the superiority of the proposed algorithm.
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