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Abstract

This paper proposes a new multispectral multiscale local binary pattern fea-
ture extraction method for automatic classification of colorectal and prostatic
tumor biopsies samples. A multilevel stacked generalization classification
technique is also proposed and the key idea of the paper considers a grade
diagnostic problem rather than a simple malignant versus tumorous tissue
problem using the concept of multispectral imagery in both the visible and
near infrared spectra. To validate the proposed algorithm performances,
a comparative study against related works using multispectral imagery is
conducted including an evaluation on three different multiclass datasets of
multispectral histology images: two representing images of colorectal biopsies
- one dataset was acquired in the visible spectrum while the second captures
near-infrared spectra. The proposed algorithm achieves an accuracy of 99.6%
on the different datasets. The results obtained demonstrate the advantages
of infrared wavelengths to capture more efficiently the most discriminative
information. The results obtained show that our proposed algorithm outper-
forms other similar methods.
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1. Introduction1

The World Health Organization has declared that the cancer burden is2

a worldwide health problem. According to their 2014’s report, 14 million3

new cases were diagnosed in 2012 and 8 million people died from it in the4

same period [1]. Colorectal cancer is the third most incident globally and5

prostate is in second position amongst men representing respectively 9.7%6

and 7.9% of all cancers for both sexes [1]. Both colorectal and prostatic tis-7

sues are glandular thus having a similar histological appearance. They also8

are both subject to the same tumor types; adenocarcinoma being the most9

commonly diagnosed cancerous tumor type in these organs. The European10

Association of Urology’s guidelines [2] advise to perform a biopsy and a his-11

tological analysis on the sample for prostate cancer diagnosis. This method12

is also the most widely used for colorectal cancer diagnosis [3]. However, this13

process is very time-consuming for pathologists as they have to manually14

analyze every sample to spot the particular features characterizing the type15

of tumor and the various cancer stages. This process results in a high intra-16

and inter-observer variability [4], [5] thus affecting the diagnostic reliability.17

This paper aims to propose an algorithm that will automatically classify the18

samples into different categories of the cancer hence assisting the pathologist19

to make the appropriate diagnostics. This will in turn help to reduce the20

diagnosis time and act as a second opinion for the pathologist to reduce the21

intra- and inter-observer diagnostic variability.22

Fig. 1 shows microscopic images of three different colorectal tumor biop-23

sies. The first one is a Benign Hyperplasia, a benign tumor with little risk of24

evolving to cancer while the second represents an Intraepithelial Neoplasia,25

a tumor with high risk of evolving to cancer. The last image shows a carci-26

noma, which is a cancerous tumor. One of the features taken into account by27

the pathologists for the diagnosis is the general structure and organization28

of the tissue. In a normal structure, the epithelial cells are organized around29

the lumen which is separate from the plasma cells; whereas in the case of30

a carcinoma the normal structure becomes completely random and can be31

chaotic. Therefore, the proposed algorithm uses image texture features so32

as to capture and quantify its structure in order to classify the samples into33

the various types of malignancy. The sole pixel intensity can be insufficient34

to characterize the type of cell or sub-cellular components and so can have35
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(a) Benign Hyperplasia (b) Intraepithelial Neo-
plasia

(c) Carcinoma

Figure 1: Example of images from the different classes of colorectal tissue.

negative effect on the feature extraction. Consequently, using the spectral36

response of each point of the sample to describe the tissue is adopted in this37

paper to improve the classification performances; hence the use of multispec-38

tral images of the biopsies. This paper also aims to investigate the advantages39

of using the pixels response from a wider electromagnetic spectrum ranging40

from the visible light to the infrared (IR) in comparison to other methods41

that can be used in biopsy image analysis as shown in Fig. 2.42

The main contributions of this paper are three-fold. First, our work43

considers a grade diagnostic problem rather than a simple malignant versus44

benign tumor problem in the context of multispectral imaging and this is45

almost absent in the literature, especially for colorectal cancer [6]. Second, it46

introduces a new Multispectral Multiscale Local Binary Pattern (MMLBP)47

texture feature which is an adjusted LBP to multispectral data taking into48

account the third dimension (spectrum) of the data. The MMLBP differs49

from the traditional LBP in that it considers the joint information across spa-50

tial and spectral directions of the image. In addition, a stacked generalization51

technique is devised in order to fuse the different scales of the MMLBP and52

GLCM features at the score level. Finally, a new dataset is also introduced in53
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Figure 2: Imaging technologies for the classification of colorectal cancer.

the paper. This dataset is composed of multispectral images with a spectrum54

extending to the infrared (IR).55

This paper is organized as follows: Section 2 gives a briefly a review56

of existing systems including a discussion on prostate and colorectal cancer57

tissue analysis . Section 3 reports some related feature extractors using58

LBP approach and some of its variants. Section 4 describes the proposed59

methodology including the contributions made and the proposed system.60

Section 5 explains the implementations and experimental analysis. Section61

6 evaluates the results and a comparative study against existing techniques.62

It also shows the advantages of using IR images to improve the classification63

accuracy. Section 7 concludes the paper.64

2. Related work65

2.1. Previous work on prostate and colorectal cancer tissue analysis66

Several techniques available in the literature extract textural features us-67

ing panchromatic images [6], [7]. Esgiar et al. [8] computed a gray-level68

co-occurrence matrix (GLCM) on each colorectal histological image and ex-69

tracted some of the GLCM features [9]. They then proposed a malignant70

versus benign classification using an SVM classifier. In [10], Kalkan at al.71

combined the same features with structural ones before computing a feature72

selection and a four-class classification, and achieved a 75.15 % accuracy. In73

[11], the authors used a 8-class dataset of 5000 images. The classes involved74

where the following: tumor epithelium, simple stroma, complex stroma, im-75

mune cells, debris, normal mucosal glands adipose tissue and background (no76
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tissue). The authors compared several texture descriptors such as GLCM,77

LBP, perception feature - mimicking the human perception at an abstract78

level - and Gabor filters. Their results range from 74 to 97 %. In the case of79

prostate cancer, several authors used the GLCM features for the same task80

of carcinoma detection [12]. The authors of [13], [14] used fractal analysis81

for prostate cancer grading or carcinoma detection.82

Multispectral images have been used for texture feature extraction. In83

[15], Masood et al. applied GLCM features after segmenting the image data84

through a pre-processing phase. the approach consists of using the spectral85

dimensions to segment the image into four clusters representing four dif-86

ferent tissue types: nuclei, cytoplasm, glands and stroma. Chaddad et al.87

proposed an improved version of the snake algorithm for the segmentation88

and extraction of GLCM texture features of multispectral-segmented images89

[16]. In [17], the authors proposed a method for characterizing the contin-90

uum of colorectal cancer using several texture features after segmentation.91

As features extraction, the GLCM features, the Laplacian of Gaussian and92

discrete wavelets were used. A few other studies used wavelet transforms93

[18] [19] and Laplacian of Gaussian [20] [10]. In [21], Roula et al. worked on94

prostate histological images and extracted GLCM features from each spectral95

band and combined them with morphological features for the discrimination96

phase using a quadratic discriminant analysis. They showed that multispec-97

tral analysis significantly improved the classification scores. The authors of98

[22] also demonstrated that the use of texture features in multispectral images99

improved the results when using texture features of panchromatic images on100

a colorectal histology dataset. They compared the performance of different101

texture features on multispectral images, namely the GLCM features and102

the multiscale LBP and used PCA for dimensional reduction followed by a103

SVM classifier. In [23], Tahir et al. first extracted statistical and structural104

features as well as the GLCM features. They then used a Round-Robin Tabu105

Search for dimensional reduction of the multispectral data before classifica-106

tion. They achieved a classification accuracy between 98% and 100%.107

None of the previously mentioned authors used a multispectral texture108

feature detector that uses the spectral dimension directly. They either com-109

bined several results of 2-dimensional texture detector run on each spectral110

band, or used the dimensional reduction to create a 2D image on which the111

texture was to be detected. Khelifi et al. [24] developed a multi-band texture112

detection extending the GLCM. For this purpose, they used a spatial and113

spectral gray level dependence method (SSGLDM) assuming a joint infor-114
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mation between spectral bands exists. They applied this technique to the115

prostate cancer case.116

However, only few studies use LBP texture features in this field [22, 25, 26]117

and none of them uses the joint information of spatial and spectral dimen-118

sions. For example, the authors of [25] select a single band from which the119

texture extraction was conducted. In [26], the LBP histogram is built on all120

three color channels of the image.121

2.2. Previous work on multispectral texture analysis122

Some methods for other applications, such as image segmentation, used123

a 3D histogram as a mean to fuse information from three color channels124

of a colour image [27]. Hassan El Maia et al. [28] proposed a method for125

multispectral image classification using the mutual information of GLCM126

features. In [29], the authors used a method developed in [30] for automatic127

face recognition. This algorithm was a modified LBP that computed a LBP128

on each color band of the spectrum separately and added opponent features129

to capture the spacial correlation between the bands. Radu-Mihai Coliban130

et al. [31] proposed a pseudo-morphology based on the Euclidean distance131

in Rn. Using the proposed pseudo-morphology, the authors introduced a132

pseudo-granulometry and a morphological covariance to characterize the im-133

age texture. In [32], the authors use a neural network structure to classify134

multispectral texture information extracted from the images.135

2.3. Previous work on IR texture analysis136

In the field of facial recognition, the IR spectrum has been used and137

has proven to increase the recognition rates in many cases. Abdelhakim138

Bendada et al. [33] introduced a differential LTP descriptor and extend their139

method to the IR spectrum. They showed that a high recognition rate was140

achieved with the IR spectrum. The authors [34] developed a method for141

synthesising the visible and near IR face images in order to take advantage142

of both the illumination invariance of IR images and the detailed texture143

information provided by the face images captured in the visible range of144

the electromagnetic spectrum. The authors compared their method to the145

conventional LBP applied separately to the near IR and the visible images146

and showed that the combined use of the IR and the visible spectra increased147

the identification rate by 8.76pp (from 88.83% to 97.59%).148
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Thematic mapping imagery uses the infrared spectrum to acquire infor-149

mation not captured by the visible spectrum. Yun Zang [35] used an algo-150

rithm of conditional variance detection on multispectral images captured on151

a visible and IR spectrum for classification of urban treed areas.152

3. Feature extraction using LBP approach: a review153

In this section, the conventional LBP and its rotation invariant and three-154

dimensional variants are discussed.155

3.1. Conventional LBP156

Ojala et al. described LBP texture features as a local characterisation157

of a pixel’s neighborhood at a radius R sampled into a set of P neighbors158

on a circle centered around the central pixel and of radius R. Let g0 be the159

intensity of the central pixel x and gp the intensity of its pth neighbor. The160

LBP is defined as follows [36]:161

LBPP,R(x) =
P∑
p=1

s(g0 − gp)2p−1 (1)

where,

s(x) =

{
0 if x ≤ 0
1 if x > 0

LBP is computed for the whole image, before it is pooled into a LBP his-162

togram of size 256. The resulting LBP histogram, which is invariant to163

intensity changes, is then used as a texture feature descriptor to characterize164

the image.165

3.2. Rotation Invariant Uniform LBP166

A rotation invariant LBP, referred to as LBP riu2, using uniform patterns167

has also been proposed as illustrated in Fig. 3a. They operate as templates168

for microstructures such as bright spot (0), flat area or dark spot (8) and169

edges of varying positive or negative curvature (1-7) [36]. These structures170

define a uniformity measure U corresponding to the number of transition in171

the pattern as follows:172

U(LBPP,R) = |s(gP−1− gc)− s(g0− gc)|+
P−1∑
p=1

|s(gp− gc)− s(gp−1− gc)| (2)
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(a) Uniform LBP patterns and their corresponding labels

(b) Non-uniform LBP patterns

Figure 3: The 36 unique possibilities for a circular symetric set of LBP patterns and their
corresponding labels for rotation invariant, uniform LBP. The red squares correspond to
the central pixel, the white and grey squares represent the 0 and 1 bits in the 8-bits output
of the operator. The numbers are the unique LBPP,R(x) labels.

Fig. 3a shows the 9 patterns with a U measure of at most 2 when the173

27 other patterns shown of Fig. 3b have a uniformity measure of at least174

4. Therefore, patterns having U(LBPP,R) ≤ 2 are said to be uniform. The175

following operator defines a gray-scale and rotation invariant texture descrip-176

tion [36]:177

LBP riu2
P,R (x) =

{ ∑P
p=1 s(gp − gc) if x ≤ 2

P + 1 otherwise
(3)

In this way, P + 1 uniform patterns are assigned to a unique label corre-178

sponding to the number of 1 bits in the pattern while the non-uniform pat-179

terns are grouped under the same category. The final texture feature used is180

a histogram of P + 2 bins generating all the LBP riu2
P,R outputs accumulated181

over the image.182

This form of LBP seems more adapted to the problem at hand because183

of the rotation invariance it provides. Indeed, in the case of histopathology,184

sample orientation and cells direction are not relevant criteria to consider185

for classification because they vary independently to the sample’s class. A186
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second advantage of this LBP riu2
P,R over a conventional LBPP,R is its smaller187

size thus making it faster to process in a classification step.188

3.3. Three-dimensional LBP189

Since multispectral images are three-dimensional data the conventional190

LBP concept needs to be modified to deal with this datatype. In the lit-191

erature, two methods are usually described when dealing with 3D images192

for applications such as video processing and face recognition [37]. The193

proposed method is inspired from Volume LBP and LBP-TOP (for Local194

Binary Pattern-Three Orthogonal Plan) [37]. Here, we briefly discuss VLBP195

and LBP-TOP before explaining the proposed extension of LBP to multi-196

spectral LBP. To extend LBP to Dynamic Texture analysis, Zhao et al. define197

a neighborhood as the joint distribution of 3P + 3 image pixels where P is198

the number of neighbors on one frame as shown on [37]. A similar technique199

to the conventional LBP can be applied and a Volume Local Binary Pattern200

(VLBP) is defined as follows:201

V LBPP,R(x) =
3P+2∑
p=1

s(g0 − gp)2p−1 (4)

The VLBP local features are pooled into a histogram of size 23P+2. This202

histogram’s size increases very quickly when the number of neighbors P grows203

and may become very computationally intensive. On the other hand, using204

a small P may lead to a loss of some critical information for diagnosis. To205

address this issue, a LBP-TOP feature is proposed by considering three or-206

thogonal planes intersecting on a central pixel as shown in [37]. The technique207

computes a two-dimensional LBP on each of these plans and concatenates208

the output histograms which will be of size 3 ∗ 2P instead of 23P+2 in the209

previous case. Here, the circles are considered in the time dimension because210

this LBP-TOP is meant to be applied on video processing so the motion211

direction of texture is unknown.212

4. The Proposed MMLBP System for Cancer Classification213

As illustrated in Fig. 4, the proposed system is composed of two main214

stages. First, MMLBP features are extracted and, then, an Independent215

Component Analysis is performed to reduce the dimensionality of the feature216

space. Then, a stacked generalization employing the Support Vector Machine217

classifier is used at the matching stage.218
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SVMs Training set:
Number of images: 81% Nimage

Image size:Nλ ∗ Nx ∗ Ny

Logistic regres-
sion training set:

Number of images: 9% Nimage

Image size:Nλ ∗ Nx ∗ Ny

Testing set:
Number of images: 10% Nimage

Image size:Nλ ∗ Nx ∗ Ny

Scale 1

Scale 2

...

Scale
Nscale

Extraction of
MMLBP

MMLBP scale 1
feature vector

(size: (P + 2) ∗ 2Pλ)

MMLBP scale 2
feature vector

(size: (P + 2) ∗ 2Pλ)

MMLBP scale Nscale

feature vector

(size: (P + 2) ∗ 2Pλ)

Model 1

Model 2

...

Model
Nscale

Train SVM classi-
fier models

Scale 1

Scale 2

...

Scale
Nscale

Extraction of
MMLBP

MMLBP scale 1
feature vector

(size: (P + 2) ∗ 2Pλ)

MMLBP scale 2
feature vector

(size: (P + 2) ∗ 2Pλ)

MMLBP scale Nscale

feature vector

(size: (P + 2) ∗ 2Pλ)

Model 1

Model 2

...

Model
Nscale

Use SVM classi-
fier models

Logistic
Regression
Model

train classifier model

Final
Score

Training Phase:
90% Nimage

Scale 1

Scale 2

...

Scale
Nscale

Extraction of
MMLBP

MMLBP scale 1
feature vector

(size: (P + 2) ∗ 2Pλ)

MMLBP scale 2
feature vector

(size: (P + 2) ∗ 2Pλ)

MMLBP scale Nscale

feature vector

(size: (P + 2) ∗ 2Pλ)

Model 1

Model 2

...

Model
Nscale

Use SVM classi-
fier models

Logistic
Regression
Model

Use classifier model

Final
decision

Testing Phase:
10% Nimage

Figure 4: Block diagram of stacking training and testing with MMLBP texture features.
Nimage represents the number of images in the dataset; Nx, Ny are the number of lines
and columns in each image, respectively, and Nλ is the number of spectral bands.

4.1. Proposed Multispectral LBP Texture Feature219

In the proposed technique the third dimension is spectral (not temporal)220

thus no texture motion is considered. Therefore, unlike in the aforementioned221

3D-LBP variants, a neighborhood of only P points in the spatial plan and Pλ222
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on a straight line in the spectral dimension intersecting the spatial plan at the223

central pixel was considered as shown in Fig. 5 with Pλ = 2. As explained224

above, this technique is adopted to make the LBP rotation invariant in the225

spatial dimensions while still using the same U measure described in (3)226

in the XY plan. The idea is to assign the LBP riu2
P,R patterns to different

Figure 5: Multispectral LBP descriptor: the neighborhood considered for multispectral
LBP. X and Y being the spatial dimensions. Each tile represents a pixel. The red tile is the
central pixel considered, and the blue tiles are the pixel considered in the neighborhood.

227

categories depending on the Pλ pixels in the neighboring plans. On top of228

the LBP riu2
P,R computed using equation 3, LBP λ

Pλ,R
is calculated using the229

following equation:230

LBP λ
Pλ,R

(x) =

Pλ−1∑
q=1

s(g′q − gc)2q (5)

where, g′q is the pixel value in the pixel of plan q aligned to the central pixel.231

The MMLBPP,Pλ,R is defined as follows:232

MMLBPP,Pλ,R = LBP riu2
P,R + (P + 1)LBP λ

Pλ,R
(6)

The MMLBPP,Pλ,R outputs are then pooled into a histogram of size233

(P + 2) ∗ 2Pλ . It is worth noting that the scale is controlled by R ∈ [1..Nscale]234

As a result, the histograms built from each scale are concatenated to form235

the MMLBP and each scale is considered as a separate feature which is fed236

to the stacked classifier as shown in Fig. 6.237
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Figure 6: Multiscale neighborhood for MMLBP

4.2. Dimensionality Reduction using Independent Component Analysis and238

Classification using Support Vector Machine239

In order to address the curse of dimensionality problem and hence reduce240

the learning cost, the Independent Component Analysis (ICA) is applied241

before classification. In contrast to more widely used Principal Component242

Analysis (PCA), this technique presents the advantage of being able to de-243

correlate the signal and reduce statistical dependencies between the features244

as much as possible [38]. In fact, it could be seen as a version of PCA that245

defines orthogonal directions. The ICA transformed data are computed using246

only the training data of the SVM classifier. The testing data are projected247
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to the new basis before classification. The number of components used for248

classification will be optimized as described in a further section.249

The classification step consists of a multiclass Support Vector Machine250

(SVM) classifier with a Gaussian kernel. A SVM constructs a hyper-plan251

separating the classes; it tries to find the maximum distance to the nearest252

training data point of each class and can be described as follows. Given a253

training vector xi ∈ RP , I ∈ [|1, n|], in two classes and a vector y ∈ {1,−1}n,254

the SVM solves the following optimization problem:255

min
w,b,ζ

(1/2 wTw+C
n∑
i=1

ζi) subject to: yi(w
Tφ(xi)+b) ≥ 1−ζi, ζi ≥ 0, i ∈ [|0, n|]

(7)
Its dual form is:256

min
α

(1/2 αTQα− eTα) subject to: yTα = 0, 0 ≤ αi ≤ C, i = [|0, n|] (8)

Where, C > 0 is the upper bound, Q is an n by n positive semi definite257

matrix Qi,j = yiyjK(xi, yj) where K(xi, xj) = φ(xi)
Tφ(xj) is the kernel. Here258

training vectors are implicitly mapped into a higher dimensional space by the259

function φ. The decision function is:260

fdecision = sgn(
n∑
i=1

yiαiK(xi, x) + ρ) (9)

The kernel function used here is the radial basis function or Gaussian261

kernel:262

K(x) = e−γ|x−x
′|2 (10)

Where γ is a positive parameter. The kernel parameters are optimized using263

a grid search method which will be detailed in Section 5.1. In order to264

find the appropriate compromise between the sizes of training and testing265

datasets and hence avoid over-fitting that might be caused by a leave-one-266

out technique; a 10-fold cross-validation is used. The one-versus-all technique267

is used to build the multiclass classifier.268

4.3. Logistic Regression for Stacked Generalization269

Stacked generalization (or stacking) is an ensemble method for classifica-270

tion [39]. It uses the output of a first layer of classifiers as inputs to another271
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classifier - called meta-classifier - for the final decision. In this paper, this sys-272

tem is used to fuse the different scales of multispectral LBP texture feature273

at score level.274

Fig. 4 shows the two steps of training and testing for the stacking algo-275

rithm. A logistic regression model is used as a meta-classifier for its relatively276

low computing cost. The first layer of classifiers is composed by SVM clas-277

sifiers with a Gaussian kernel as described in Section 4.2. In addition to a278

10-fold cross-validation carried out at the meta-classifier level, an internal279

cross-validation of the training data is implemented in order to prevent bias280

and improve stability of the different classifiers.281

5. Experiment and Setup282

5.1. Datasets283

To evaluate the performance of the proposed technique, three different284

datasets are used in the experimentation process.285

5.1.1. Dataset 1: Colorectal tumor Tissue from Texas286

The first one, described in [17], is composed of colorectal biopsy images287

acquired using multispectral imagery at low magnification power (x40). The288

database consists of 29 three-dimensional images having a spatial resolution289

of 512*512 pixels and 16 spectral bands corresponding to wavelengths be-290

tween 500 and 650 nm. The images are divided into 3 classes of tumor tissue291

types: Carcinoma (Ca), the class containing the cancerous samples, Benign292

Hyperplasia (BH), a class with benign tumors, and Intraepithelial Neoplasia293

(IN), containing images with tissues at a precancerous stage.294

5.1.2. Dataset 2: Prostatic tumor Tissue295

The second dataset [23], with some samples shown in Fig. 7, consists296

of multispectral images taken at 16 spectral channels (from 500 to 650 nm)297

and at x40 magnification power. 592 different samples (multispectral images)298

of size 128*128 have been used to carry out the analysis. The samples are299

evaluated by two highly experienced independent pathologists and labeled300

into four classes: 165 cases of Stroma (Str), which is normal muscular tissue,301

106 cases of Benign Prostatic Hyperplasia (BPH), a benign condition, 144302

cases of Prostatic Intraepithelial Neoplasia (PIN), a pre-cancerous stage, and303

177 cases of Prostatic Carcinoma (PCa), an abnormal tissue development304

corresponding to cancer.305
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5.1.3. Dataset 3: Colorectal Vis-IR306

Colorectal Vis-IR: The third dataset is also composed of multispectral307

colorectal histology data with a (x40) magnification power. This dataset308

was developed by University of Qatar with the collaboration of the Al-Ahli309

Hospital, Doha and will be made available for public use1. It is split into310

4 classes, each of them composed of 10 images. The images are acquired311

on a wider spectrum than in the first dataset as it is spread on the visible312

(Vis) and infrared (IR) ranges of the electromagnetic spectrum - shown in313

Figure 2 - with an interval of 23 nm between each wavelength. That is314

to say, in the visible range, the wavelength interval is 23 nm starting from315

465 nm to 695 nm and in the IR range, the wavelength interval is also 23316

nm and ranges from 900 nm to 1590 nm. The 4 classes are: Carcinoma317

(Ca), containing the images of cancerous colon biopsies, Tubular Adenoma318

(TA), a pre-cancerous stage, Hyperplastic Polyp (HP), a benign polyp and319

No Remarkable Pathology (NRP).320

5.2. Experiments321

The first two datasets are used for the first sets of experiments and the322

3rd dataset is used in the last experiment to show how the performance can323

be improved by using the IR imagery.324

The proposed system is first compared with the results given by the al-325

gorithm described in [22] by using a conventional LBP extracted from a326

panchromatic image that is generated by averaging the spectral bands of the327

multispectral image. It is also compared to another variant of LBP adapted328

to multispectal images. It consisting in extracting LBP histograms from each329

band and then concatenating them to from a final descriptor. This method is330

referred to as the concatenated LBP. It is worth mentioning that these LBP331

variants were used with an SVM classifier for a fair comparison. For the same332

reason, they were also applied using the same number of scales Nscale. Many333

authors use GLCM texture features - see Appendix: GLCM texture feature.334

The results obtained using the proposed system - that is the stacked classi-335

fication of the GLCM feature model combined with the MMLBP as shown336

in Figure 8, this is denoted as stacked MMLBP + GLCM - were also com-337

pared to the ones given by MMLBP alone. In order to assess our algorithm’s338

robustness, the two first datasets presented in Section 5.1 are used.339

1it is expected that the first release will take place in January 2018
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Figure 7: Sample of multispectral images from Dataset 2

In the second set of experiments, the impact of spatial resolution varia-340

tions in performance is addressed .341

The algorithm is also compared against different algorithms from the342

literature. An adapted version of Masood et al.’s algorithm [15] to the mul-343

ticlass problem is implemented. In this method they use the GLCM features344

after segmentation of the image to train an SVM classifier. The results given345

by the algorithm described by the authors of [16] are used for comparison.346

It consists of using a snake algorithm for image segmentation and uses the347

GLCM feature as well. Our method is also compared against Khelifi et al.’s348

results [24]. They define a multispectral form of the GLCM before extracting349

the GLCM features. Finally the results shown in [23] are used for comparison350

purposes. In that paper, Tahir et al. describe a Round-Robin Tabu search351

algorithm for prostatic tumor classification.352
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Nscale +

1

Final
decision

Figure 8: Block Diagram of the proposed algorithm.

5.3. Evaluation Measures353

In order to avoid accuracy variations, the cross-validation is run ten times354

and the accuracy is averaged. The standard deviation is calculated on the355

mean accuracies of each cross-validation.356

In addition of the accuracy and the standard deviation, the ROC curve357

and the Area Under Curve and the confusion matrix are also computed and358

used to assess the performances of the proposed algorithm. These perfor-359

mance measures are useful metrics to allow for a better understanding of360

what each class captures before one-versus-all combination to obtain the361

overall accuracy.362

6. Results and Discussion363

6.1. Training procedure364

As illustrated by Fig. 4, the double 10-fold cross-validation run on the365

datasets means that, for each experiment, 90% of the dataset is used for366

training the logistic regression classifier model and the remaining 10% are367

used for the testing phase. 90% of this training set (or 81% of the total368

dataset) is used for training the SVM models and in the remaining 10% of369

the training set (or 9% of the whole dataset), the trained SVM models are370
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used to train the logistic regression model. Table 1 displays the SVMs and371

logistic regression training sets and the testing set sizes for each dataset.372

Table 1: Number of images used in each phase for each the tested dataset

Data-
set

SVMs
training set

Logistic regression
training set

testing
set

dataset
size

1 23 3 3 29
2 480 53 59 592
3 29 3 4 36

6.2. Parameters Tuning373

As discussed previously, a total of 3 parameters need to be optimized for374

each SVM classification: the number of components selected in the ICA, and375

the C and γ parameters of the SVM kernel from Eq. (8), (10). A three-376

dimensional grid search was performed with the following parameters, with377

a step equals to 1:378

C = 10i, with i = [| − 3 : 3|],
γ = 10j, with j = [| − 3 : 3|],

Ncomp = 10 ∗ k, with k = [|1 : 50|].
For each combination of the parameters in these intervals, the accuracy is cal-379

culated and averaged with a 10-fold cross-validation. The parameters giving380

the maximum average accuracy are then chosen as the model parameters.381

6.3. Proposed Algorithm Discussion382

Table 2 shows a comparison of the classification accuracies obtained us-383

ing different features and classification methods. First a conventional LBP384

followed by a SVM classification is performed and an accuracy of 88.3 % is385

achieved on dataset 1 and 77.4 % on dataset 2. This shows this option is386

not robust to the data. When using a concatenated version of multispectral387

LBP followed by an SVM classification, the results are improved and an ac-388

curacy of 95.8 % is achieved on dataset 1. However, only 89 % accuracy is389

obtained on dataset 2 hence indicating the instability of the method. When390

using stacked generalization with MMLPB texture feature, the results are im-391

proved again and an accuracy of 99.0 % and 99.2 % on dataset 1 and dataset392

18



2, respectively, thus demonstrating the robustness of the proposed algorithm.393

This can be explained because the stacking method selects the best features394

for classification and discards the features that drop the accuracy and this is395

independent to the data. When GLCM texture features are combined to the396

MMLBP texture features the results are improved by 0.3 - 0.6 percentage397

points (pp). It can also be seen that the multispectral information brings398

significant improvement over the conventional LBP as illustrated by the per-399

formance of the concatenated multispectral LBP method. Furthermore, the400

stacking classification process enhances the performance further as demon-401

strated by the results of the stacked LBP compared to the concatenated402

LBP.403

Table 2: Accuracy comparison of different feature extraction and classification methods

Data-
set

Conven-
tional LBP

(%)

Concate-
nated LBP

(%)

Stacked
MMLBP

(%)

Proposed algorithm:
Stacked MMLBP +

GLCM (%)
1 88.3 ± 2.7 95.8 ± 0.5 99.0 ± 0.3 99.6 ± 0.4
2 77.4 ± 4.0 89.0 ± 0.9 99.2 ± 0.3 99.5 ± 0.3

Figure 9 and 10 displays the ROC curves and shows the Area Under404

Curve (AUC) for the different classes in a binary classification following the405

one versus all scheme. This is done to assess the positive and negative false406

alarm rates for each class. Table 3 and Table 4 show the confusion matrices407

obtained when using different datasets.408

Table 3: Confusion Matrix for dataset 1
Class BH Class Ca Class IN

Class BH 144 0 0
Class Ca 0 144 0
Class IN 1 4 139

As can be seen from Fig. 9, the system performs better on classes BH409

and Ca than it does on class IN. Fig. 6.3 displays some examples of correctly410

classified and misclassified images from dataset 1. Fig. 11a shows a sample of411

class IN which has been misclassified as class Ca by the proposed algorithm.412

Fig. 11b and 11c show correctly classified samples from class IN and Ca,413

respectively. As one can see the contrast on Fig. 11a is not as pronounced as414
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Figure 9: ROC for the proposed algorithm for Dataset 1

Table 4: Confusion Matrix for dataset 2
Class BPH Class PCa Class PIN Class Str

Class BPH 128 0 0 0
Class PCa 0 173 3 0
Class PIN 0 0 144 0
Class Str 0 0 0 144

what can be observed on Fig. 11b. This is especially true for the epithelial415

cells: in Fig. 11a the outer border of the cytoplasm of the cell is not as visible416

as it is on Fig. 11b. On the other hand, Fig. 11c presents hyperchromatism417

meaning the nuclei of the cells are well contrasted with the rest of the tissue418

and the border of the cytoplasm is not very clear. These features described419

on Fig. 11c is similar to what can be observed on Fig. 11a. Also both Fig.420

11a and 11c show an area with stroma tissue respectively at the bottom right421

and at the top left of the images. The combination of both these features422

can explain the misclassification of Fig. 11a.423
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Figure 10: ROC for the proposed algorithm for Dataset 2

6.4. Impact of the Spatial resolution424

Table 5 shows the impact of image spatial resolution on the results. As425

can be seen, the accuracy is marginally influenced by the change of resolution.426

It varies from 99.6% ± 0.4 for the full resolution to 98.7% ± 0.4 for a spatial427

resolution of 25% the original one for Dataset 1. For a resolution of 10%,428

the accuracy drops to 96.0%. The same consistency can be seen on Dataset429

2 until 50% of the original resolution then a drop by 2 points in accuracy430

is noticed for 25% of the original resolution. The drop further continues431

with a resolution of 10% the original one. This shows the robustness of the432

MMLBP algorithm presented in this paper to spatial resolution reduction433

until a certain percentage depending on the dataset.434

Table 5: Accuracy comparison of different spatial resolution

Data-
set

Resolution
100%

Resolution
75%

Resolution
50%

Resolution
25%

Resolution
10%

1 99.6 ± 0.4 98.8 ± 0.4 99.4 ± 0.4 98.7 ± 0.4 96.3 ± 0.4
2 99.5 ± 0.3 99.8 ± 0.3 99.5 ± 0.3 97.6 ± 0.3 96.0 ± 0.4
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(a) Image of class IN
classified as Ca

(b) Image of class IN
classified as IN

(c) Image of class Ca
classified as Ca

Figure 11: Example of correctly classified and misclassified samples from dataset 1.

6.5. Comparison to Existing Algorithms435

Table 6 depicts the performance accuracy obtained when comparing the436

proposed algorithm against some existing methods in the literature. [24]’s437

algorithm is tested on both the Texas and the Prostate datasets. The au-438

thors of [16] report a 98.9 % accuracy on the Texas dataset. Masood et al.’s439

algorithm is evaluated using the Texas and Prostate datasets using a multi-440

class classifier instead of the authors’ binary classifier [15]. As can be seen441

in Table 6, the proposed method outperforms these three other algorithms442

in terms of accuracy. Tahir et al.’s algorithm is evaluated using the prostate443

dataset as reported by the authors who achieved a 98.9 % accuracy. The444

proposed algorithm is implemented on the same dataset and the results of445

99.5 % accuracy clearly show that the proposed technique outperforms [23]’s446

algorithm.447

6.6. Extension to the Infrared Spectrum448

The algorithm is first evaluated on the visible and near infrared ranges449

separately on Dataset 3. Once this done, it is evaluated on a combined450
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Table 6: Accuracy comparison to literature methods

Data-
set

Khelifi
et al.

[24] (%)

Tahir et
al. [23]

(%)

Chaddad
et al. [16]

(%)

Masood
et al.

[15] (%)

Proposed algorithm:
Stacked MMLBP +

GLCM (%)
1 89.9 n/a 98.9 ±

0.1
86.3 ±

0.3
99.6 ± 0.4

2 75.6 98.9 n/a 85.1 ±
2.0

99.5 ± 0.3

dataset including both the Vis and IR data by fusing the accuracy results at451

a score level using the stacking technique discussed in Section 3.2. Table 7452

proves that using both the visible and infrared ranges of the light spectrum453

improves slightly the results. On the Qatar dataset, the proposed algorithm454

scores 99.2 % when using only the bands representing the wavelengths in the455

visible spectrum; this same algorithm scores 99.5 % when using the wave-456

lengths from the infrared as well as the visible range. One can notice that the457

IR alone does not perform as well as the Vis spectrum with this algorithm458

but it adds different information and helps improving the accuracy when459

combined.460

Table 7: Accuracy of proposed algorithm on Qatar dataset

Dataset Accuracy
Dataset 3 Vis 99.2 ± 0.1
Dataset 3 IR 96.2 ± 0.5

Dataset 3 Vis+IR 99.5 ± 0.1

7. Conclusion461

Multispectral texture features form an attractive method for extracting462

information from histologic images of colorectal or prostate tumor tissue for463

classification purposes. This paper proposed a MMLBP feature combined464

with GLCM using a stacked generalization for feature fusion at the score465

level for classification. The proposed method showed that this technique466

gives better results than similar and existing ones available in the literature467

attaining a classification accuracy above 99 % on all the datasets tested. This468
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Figure 12: ROC for the proposed algorithm for dataset 3

study also showed that results can be improved when combing both infrared469

and visible information extracted from tissue samples.470

Future work will focus on investigating the use of morphological features471

in order to improve the result. They will be easily combined to the texture472

features at decision level for classification thanks to the stacked generalization473

technique used here.474

Appendix A. GLCM Texture Features475

The GLCM texture features [9] are calculated from the GLCM extracted476

from the different layers of the multispectral [4] image where each layer rep-477

resents the tissue response to a different wavelength. This GLCM matrix478

reflects how often a pixel with the intensity value I occurs in a specific spa-479

tial relationship (r, θ) to a pixel j. Four different spatial relationships are480

computed: r = 1 and θ = 0, 45, 90, 135.481
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GLCMi,j,λ =
n∑
p=1

m∑
q=1

1, if

{
I(p, q, λ) = i

I(p+ ∆x, q + ∆y, λ) = j

0, otherwise

The following GLCM features are computed from the normalized GLCM482

matrices pr,θ(i, j, λ) of the image:483

• Energy: ∑
i,j

p(i, j, λ)2

• Contrast: ∑
i,j

|i− j|2p(i, j, λ)

• Homogeneity: ∑
i,j

p(i, j, λ)

1− |i− j|

• Correlation: ∑
i,j

(µi − i)(µj − j)
σiσj

p(i, j, λ)

For each multispectral image, the GLCM features are calculated on each484

GLCM from each layer and concatenated into a large vector of size 4 ∗485

number of multispectral layers. The features are then rescaled and nor-486

malized to fit in the interval [0, 1] using the following equation:487

x =
x−min(x)

max(x)−min(x)
(A.1)

Where x is a vector representing the feature to be normalized, x′ is the488

normalized feature, max(x) and min(x) are respectively the maximum and489

minimum values of x.490
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