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Abstract

Linear autoregressive models serve as basic representations of discrete time stochastic

processes. Different attempts have been made to provide non-linear versions of the

basic autoregressive process, including different versions based on kernel methods.

Motivated by the powerful framework of Hilbert space embeddings of distributions, in

this paper we apply this methodology for the kernel embedding of an autoregressive

process of order p. By doing so, we provide a non-linear version of an autoregressive

process, that shows increased performance over the linear model in highly complex

time series. We use the method proposed for one-step ahead forecasting of different

time-series, and compare its performance against other non-linear methods.

Keywords: Autoregressive process, Hilbert space embeddings, cross-covariance

operator, time series forecasting

1. Introduction

Autoregressive processes are useful probabilistic models for discrete time random

processes. The basic idea in an autoregressive process is that the random variable

at time n, can be described as a linear combination of the p past random variables

associated to the process, plus white Gaussian noise. The value of p determines the5

order of the autoregressive process [1].
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Different authors have proposed non-linear extensions of the above model includ-

ing NARMAX (non-linear autoregressive moving average model with exogenous in-

puts) [2], and also including the use of more general non-linear regression methods for

extending the classical autoregressive process to non-linear setups. Examples of non-10

linear regression methods used are neural networks [3, 4], Gaussian processes [5, 6],

and kernel-based learning methods [7, 8].

Within the kernel methods literature, different versions for kernelizing an autore-

gressive process of order p have been proposed [9, 7]. In [9], the authors propose an

AR process built over a feature space. The coefficients of the autoregressive model are15

estimated by minimizing the quadratic error between the feature map of the input at

time n, and the prediction given by the linear combination of the last p mapped inputs.

Predictions are presented only for finite dimensional feature mappings, for which the

inverse mapping from a feature space to the input space is easily computed. In [7],

the authors also propose an AR process built over a feature space, by this time, the20

coefficients of the autoregressive model are estimated by using Yule-Walker equations,

where the correlations between random variables are replaced by inner products be-

tween the feature maps of those random variables. Predictions are obtained by solving

a pre-image problem.

Our objective in this paper is to introduce a non-linear version of the autoregressive25

model of order p based on Hilbert space embeddings of joint probability distributions.

Hilbert space embeddings are a recent trend in kernel methods that map distribu-

tions into infinite-dimensional feature spaces using kernels, such that comparisons and

manipulations of these distributions can be performed using standard feature space op-

erations like inner products or projections [10]. Hilbert space embeddings have been30

successfully used as alternatives to traditional parametric probabilistic models like hid-

den Markov models [11] or linear dynamical systems [12]. They have also been used

as non-parametric alternatives to statistical tests [13].

Motivated by this powerful framework, we develop a kernelized version of an au-

toregressive model by means of the Yule-Walker algorithm, and instead of computing35

correlations (as in the classical AR linear model) or inner products (as in [7]), we

compute cross-covariance operators for pairs of random variables. For time-series pre-
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diction, one additionally needs to solve a pre-image problem [14], to map from the

space of covariance operators to the original input space. We develop an algorithm

that uses fixed point iterations for solving the pre-image problem. The performance of40

the proposed model is compared against the linear AR model, the kernel method pro-

posed in [7], neural networks, and Gaussian processes, for one-step ahead forecasting

in different time series.

The paper is organized as follows. In section 2, we briefly review Hilbert space

embeddings methods. In section 3, we present the embedding of the AR model using45

cross-covariance operators, including parameter estimation, and solving the pre-image

problem. In section 4, we present some related work. In section 5 we describe the

experimental setup that includes four datasets, and in section 6, we show the results for

one-step ahead prediction over the different datasets. Conclusions appear in section 7.

2. Review of Hilbert space embeddings50

In this paper, we use upper-case letters to refer to random variables (for example,

X ,Y ), and lower-case letters to refer to particular values that those random variables

can take (for example, x,y). Upper-case bold letters are used to refer to matrices, and

lower-case bold letters are used for vectors.

We briefly review the definitions of a reproducible kernel Hilbert space (RKHS),55

Hilbert space embeddings of distributions, and covariance operators, which are the key

for developing Hilbert space embeddings of autoregressive processes.

2.1. Reproducing Kernel Hilbert Space

A reproducing kernel Hilbert space (RKHS) H with kernel k(x,x′), for x,x′ ∈ X , is

a space of functions g : X → R that satisfy the following properties:60

1. For all x ∈ X , k(x, ·) : X → R belongs to H .

2. 〈g(·),k(x, ·)〉H = g(x) and consequently 〈k(x, ·),k(y, ·)〉H = k(x,y).

An alternative definition for a kernel function, which is usually used when designing

algorithms, is given by k(x,x′) = 〈φ(x),φ(x′)〉H , where φ : X → H .65
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Kernel methods are widely popular in signal processing and machine learning, and

there are several textbooks where they are described in detail [15, 16, 17].

2.2. Embedding distributions

Recently, the authors in [13] introduced a method for embedding probability dis-

tributions in a RKHS. Let PX be the space of all probability distributions P(X) of the

random variable X ∈ X . In [13], the authors define the mapping from a probability

distribution P(X) ∈ PX to a RKHS H using the mean map µX defined as

µX = EX [k(X , ·)] = EX [φ(X)].

The mean map µX satisfies 〈µX ,φ(·)〉H = EX [φ(X)]. If the kernel k(x,x′) used for the

embedding is characteristic, 1 then µX is injective.70

Given an i.i.d. set of observations {xl}m
l=1 of the random variable X , an estimator

for µ̂X is given as

µ̂X =
1

m

m

∑
l=1

k(xl , ·).

It can be shown that 〈µ̂X ,φ(·)〉H = 1
m ∑m

l=1 φ(xl). The estimator µ̂X converges to µX , in

the norm of H , at a rate of Op(m
−1/2) (see [13] for details).

2.3. Cross-covariance operator

If H1 and H2 are RKHS with kernels k(·, ·) and ℓ(·, ·), and feature maps φ and ϕ,

respectively, the uncentered cross-covariance operator is defined as [18]

CXY = EXY [φ(X)⊗ϕ(Y )],

where ⊗ is the tensor product.2 The cross-covariance operator CXY can be seen as an

element of a tensor product reproducing kernel Hilbert space (TP-RKHS), H1 ⊗H2.75

1A characteristic kernel is a reproducing kernel for which µX (P) = µY (Q) ⇐⇒ P=Q, P,Q ∈ P , where

P denotes the set of all Borel probability measures on a topological space (M,A).
2Given f ,h ∈ H1, and g ∈ H2, we define the tensor product f ⊗ g as an operator that maps h from H1 to

H2 such that ( f ⊗g)h → 〈h, f 〉H1
g.
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Given two functions f ∈ H1 and g ∈ H2 then

〈 f ,CXY g〉H1
= 〈 f ⊗ g,CXY 〉H1⊗H2

= EXY

[
〈 f ⊗ g,φ(X)⊗ϕ(Y)〉H1⊗H2

]

= EXY

[
〈 f , φ(X)〉H1

〈g, ϕ(Y )〉H2

]

= EXY [ f (X)g(Y )] ,

where φ(x) = k(x, ·), ϕ(y) = l(y, ·), and EXY [ f (x)g(y)] is the covariance matrix (for

details see [19]).

The operator CXY allows the embedding of PXY , the set of joint distributionsP(X ,Y )

over the random vector (X ,Y ) ∈ X ×Y , in the TP-RKHS H1 ⊗H2.

Given an i.i.d of set of pairs of observations DXY = {(x1,y1),(x2,y2), · · · , (xm,ym)},

a cross-covariance estimator ĈXY for CXY is defined as:

ĈXY =
1

m

m

∑
l=1

φ(xl)⊗ϕ(yl) =
1

m
ΦΥ

⊤, (1)

whereΦ=(φ(x1),φ(x2), . . . ,φ(xm)), and Υ=(ϕ(y1),ϕ(y2), . . . ,ϕ(ym)) are design ma-80

trices [17].

3. Hilbert space embedding of an autoregressive process

In this section, we describe how the basic autoregressive model can be embedded in

a TP-RKHS. We then provide an estimation method for the parameters of the embedded

method, by means of the Yule-Walker equations. Finally, we describe a procedure for85

solving the pre-image problem for the kernel embedding of the autoregressive process.

We solve the pre-image problem for forecasting in time-series.

3.1. Autoregressive models in TP-RKHS

Let X1,X2, · · · ,Xn a stationary discrete time stochastic process. A p-order linear

AR model (LAR) is defined by [1]

Xi = λ1Xi−1 +λ2Xi−2 + · · ·+λpXi−p + εi =
p

∑
j=1

λ jXi− j + εi, (2)

5



for i= p+1, p+2, · · · ,n, where λ1,λ2, · · · ,λp are the model parameters, and εi is white

noise with E(εi) = 0 and var(εi) = σ2. We use λ= [λ1,λ2, . . . ,λp]
⊤.90

The Yule-Walker equations are a set of linear of equations used to estimate the co-

efficients λ. The basic idea is to define a set of p linear equations, where the unknowns

are the p coefficients in λ. Each linear equation in the Yule-Walker system is formed

by computing the covariance between Xi, and Xi−k according to

〈Xi,Xi−k〉=
p

∑
j=1

λ j〈Xi− j,Xi−k〉+ 〈εi,Xi−k〉,

for k = 1, . . . , p. Assuming independence between εi, and Xi−k, the set of linear equa-

tions reduce to

〈Xi,Xi−k〉=
p

∑
j=1

λ j〈Xi− j,Xi−k〉, (3)

for k = 1, . . . , p. Given a set of observations for the discrete time random process, and

a suitable estimator for the covariance terms like 〈Xi,Xi−k〉, it is possible to solve the

set of equations for estimating λ.

The authors in [7] propose a non-linear extension of the AR process in (3), by

applying a non-linear transformation ϕ : X → H to the random variables Xi in the AR

model,

ϕ(Xi) =
p

∑
j=1

α jϕ(Xi− j)+ϕ(εi). (4)

Notice that we use a set of coefficients λ for the autoregressive model in X , and a set

of coefficients α = [α1, . . . ,αp]
⊤ for the autoregressive model in H . To estimate the

parameters α in the transformed space, the authors follow a procedure similar to the

Yule-Walker equations, but instead of computing covariances between random vari-

ables like Xi, and Xi−k, they compute inner products between ϕ(Xi), and ϕ(Xi−k). With

the proper independence assumptions, the Yule-Walker system of equations in then

given as 3

〈ϕ(Xi),ϕ(Xi−k)〉=
p

∑
j=1

α j〈ϕ(Xi− j),ϕ(Xi−k)〉, (5)

3For ease of exposition, we have assumed that the transformed random variables ϕ(Xi) have been sub-

stracted the mean of the transformed variable µϕ = EXi
[ϕ(Xi)].
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for k = 1, . . . , p. Inner products like the ones above can be replaced by kernel functions.

This is usually known as the kernel trick [15, 16]. Given a set of observations for the

discrete time random process {xi}
m
i=1, the following set of equations can be used to

compute α,

k(xi,xi−k) =
p

∑
j=1

α jk(xi− j,xi−k), (6)

for k = 1, . . . , p. Since the values for k(xi,xi− j), and k(xi− j,xi−k) are themselves ran-

dom variables that depend on the values of the observations in a particular time series,

and assuming that the discrete time random process is stationary, the authors in [7]

propose the following set of equations to get an estimate for α

E[k(xi,xi−k)] =
p

∑
j=1

α jE[k(xi− j ,xi−k)], (7)

for k = 1, . . . , p. Expectations are estimated over the set of available samples. In this

paper, we refer to the method by [7] as the Kernel autoregressive model (KAM).95

Our key contribution in this paper is that we embedd the autoregressive model in a

TP-RKHS by mapping joint distributions like P(Xi,Xi−k), and P(Xi− j,Xi−k) to points

in H1 ⊗H2. Embeddings are performed by using cross-covariance operators, instead

of inner products.

Let us start with Equation (4). If we apply a tensor product with φ(Xi−k), at both

sides of Equation (4), and take expected values, we obtain

EXi,Xi−k
[ϕ(Xi)⊗φ(Xi−k)] =

p

∑
j=1

α jEXi− j ,Xi−k
[ϕ(Xi− j)⊗φ(Xi−k)] (8)

+EεiXi−k
[ϕ(εi)⊗φ(Xi−k)],

for k = 1, · · · , p. If we assume that φ(Xi−k), and ϕ(εi) are uncorrelated, then the ex-

pression above reduces to

CXiXi−k
=

p

∑
j=1

α jCXi− jXi−k
, (9)

where CXiXi−k
, and CXi− jXi−k

are cross-covariance operators, defined as

CXiXi−k
= EXi,Xi−k

[ϕ(Xi)⊗φ(Xi−k)]

CXi− jXi−k
= EXi− j ,Xi−k

[ϕ(Xi− j)⊗φ(Xi−k)].
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In this paper, we refer to this method as the Kernel embedding method (KEM).100

Table 1 summarizes the different types of autoregressive processes described above.

Model Space Elements in space

Linear autoregressive model Input space Xi ∈ X

Kernel autoregressive model [7] Reproducible Kernel Hilbert

Space (RKHS)

ϕ(Xi) ∈ H

Kernel embedding method Tensor product RKHS CXiX j
∈ H1 ⊗H2

Table 1: Summary of the different autoregressive processes described in this section

3.2. Parameter estimation for autoregressive models in TP-RKHS

In this section, we provide a method for estimating the parameters α in the autore-

gressive model in Equation (9). For this, we use the estimator for the cross-covariance

operators, as in Equation (1).105

Let DXiXi− j
= {(x1

i ,x
1
i− j),(x

2
i ,x

2
i− j), · · · ,(x

m
i ,x

m
i− j)}, for j = 1,2, · · · , p, be different

sets of samples drawn i.i.d from the distributions P(Xi,Xi− j). We denote by Φi the

design matrix built from the elements {φ(xl
i)}

m
l=1, and Υi− j the design matrix built

from the elements {ϕ(xl
i− j)}

m
l=1,

Φi = (φ(x1
i ),φ(x

2
i ), · · · ,φ(x

m
i )),

Υi− j = (ϕ(x1
i− j),ϕ(x

2
i− j), . . . ,ϕ(x

m
i− j)).

Estimators for the cross-covariance operators CXiXi−k
and CXi− jXi−k

are given as (see

Equation (9) and reference [11])

ĈXiXi−k
=

1

m

m

∑
l=1

φ(xl
i)⊗ϕ(xl

i−k) =
1

m
ΦiΥ

⊤
i−k (10)

ĈXi− jXi−k
=

1

m

m

∑
l=1

ϕ(xl
i− j)⊗ϕ(xl

i−k) =
1

m
Υi− jΥ

⊤
i−k. (11)

Equation (9) can now be written approximately as

ΦiΥ
⊤
i−k =

p

∑
j=1

α jΥi− jΥ
⊤
i−k. (12)
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We pre-multiply Equation (12) by Υ
⊤
i−k, and post-multiply by Φi, obtaining

Υ
⊤
i−kΦiΥ

⊤
i−kΦi =

p

∑
j=1

α jΥ
⊤
i−kΥi− jΥ

⊤
i−kΦi. (13)

Simplifying

Υ
⊤
i−kΦi =

p

∑
j=1

α jΥ
⊤
i−kΥi− j. (14)

We can write the expression above as

Hi−k,i =
p

∑
j=1

α jKi−k,i− j, (15)

where Hi−k,i =Υ
⊤
i−kΦi, Ki−k,i− j =Υ

⊤
i−kΥi− j, and k = 1,2, . . . , p. Notice that the en-

tries for the matrix Hi−k,i are the inner products {ϕ(xr
i−k)

⊤φ(xs
i )}

m,m
r=1,s=1. These inner

products can be computed using a kernel function {h(xr
i−k,x

s
i )}

m,m
r=1,s=1. Likewise, en-

tries of Ki−k,i− j are given by inner products {ϕ(xr
i−k)

⊤φ(xs
i− j)}

m,m
r=1,s=1, which again can

be computed using a kernel function {k(xr
i−k,x

s
i− j)}

m,m
r=1,s=1.110

Given a time-series dataset and a value for p, the values of Hi−k,i, and Ki−k,i depend

on the values chosen for i, and m. Assuming that the discrete time random process is

stationary, we can get an estimate for α using the following set of equations

E[Hk] =
p

∑
j=1

α jE[Kk, j], (16)

for k = 1, . . . , p. We have suppresed the subindex i from the equation above to keep the

notation uncluttered. As in Equation in (7), expectations can be estimated over the set115

of available samples.

We can use the system of equations in (16) to estimate the parameters α. The

system of equations is given as




H1

H2

...

Hp



=




K1,1 K1,2 · · · K1,p

K2,1 K2,2 · · · K2,p

...
...

...
...

Kp,1 Kp,2 · · · Kp,p







α1I

α2I

...

αpI




(17)
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where I is the identity matrix of dimension m. We can find an estimator for α by

solving

α̂= argmin
α

‖H−Kαm‖
2
2 , (18)

where H ∈Rmp×m is a block-wise matrix with blocks given by {Hk}
p

k=1; K ∈ Rmp×mp

is a block-wise matrix with blocks given by {Kk, j}
p,p
k=1, j=1; and αm ∈ Rmp×m is also120

a block-wise matrix with blocks given as {αkI}
p
k=1. For convenience, we also define

K̂i ∈ Rmp×m as a block-wise matrix taken from K, with blocks given by {Kk,i}
p
k=1.

It can be shown that the optimization problem in (18) can be cast into a least-squares

problem as

α̂= argmin
α

‖Aα−b‖2
2 , (19)

where A∈Rp×p with entries {tr(K̂⊤
i K̂ j)}

p,p
i=1, j=1, and b∈Rp×1 with entries {tr(H⊤K̂i)}

p
i=1.

3.3. Solving the pre-image problem for forecasting in a time-series

We want to use the method above for forecasting a new value x∗i using α, and

the p previous values of the time series. For now on, our method allows us to make

predictions in the feature space by means of

τ∗i =
p

∑
j=1

α jϕ(xi− j), (20)

where the values for {α j}
p
j=1 have been estimated as explained in section 3.2. We125

would like to map back the value of τ∗i to the input space, to get the predicted x∗i . In

the kernel literature this problem is known as the pre-image problem [14], and it is an

ill-posed problem due to the higher dimensionality of the feature space, meaning that

the transformed point τ∗i may not have a corresponding x∗i such that ϕ(x∗i ) = τ∗i .

We apply a tensor product to both sides of expression (20), leading to

τ∗i ⊗φ(x∗i ) =
p

∑
j=1

α jϕ(xi− j)⊗φ(x∗i ). (21)

In order to get an estimate for x∗i , we can solve the following minimization problem in

H1 ⊗H2

x∗i = argmin
x

f (x) = argmin
x

∥∥∥∥∥
p

∑
j=1

α jϕ(xi− j)⊗φ(x)−ϕ(x)⊗φ(x)

∥∥∥∥∥

2

H1⊗H2

,

10



where we have defined

f (x) =

∥∥∥∥∥
p

∑
j=1

α jϕ(xi− j)⊗φ(x)−ϕ(x)⊗φ(x)

∥∥∥∥∥

2

H1⊗H2

. (22)

Expression for f (x) can also be written as

f (x) =

〈
p

∑
j=1

α jϕ(xi− j)⊗φ(x),
p

∑
k=1

αkϕ(xi−k)⊗φ(x)

〉

H1⊗H2

− 2

〈
p

∑
j=1

α jϕ(xi− j)⊗φ(x),ϕ(x)⊗φ(x)

〉

H1⊗H2

+ 〈ϕ(x)⊗φ(x),ϕ(x)⊗φ(x)〉H1⊗H2
. (23)

By using the property 〈u⊗ v,a⊗ b〉H1⊗H2
= 〈u⊗ a〉H1

〈v⊗ b〉H2
, we get

f (x) =

〈
p

∑
j=1

α jϕ(xi− j),
p

∑
k=1

αkϕ(xi−k)

〉

H1

〈φ(x),φ(x)〉H2

− 2

〈
p

∑
j=1

α jϕ(xi− j),ϕ(x)

〉

H1

〈φ(x),φ(x)〉H2

+ 〈ϕ(x),ϕ(x)〉H1
〈φ(x),φ(x)〉H2

. (24)

Noticing that C =
〈

∑
p
j=1 α jϕ(xi− j),∑

p
k=1 αkϕ(xi−k)

〉
H1

is a constant (it does not de-

pend on x), and using kernels k(x,x′) of the form g(‖x− x′‖2), we can simplify expres-

sion (24) as follows

f (x) =Cg(0)− 2g(0)
p

∑
j=1

α jk(xi− j,x)+ g2(0). (25)

Taking the derivative with respect to x, we get

d f (x)

dx
=−2g(0)

p

∑
j=1

α j

dk(xi− j,x)

dx
. (26)

If we use an squared exponential (SE) kernel or a radial basis function (RBF) kernel

k(x,x′) = exp

(
−
‖x− x′‖2

2ℓ2

)
, (27)

where ℓ2 is known as the bandwidth, the expression (26) follows as

d f (x)

dx
=−

2g(0)

ℓ2

p

∑
j=1

α jk(xi− j,x)(xi− j − x). (28)

11



Equating to zero, and solving for x, we get the following fixed-point equation

x∗i =
∑

p
j=1 α jk(xi− j,x

∗
i )xi− j

∑
p
k=1 αkk(xi−k,x

∗
i )

. (29)

4. Related work130

Short term time series prediction is a classic topic in machine learning and statistics

[20, 21, 22].

As we mentioned in the introduction, the authors in [9], and [7] introduced a ker-

nelized version of an autoregressive process based on the kernel trick idea [15, 16]. In

particular, the autoregressive model is built in a feature space, and the parameters of the135

model are estimated in two different ways, either by minimizing a quadratic error [9],

or by means of the Yule-Walker algorithm [7]. In [9], the pre-image problem, this is,

the problem of inverse transforming a point in the feature space, to the input space, is

only solved for finite-dimensional feature spaces for which the inverse transformation

can be readily be computed. In [7], the pre-image problem is solved by using a fixed-140

point algorithm similar to equation (29). When assuming a stationary kernel, this is

k(x,x′) = k(x−x′), the method in [7] turns out to be a particular example of the system

in equation (15) for any particular values of r, and s in the kernel matrices Hi−k,i, and

Ki−k,i− j.

Expression (10) follows closely Equation (5.15) in [23]. The expression in [23] is145

obtained as the Yule-Walker equations for a so called autoregressive Hilbertian pro-

cess of order p, ARH(p), that corresponds to an autoregressive process defined in a

Hilbert space. In [23], the {α j}
p
j=1are bounded linear operators, in contrast to equa-

tion (10), where they correspond to scalar values. Estimation of α j , and prediction are

different though. The estimation for the bounded linear operators {α j}
p
j=1 is obtained150

by projecting the observations in a Hilbert space of finite dimension. Predictions are

performed directly by applying the estimated operators over the input data.

In [24], the author use kernel mean embeddings to provide one step ahead distri-

bution prediction. In particular, distributions at any time t are represented by kernel

mean maps. A mean map at time t + 1 can be obtained as a mean map at time t, lin-155

early transformed by a bounded linear operator. In fact, this corresponds to a ARH(1),
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where the functions in H correspond to kernel mean embeddings. The distribution

at time t + 1 in the input space is approximated by a weighted sum of historic input

samples. The weigths in the approximation are computed from particular kernel ex-

pressions [24]. Our method considers models of order p, and our predictions are point160

estimates in contrast to [24]. Also, we use embeddings of joint probability distribu-

tions, P(Xi,Xi−k) instead of embeddings of marginal distributions, P(Xi) (mean maps).

5. Experimental evaluation

In this section, we provide details for the experimental evaluation performed in this

paper. We describe tha datasets we use, and the procedure that we follow for validating165

the results.
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Figure 1: The four time-series used in this paper to compare the performance of the method

proposed.
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5.1. Datasets

We use four time-series to evaluate the performance of the different methods. The

first two datasets belong to the Time Series Data Library (TSDL), and can be found in

[25]. The last two datasets were generated by the authors.170

– Earthrot. With the name Earthrot, we refer to the Annual changes in the earthÂ’s

rotation, day length (sec*10**-5) 1821-1970 dataset, available at [25]. Units are

in 10−5 of a second. The time-series contains 150 samples. We use the first 130

samples for the experiments.

– CO2. We use the dataset CO2 (ppm) mauna loa, 1965-1980 from the TSDL,175

which corresponds to monthly measures of CO2 in parts per million from the

Mauna Loa observatory. The time-series exhibit a periodic, and approximately

linear behavior. The dataset contains 192 samples. For the experiments we use

the first 150 samples.

– MG30. The time-series MG30 refers to the time-series obtained from the Mackey-

Glass non-linear time delay differential equation given as

dx(t)

dt
=−0.1x(t)+

0.2x(t − τ)

1+ x(t − τ)
,

with τ = 30 [7]. This time series exhibits chaotic dynamics. We generate a180

time-series of length 600. For the experiments, we use the first 400 samples.

– Lorenz. The Lorenz attractor refers to a set of three coupled ordinary differential

equations given as

dx(t)

dt
=−ax+ ay

dy(t)

dt
=−xz+ rx− y

dz(t)

dt
= xy− bz,

where a,r, and b are constants. For certain values a,r, and b, the system exhibits

chaotic behavior. We set values for the parameters as a= 10, r = 28, and b= 8/3.

For these values, the three-dimensional multi-variate time-series (x(t),y(t),z(t))
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displays chaotic dynamics. We generate 500 samples per output dimension, and185

use the first 400 samples for the experiments. We perform prediction over the

three time-series x(t), y(t), and z(t), treating them as independent from each

other.

Figure 1 shows the four datasets described above, and used for testing the methods.

5.2. Validation190

The validation of the method proposed in this paper is done by performing one-step

ahead prediction over each of the time series described above. For performing one step-

ahead prediction, we use sliding frames of w+ 1 samples, where the first w samples

are used for training, and the additional last sample is used for validation. The sliding

frames are organized consecutively, with an overlap of w samples. The training data is195

used for setting the parameters of each of the models used for comparison, including

the order of the autoregressive model. For the order of the model, we evaluate values

of p from one to five. We compute the mean-squared error over the validating samples.

We next describe the particular setup used for training in each of the models used in

the experiments.200

– Linear AR model. The coefficients λ for the linear AR model are estimated using

the Yule-Waker equations. Within each frame of length w, we again use a sliding

window of size w/2+1, where the first w/2 samples are used to compute λ, and

the last sample is used for performing one-step ahead prediction for different

values of p. The sliding windows are organized consecutively with an overlap205

of w/2 samples. The results of the one-ahead step prediction withing the frame

of length w, are used to select the value of p, which is selected as the value

that ocurred more frequently offering the best prediction performance. Once

the value for p has been selected, we compute again the values for λ using all

the datapoints within w, and used this new λ for performing one-ahead step210

prediction over the time step w+ 1.

– Kernel autoregressive model. We implement the method proposed in [7]. To

compute the expectations, we use sample means of the quantites of interest. For
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the kernel function, we use an SE kernel as in expression (27). The pre-image

problem is solved as explained in [7], which has the same fixed-point solution215

as in expression (29). The values for ℓ, and p are chosen as follows: within

the frame of length w, we generate sliding frames of size w/2+ 1. The sliding

frames are organized consecutively with an overlap of w/2 samples. The first

w/2 data points are used for estimating the values for α by solving the system

of equations in expression (7). We then use the data point at time step w/2+ 1220

for selecting the best value for ℓ, and p, as the ones that on average, within the

window of length w, yield the lowest error. We use a grid of values for ℓ by

taking a grid of percentages, ℓp, of the median of the training data within the

frame of size w/2. The percentages that we consider are 0.01, 0.01, 0.5, 1, 2,

or 5 of the median of the training data within the frame of length w/2. Once225

we select the value for ℓp, we compute a new value for ℓ as the percentage ℓp

of the median of the training data within the frame of size w. Having chosen ℓ,

and p, we use all the training data of the frame of size w for finding a new set

of coefficients α, and finally, provide a forecasting at time step w+1 by solving

again a pre-image problem.230

– Kernel embedding method. We implement the method described in section 3.

We also use an SE kernel. The values for ℓ, and p used for one-step ahead

forecasting for time step w + 1 are computed as follows: within the frame of

length w, we use an sliding window of length w/2+ 1. The sliding windows

are set up consecutively with an overlap of w/2 samples. The first w/2 data235

points are used for estimating the coefficients α by solving equation (19). For

selecting ℓ and p, we follow a similar procedure to the one used for the kernel

autoregressive model above: the sliding data point at time step w/2+ 1 is used

to choose the values for ℓ, and p, that on average lead to the lowest prediction

errors. Prediction at time step w/2+ 1 is performed by solving the pre-image240

problem in expression (29). In fact, we used percentages of the median of the

training data, ℓp, in the windows of length w/2, in order to test different values

for ℓ. The percentages that we used were 0.01, 0.01, 0.5, 1, 2, and 5. Once the
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best percentage of the median of the training data for ℓ, and the best value of the

order of the model p have been chosen, we compute again the value for ℓ using245

the best value for ℓp and the training data in the whole frame of size w. We again

compute α using the training data in frame w, and forecast one-step ahead for

the time setp w+ 1 solving the pre-image problem in expression (29).

– Gaussian processes (GP). We follow the model proposed in [5], in which the

random variable of the process at time Xn can be described using

Xn = f (Xn−1, . . . ,Xn−p)+ ε, (30)

where ε ∼N (0,σ2), and f (x) is assumed to follow a Gaussian process prior f ∼

GP (0,k(x,x))), with covariance function k(x,x). For the covariance function,250

we use a SE kernel as in equation (27). The parameter of the covariance function

ℓ, and the parameter σ for the likelihood model, are estimated by maximizing

the log marginal likelihood using a scaled conjugate gradient procedure. We use

the GPmat Toolbox4 for all Gaussian processes related routines. For selecting

the value of p, we use a sliding frame of length w/2+ 1, within the frame of255

length w. The sliding windows of length w/2+ 1 are established as in the other

methods. A number of w/2 data points are used for learning the hyperparameters

of the Gaussian process, and the data point at time step w/2+1 is used for cross-

validating the value for p. The value for p is chosen as the one that on average

(within the frame of size w) leads to the lowest errors. Once the value for p has260

been chosen, we use again the w samples for training a new GP. This new fitted

GP is used for forecasting the data point at time step w+ 1.

– Neural networks (NN). We use a neural network with one hidden layer for learn-

ing a similar mapping as in equation (30). For choosing the number of neurons

nh of the hidden layer, and the value for p, we use a similar procedure as for265

the methods above: within the frame of length w, we generate sliding windows

of length w/2+ 1, in a similar way as they were slid in the other approaches.

4Available at https://github.com/SheffieldML/GPmat
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The w/2 first datapoints are used for fitting the weights of the neural network,

and the data point at time step w/2+ 1 is used for choosing the value for nh,

and the value for p. These values are chosen as the ones that on average, within270

the frame of length w, lead to the lowest error. We allow the number of neurons

in the hidden layer to be any of the following values: 5, 10, 15, 20, 25, or 30.

For the the neural networks routines, we use the Neural Networks toolbox for

MATLAB, with all the default settings, except for the number of neurons in the

hidden layer.275

6. Results

We compare the performance of the different methods for short-term prediction

over each of the time-series described in section 5. Figures 2, 3, 4, and 5 show the per-

formance of the classical linear autoregressive model, the kernel autoregressive model,

and the kernel embeddings of autoregressive model over the four time series described280

in Section 5. The mean squared error (MSE) for one step ahead prediction is shown as

the title in each figure.

Figure 2 shows the one-step ahead prediction results for the time series Earthrot.

For this example, we used sliding windows of length 51. The first 50 observations

of each sliding window were used for training, and the forecast was perfomed for the285

time step 51-st of each sliding window. Since we used the first 130 samples from the

original time series for the experiment, and a sliding window of 51 points, the MSE

is computed over a total of 80 observation points. We notice that both kernel methods

(figures 2(b) and 2(c)) are able to follow the original time series even from the first time

steps, contrary to the linear model (figure 2(a)), where the prediction is far away from290

the time series. With respect to the 80 values of p that were chosen for each method,

we computed a simple linear correlation coefficient between the series of values of p’s

for the linear method, and the two kernel approaches. As expected, there is a higher

similarity between the values picked by the KAM, and the KEM, 0.5494, compared

to −0.3349 for the correlation coefficient between the linear AR model and the KAM,295

and 0.2405 for the correlation coefficient between the linear AR model and KEM. A
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Figure 2: One-step ahead prediction over the dataset Earthrot given by the linear AR model, the

method proposed by Kallas et. al. in [7], and the method based on kernel embeddings proposed

in this paper. Solid lines are the test data, dashed lines are the predictions given by the methods.

The title of each figure displays the mean squared error between the test data, and the predicted

output.

further comparison between the values of p chosen by the kernel methods, show that

they disagreed in 22 trials out of 80. With respect to the values of ℓ chosen by the two

kernel methods, in only 4 out of the 80 trials, both methods chose different bandwidth

values. The values for the MSE show that the method based on kernel embeddings300

offers the best performance when compared to the kernel autoregressive method, and

the linear AR model.

Figure 3 shows the results of one-step ahead forecasting for the linear AR model,

the KAM, and the KEM. As in the previous example, we used sliding windows of

length 51 samples, where the first 50 samples in each window are used for finding305

parameters of the models, and the last sample (number 51) is used to test the forecasting
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Figure 3: One-step ahead prediction over the dataset CO2, given by the linear AR model, the

method proposed by Kallas et. al. in [7], and the method based on kernel embeddings proposed

in this paper. Solid lines are the test data, dashed lines are the predictions given by the methods.

The title of each figure displays the mean squared error between the test data, and the predicted

output.

ability of the methods. From the CO2 time series that is originally available, we used

the first 150 samples to assess the prediction performance in several points of the time-

series. Since we use window frames of 51 points, the MSE error for the prediction is

computed over 100 samples of the time series.310

It can be noticed how the KEM method is able to follow more closely the low and

high peak values of the time series, when compared to the linear method, and KAM.

This can be explained by the fact that the kernel embbeding method is able to take

into account the particular structure in the time series, which for the KAM is lost when

averaged. With respect to the values of p, the linear AR model chooses a value of315

p = 2, or p = 5, mostly. The KAM consistently worked better with p = 2, and the
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KEM with p = 5. The values chosen for ℓ in the kernel methods were equal 80% of the

trails. The MSE values (appearing on the title of each figure) indicate that the KEM

outperforms the linear AR method and the KAM.

Figure 4 shows the one-step ahead prediction for the Mackey-Glass chaotic time320

series. For this time series, we use sliding windows of length 101. The first 100

samples of the sliding window are used for training the models, and the sample 101-st

is used for one-step ahead prediction. We perform the one-step ahead prediction over

consecutive 300 samples, one at a time, and the MSE reported is the average over these

300 one-step ahead forecasting values. It can be noticed from figures 4(a), 4(c), and325

4(e) that the methods based on kernels yield better prediction results than the linear

method. Since it seems that qualitatively, the prediction performance for KAM and

KEM is similar, we included additional figures where we zoom in a particular range

where the difference in performace can be noticed. Figures 4(b), 4(d), and 4(f) show

results for the MG30 time-series within a shorter time period, between time steps 311330

and 330. With respect to the p values, the linear model favored a value of p = 5 (250

over the 300 trials). The KAM and the KEM predominantly used higher values of p:

70 for p = 4, and 163 for p = 5, for the KAM; and 43 for p = 4, and 257 for p = 5,

for the KEM. In contrast to the experiments above, this time the kernel methods only

selected the same value for ℓ in 76 cases out of 300. In the terms of the average MSE335

over the 300 trials, the experiment shows that both kernel mehods outperform the linear

AR method. The MSE obtained by the KEM is lower than the one obtained by KAM.

Figure 5 shows the prediction results over the Lorenz dataset. As explained before,

prediction is performed over each component (x(t),y(t),z(t)) of the 3D time series, in

an independent manner. For each of the three time series, we use sliding windows of340

length 101, where the forecasting is done over the last time step of each frame. The

prediction performance is evaluated over 300 successive frames, all of them of length

101. With respect to the order p for the different models, the linear AR model picked

p = 2 almost 22% of the time, and p = 5 almost 75% of the time. The KAM chose

p = 2 almost 70% of all trials, and p = 3 almost 22% of all the repetitions. Finally, the345

KEM picked p = 2 almost 42% of the time, p = 4 almost 23% of the time, and p = 5

approximately 30% of the trials. As for the previous experiments, the kernel methods
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Figure 4: One-step ahead prediction over the MG30 dataset given by the linear AR model, the

method proposed by Kallas et. al.in [7], and the method based on kernel embeddings proposed

in this paper. Solid lines are the test data, dashed lines are the predictions given by the methods.

Figures 4(a), 4(c), and 4(e) show results for the MG30 time-series. Figures 4(b), 4(d), and 4(f)

show results for the MG30 time-series within a shorter time period, between time steps 311 and

330. The title of each figure displays the mean squared error between the test data, and the

predicted output.
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Figure 5: One-step ahead prediction over the Lorenz dataset given by the linear AR model, the

method proposed by Kallas et. al. (2013), and the method based on kernel embeddings proposed

in this paper. Solid lines are the test data, dashed lines are the predictions given by the methods.

The title of each figure displays the mean squared error between the test data, and the predicted

output.

outperform the linear AR model. Although the prediction error of the KAM for z(t)

is lower than the prediction error for the KEM, on average, the KEM outperforms the

KAM.350

Table 2 shows a summary of the MSE obtained by the linear AR model, the kernel

autoregressive model, and the kernel embedding method for the four datasets. It is clear

from that table that the method that uses the kernel embeddings lead to better results,

except of the component z(t) of the Lorenz time series.

Table 3 shows the performance of neural networks, Gaussian processes, and the355

kernel autoregressive method compared to the performance of the kernel embeddings

proposed in this paper. The value of w for all the time series was fixed to 50, and the
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Table 2: Mean squared error for the test data and the predicted outputs, given by the linear

autoregressive process (Linear AR), the kernel autoregressive model proposed by Kallas et al

in [7] (KAM), and the kernel embeddings of autoregressive processes proposed in this paper

(KEM). The values of the MSE for the MG30 should be multiplied by 10−6.

Database Linear AR KAM KEM

Earthrot 689.3491 313.5737 254.0535

CO2 0.6572 0.6122 0.5188

MG30 372.0770 11.0855 2.3910

Lorenz x(t) 0.3051 0.0284 0.0239

Lorenz y(t) 0.9905 0.0454 0.0252

Lorenz z(t) 0.4371 0.1242 0.1276

Table 3: Mean squared error for the test data and the predicted outputs, given by a neural network

(NN), a Gaussian process regressor (GP), the kernel autoregressive model proposed by Kallas et

al in [7] (KAM), and the kernel embeddings of autoregressive processes proposed in this paper

(KEM). The values of the MSE for the MG30 should be multiplied by 10−6.

Database NN GP KAM KEM

Earthrot 827.8469 570.1689 182.3038 134.2564

CO2 0.6027 0.4631 0.4107 0.3177

MG30 41.4519 2.0991 6.3064 1.1052

Lorenz x(t) 0.0595 0.0118 0.0088 0.0037

Lorenz y(t) 0.1114 0.0129 0.0146 0.0038

Lorenz z(t) 0.2041 0.0263 0.0211 0.0140

one-step ahead forecasting was performed for 80 time steps for Earthrot, 100 time steps

for CO2, and 300 for both MG30, and Lorenz. The numerical optimization methods

used for NN and GP are based on gradient-descent-like procedures, which heavily360

depend on a good parameter initialization to deliver sensible results. A bad parameter

initialization often leads to poor prediction performance. In order to reduce the number

of outliers for the prediction for NN and GP, we only computed the mean for those
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squared errors that were between quartiles 25-th and 75-th of all the squared errors

computed for each time series. For a fair comparison, we also computed the MSE365

for the KAM, and the MSE for the KEM removing outliers, as explained before. We

noticed from table 3 that the methods based on kernels, GP, KAM and KEM, yield

better prediction performance than NN. Gaussian processes outperform KAM for the

MG30 time series, and the component y(t) of the Lorenz time series. The KEM method

shows improved performance over all the other competing models.370

To asses the statistical significance between the different methods, we applied the

Diebold-Mariano test [26] to the forecasts given by the models. For Earthrot, we found

that, with respect to our method, the null hypothesis of equal performances could be re-

jected for the NN and the GP. However, it could not be rejected for the KAM. For CO2,

we obtained a similar behavior: we could reject the hypothesis of equal performances375

between the NN and the KEM, and between the GP and the KEM. However, we could

not reject the hypothesis of equal performance between the KAM and the KEM. For

MG30, we could reject the null hypothesis of equal performances between all the meth-

ods and our method. The same result was obtained for Lorenz x(t), Lorenz y(t), and

Lorenz z(t). For all the tests, we used a significance level of α = 0.05. These results380

show that our method outperforms the KAM in four out of the six datasets analized. It

also outperforms the NN and the GP for all the datasets that we studied.

7. Conclusions

In this paper, we have introduced kernel embeddings of joint probability distribu-

tions by means of an autoregressive process of order p placed over covariance oper-385

ators. The solution to the model is done through a Yule-Walker system of equations

for empirical estimates of the cross-covariance operators. Predictions in the input space

are performed by solving a pre-image problem, for which a fixed-point algorithm is de-

veloped. Experimental results show that the method proposed here outperforms several

non-linear versions of the autoregressive model, in the task of one-step ahead forecast-390

ing of time series. An important extension of this line work would be the formulation of

a non-linear vector-valued autoregressive model, for which coefficients {α j}
p
j=1 would
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need to be considered as more general linear operators.
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