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Abstract

Recently, incremental and on-line learning gained more attention especially in
the context of big data and learning from data streams, conflicting with the
traditional assumption of complete data availability. Even though a variety of
different methods are available, it often remains unclear which of them is suitable
for a specific task and how they perform in comparison to each other. We
analyze the key properties of eight popular incremental methods representing
different algorithm classes. Thereby, we evaluate them with regards to their
on-line classification error as well as to their behavior in the limit. Further,
we discuss the often neglected issue of hyperparameter optimization specifically
for each method and test how robustly it can be done based on a small set of
examples. Our extensive evaluation on data sets with different characteristics
gives an overview of the performance with respect to accuracy, convergence
speed as well as model complexity, facilitating the choice of the best method for
a given application.

Keywords: Incremental learning, On-line learning, Data streams,
Hyperparameter optimization, Model selection

1. Introduction

Nowadays, large parts of all conceivable information are collected and stored
in digital form accumulating to enormous daily increasing amounts. Every day
Google receives 3.5 billion search queries; nearly 2 billion active users of Face-
book share 4.5 billion pieces of content; Amazon sells about 13 million items
world wide. All kinds of customer information, raw transactional data as well
as individual clicking behavior, is collected to provide services such as per-
sonalized recommendations. Estimated 35% of Amazons 107 billion dollar net
sales are attributed to its recommendation engine. These pioneering companies
demonstrated that information can be the central pillar of a multi-billion dollar
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business. Even small firms adopted this approach and now digitize every trans-
action they are involved in to boost their turnovers.
Data collection is also done by mobile devices such as mobiles, smart watches
and fitness bands continuously tracking various user information as call logs,
GPS positions, heart rates and activities. It is omnipresent in science as well:
Astronomical observatories, earth sensing satellites and climate observation net-
works generate terabytes of data on a daily basis. Meanwhile, the rate at which
data arises rapidly increases further - 90% of all the data in the world has been
generated over the last two years.
Machine learning methods are employed to mine the collected data for rele-
vant information and/or to predict future developments by generated models.
However, classical batch machine learning approaches in which all data is simul-
taneously accessed do not meet the requirements to handle the sheer volume in
the given time, leading to more and more accumulated data unprocessed. Fur-
thermore, they do not continuously integrate new information into already con-
structed models but instead regularly reconstruct new models from the scratch.
This is not only very time consuming but also leads to potentially outdated
models.
Overcoming this state of affair requires a paradigm shift to sequential data pro-
cessing in streaming scheme. This does not only allow to use information as
soon as it is available leading to all-time up to date models, but also reduces
the costs for data storage and maintenance.
Incremental and On-line algorithms fit naturally to this scheme, since they con-
tinuously incorporate information into their model, and traditionally aim for
minimal processing time and space. Due to their ability of continuous large-
scale and real-time processing they recently gained more attention particularly
in the context of Big Data [1].
Incremental algorithms are also very suitable for learning beyond the produc-
tion phase which enables devices to adapt to individual customer habits and
environments. This is particularly interesting for smart home products [2, 3].
Here the main challenge is not large-scale processing but rather continuous and
efficient learning from few data. Even though incremental learning could be
replaced in this case by repetitive batch learning in the cloud, this solution has
crucial drawbacks. A permanent connection to the cloud is required to provide
anytime models, which may not always be feasible. Furthermore, the customers
may not be willing to provide data of their daily life due to privacy reasons.
Hence, learning directly on the device in an efficient way is still very desirable.
A lot of ambiguity is involved regarding the definition of incremental and on-
line learning in the literature. Some authors use them interchangeably, while
others distinguish them in different ways. Additional terms such as lifelong- or
evolutionary learning are also used synonymously. We define an incremental
learning algorithm as one that generates on a given stream of training data
s1, s2, ..., st a sequence of models h1, h2, ..., ht. In our case si is labeled training
data si = (xi, yi) ∈ Rn × {1, . . . , C} and hi : Rn{1, . . . , C} is a model function
solely depending on hi−1 and the recent p examples si,. . . ,si−p, with p being
strictly limited. We specify on-line learning algorithms as incremental learning
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algorithms which are additionally bounded in model complexity and run-time,
capable of endless/lifelong learning on a device with restricted resources.
Incremental learning algorithms face the following challenges:

• The model has to adapt gradually i.e. hi+1 is constructed based on hi
without a complete retraining.

• Preservation of previously acquired knowledge and without the effect of
catastrophic forgetting [4].

• Only a limited number of p training examples are allowed to be main-
tained.

We explicitly assume the data to be labeled and do not focus on the, nonethe-
less, crucial scenario of learning from un- or partially labeled data streams. The
setting of supervised incremental learning can be applied in most prediction sce-
narios. In these, after a system has made a prediction the true label can often
be inferred with some delay. E.g. consider the course of action a car driver will
take at a crossing. As soon as the car has passed the crossing the recorded data
can be analyzed and labeled in an automatic way. The supervised setting also
includes tasks in which labels are explicitly provided. For instance, an individ-
ual user marks emails as spam for spam classification, but also in human robot
interactions the labels may be explicitly demanded.
An algorithm has to be chosen according to the preconditions of a given task
since there cannot exist a method which optimally performs in every scenario
[5]. Different interesting incremental learning algorithms have been published
so far with various strengths and weaknesses. However, there are only a few
sources providing information about them, since basically no comparative in-
depth study, experimentally comparing the most popular methods according to
the most relevant criteria, is available. An extensive research in the literature
leads usually to the original publications of considered algorithms which help
only to some extent due to the following reasons:
Authors are naturally focused to demonstrate the merits of their method and,
therefore, apply them in specific settings (particularly settings the algorithm has
been designed for). Proposed algorithms are usually compared against one or
two other methods on a few datasets, providing only a limited overall picture of
the algorithms qualities. Even if one accepts the effort to reproduce the results,
it often turns out to be impossible, because of proprietary datasets or unknown
hyperparameters settings. In the end, one has either to pick a method based
on the own experience, which usually comprises only a fraction of available al-
gorithms, or simply invest a lot of resources to try out several approaches.
In this paper we contribute to fill this gap by analyzing the core attributes
of eight popular methods. Our study aims for a fundamental comparison of
the algorithmic overall performance unrestricted to certain scenarios such as
platforms with very limited resources. However, the performance for specific
settings can be inferred from the general results provided in this article. We
guide the choice for an algorithm based on essential information (e.g. number
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of dimensions / samples) that is usually available in advance1. Our evaluation
in off- and on-line setting enables an extensive comparison in terms of accuracy,
convergence speed and model complexity. Experiments on diverse datasets as-
sess strengths and weaknesses of the respective methods and provide guidance
on their applicability for specific tasks. Furthermore, we analyze the process of
hyperparameter optimization (HPO) and investigate how robustly they can be
estimated based on a small set of examples.
Our focus lies in the classification under supervised learning for incremental /
on-line algorithms. We primarily perform an evaluation on stationary datasets
(i.e. we assume the stream s1, s2, ... is i.i.d.). However, we briefly evaluate and
discuss the methods in the context of concept drift. A recent overview of meth-
ods especially designed to deal with non-stationary environments is given in [6].
This article is organized as follows. In section 2 we discuss related contribu-
tions, in particular those targeting the field of incremental learning in a general
way. Section 3 provides a brief description of the considered algorithms. The
evaluation framework consisting of an analysis in off-line and on-line scheme is
introduced in section 4. The main part of our work with practical focus can
be found in section 5, which goes into detail about the performed experiments.
Here, we analyze the algorithms in different settings and discuss properties such
as time efficiency, suitability for lifelong learning, HPO and so forth. Finally,
section 6 briefly summarizes our results and depicts them compressed in tabular
form.

2. Related Work

Numerous incremental and on-line algorithms have been published, often
adapting existing batch methods to the incremental setting [7, 8]. Massive the-
oretical work has been done to evaluate their generalization ability and conver-
gence speed in the stationary setting [9, 10], often accompanied by assumptions
such as linearly separable data [11].
Although the field of incremental and on-line learning is well established and
particularly employed in the context of Big Data or the Internet of Things tech-
nology [12], there are only a few publications targeting the field in a general
way. Most of these are surveys describing available methods and some domains
of applications [13, 14].
Giraud-Carrier and Christophe [15] give some motivation for incremental learn-
ing and define the notion of incrementality for learning tasks. They argue in
favor of applying incremental learning methods for incremental tasks but also
point to arising issues such as ordering effects or the question of trustworthiness.
One survey was recently published by Gepperth and Hammer [16]. They formal-
ize incremental learning in general and discuss theoretical as well as practical

1 The number of dimensions as well as the amount of incoming data examples can be usually
at least estimated. Furthermore, it can be inferred how crucial a quick reaction of the
system is. For some tasks it is even possible to guess whether a linear classifier is sufficient
(e.g. text classification).
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challenges which arise in the setting. Furthermore, an overview of commonly
employed algorithms with corresponding real world applications is given.
Incremental learning is more frequently treated in the setting of streaming sce-
narios [17, 18], although most of the work particularly targets concept drift
[19, 20, 6]. Domingos and Hulten define key properties for incremental algo-
rithms which are required to keep up with the rapidly increasing rate of data
output [21]. They stress the necessity of combining models, strictly limited in
terms of processing time and space, with theoretical performance guarantees.
Publications with a practical focus are very rare in the field of incremental
learning. One of them was done by Read et al. [22] in the setting of concept
drift. Batch-incremental methods with instance-incremental approaches were
compared and analyzed in their pros and cons. The reached conclusion is that
instance-incremental algorithms are equally accurate but use fewer resources
and that lazy methods with a sliding window perform exceptionally well.
A massive study comprising the evaluation of 179 batch classifier on 121 datasets
was done by Fernandez et al. in [23]. This quantitative study considered also
different implementations in varying languages and toolboxes. The best result
was achieved by the Random Forest [24] algorithm closely followed by the Sup-
port Vector Machine (SVM) [25] with Gaussian kernel.
However, such work is still sorely missed for incremental algorithms. In this pa-
per we pursue a more qualitative approach and instead of a massive comparison,
provide an in depth evaluation of the major approaches within stationary en-
vironments. Next to the accuracy, we also inspect the model complexity which
allows an inference of required resources in terms of time and space. The consid-
eration of rather neglected aspects such as convergence speed and HPO rounds
off our analysis.

3. Algorithms

Our comparison of methods covers a broad range of algorithm families.
Bayesian, linear, and instance-based models as well as tree-ensembles and neu-
ral networks are represented. Model-dependent methods such as the Incre-
mental Support Vector Machine are denoted by an acronym (SVM), whereas
model-independent methods as Stochastic Gradient Descent are denoted by an
acronym with an additional index (SGDLin), specifying the applied model. In
the following the methods are briefly described.

Incremental Support Vector Machine (ISVM) is the most popular exact
incremental version of the SVM and was introduced in [7]. Additionally to
the set of support vectors a limited number of examples, so called “candi-
date vectors”, is maintained. These are examples which could be promoted
to support vectors depending on the future examples. The smaller the set
of candidate vectors is, the higher is the probability of missing potential
support vectors. The ISVM is a lossless algorithm - it generates the same
model as the corresponding batch algorithm - if the set of candidate vec-
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tors contains all previously seen data. Recent applications can be found
in [26, 27].

LASVM is an online approximate SVM solver and was proposed in [28]. In
an alternative manner, it checks whether the currently processed example
is a support vector and removes then obsolete support vectors. For both
steps it heavily utilizes sequential direction searches as it is also done in
the Sequential Minimal Optimization (SMO) algorithm [29]. In contrast
to the ISVM, it does not maintain a set of candidate vectors but only
considers the current example as possible support vector. This leads to an
approximate solution but significantly reduces the training time. It was
recently applied in [30, 31].

On-line Random Forest (ORF) [32] is an incremental version of the Ran-
dom Forest algorithm. A predefined number of trees grows continuously
by adding splits whenever enough samples are gathered within one leaf.
Instead of computing locally optimal splits, a predefined number of ran-
dom values are tested according to the scheme of Extreme Random Trees
[33]. The split value optimizing the Gini index the most is selected. Tree
ensembles are very popular, due to their high accuracy, simplicity and par-
allelization capability. Furthermore, they are insensitive to feature scaling
and can be easily applied in practice. This method has been lately applied
in [34, 35].

Incremental Learning Vector Quantization (ILVQ) is an adaptation of
the static Generalized Learning Vector Quantization (GLVQ) [36] to a
dynamically growing model, which inserts new prototypes when necessary.
The insertion rate is guided by the number of misclassified samples. We
use the version in [37] which introduced a prototype placement strategy
minimizing the loss on a sliding window of recent samples. Metric learning,
as described in [38, 39], can also be applied to extend the classification
abilities further.

Learn++ (LPPCART) [40] processes incoming samples in chunks with a pre-
defined size. For each chunk an ensemble of base classifiers is trained and
combined through weighted majority voting to an “ensemble of ensem-
bles“. Similar to the AdaBoost [41] algorithm, each classifier is trained
with a subset of chunk examples drawn according to a distribution, ensur-
ing a higher sample probability for misclassified inputs. LPP is a model
independent algorithm and several different base classifiers such as SVM,
Classification and Regression Trees [42] (CART) and Multilayer Percep-
tron [43] have been successfully applied by the authors. As the original au-
thor we employ the popular CART as base classifiers. Chunk-wise trained
models inherently incorporate an adaption delay depending on the chunk
size. This algorithm was recently utilized in [44, 45].

Incremental Extreme Learning Machine (IELM) reformulates the batch
ELM least-squares solution into a sequential scheme [8]. As the batch ver-
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sion it drastically reduces the training complexity by randomizing the
input weights. The network is static and the number of hidden neurons
has to be predefined. This method is able to process the data one-by-one
or in chunks, which significantly reduces the overall processing time. How-
ever, a valid initialization of the output weights requires at least as many
examples as the number of used hidden neurons. Recent applications are
given in [46, 47].

Naive Bayes (NBGauss) fits one axis-parallel Gaussian distribution per class
and uses them as likelihood estimation in the Naive Bayes algorithm [48].
The sparse model allows a very efficient learning in terms of processing
time and memory requirements. This algorithm learns efficiently from
few training examples [49] and has been successfully applied in real world
situations such as Spam filtering and document classification2 [50, 51].
The major drawbacks of this lossless algorithm are the independence as-
sumption of the features as well as its inability to handle multimodal
distributions. This method was recently used in [52, 53].

Stochastic Gradient Descent (SGDLin) is an efficient optimization method
for learning a discriminative model by minimizing a loss function such as
the Hinge - or Logistic loss. We use SGD to learn a linear model by
minimizing the Hinge loss function. Revived recently in the context of
large-scale learning [54, 55, 56], SGD coupled with linear models performs
especially well for sparse, high-dimensional data as often encountered in
the domain of text classification or natural language processing. How-
ever, linear models are a misfit whenever non-linear class boundaries are
required, which is particularly often the case for low dimensional data.
Recent applications can be found in [57, 58].

Even though new versions of the algorithms are continuously proposed, we
argue that the chosen methods reflect the general properties of the respective
family. Therefore, the conclusions in this paper are commonly applicable for
current and upcoming variations of the corresponding algorithm. This is par-
ticularly highlighted by both SVMs which perform very similar with the dif-
ference that LASVM is able to process slightly larger datasets due to its ap-
proximate nature. However, both share the same drawbacks regarding large or
noisy datasets. These drawbacks are also shared by a recent LASVM version
proposed in [59], albeit in a slightly weaker degree since a mechanism to reduce
the number of support vectors is introduced. Various extensions for the LPP
[60, 61] and the IELM [62, 63] algorithm have been proposed. Most of them
are tackling non-stationary environments by introducing forgetting mechanisms.
However, the major focus of this article is incremental learning in stationary en-
vironments where forgetting is rather harmful and deteriorates the performance.

2 In the context of features based on text, the Naive Bayes algorithm is usually applied with
the multinomial or Bernoulli event model.
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Figure 1: Classical scheme of evaluating a batch algorithm in off-line mode.

Furthermore, the basic principle of the algorithms and the corresponding ad-
and disadvantages remain. In the case of LPP, it is the flexibility of arbitrary
base classifiers on the one hand, and the limited knowledge integration across
chunks on the other. Methods for speeding up the convergence of SGD were
presented in [55, 64]. However, the results obtained by the SGD algorithm in
our experiments are not due to a slow convergence of the SGD algorithm, but
rather highlight the general benefits and limitations of linear models, such as a
low model complexity and linear class boundaries.

4. Evaluation Framework

The learning objective in supervised classification is to predict a target vari-
able y ∈ {1, . . . , c} given a set of features x ∈ Rn. We consider two different
evaluation settings which allow the inference of different aspects regarding the
algorithmic performance and provide together even a deeper insight.

4.1. Off-line setting

In the off-line setting a batch algorithm generates a model h based on a
training set Dtrain = {(xi, yi) | i ∈ {1, . . . , j}}. In the subsequent test phase
the model is applied on another set Dtest = {(xi, yi) | i ∈ {1, . . . , k}}, whose
labels are kept hidden. Figure 1 depicts the process. The model predicts a label
ŷi = h(xi) for every point xi ∈ Dtest and the 0-1 loss L(ŷi, yi) = 1(ŷi 6= yi) is
calculated. The average accuracy on the test set enables an analysis in terms of
the generalization ability to unseen examples.
The evaluation of an incremental algorithm in this setting is different as it is
shown by Figure 2. Instead of accessing all training data at once, it is se-
quentially processed in predefined order. The algorithm generates to the se-
quence of tuples (x1, y1), (x2, y2), . . . (xj , yj) a corresponding sequence of models
h1, h2, . . . , hj . Thereby, a model hi is solely based on the previously constructed
model and a limited amount of p recent tuples

hi = train(hi−1, (xi, yi), . . . , (xi−p+1, yi−p+1)).

Only the last model hj is applied on the test set to determine the off-line
accuracy ξ

ξ(Dtest) =
1

k

k∑
i=1

1− L(ŷi, yi) =
1

k

k∑
i=1

1− L(hj(xi), yi).
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Figure 2: The process of testing an incremental algorithm in the off-line setting. Noticeably,
only the last constructed model is used for prediction. All data used during training (xi, yi)
is obtained from the training set Dtrain

Figure 3: The online-learning scheme. Data is not split into training- and testing set. Instead,
each model predicts subsequently one example, which is afterwards used for the construction
of the next model.

Hence, this setting allows only an inference about the generalization ability of
the last model and neglects all preceding models. Such an evaluation is useful
in Big Data scenarios, for example, where a lot of training data is available to
continuously construct a model as accurate as possible.

4.2. On-line setting

Data stream classification is usually evaluated in the on-line setting, which
is depicted in Figure 3. A potentially infinite sequence S = (s1, s2, . . . , st, . . .)
of tuples si = (xi, yi) arrives one after another. As t represents the current
time stamp, the learning objective is to predict the corresponding label yt for a
given input xt, which is supposed to be unknown. The prediction ŷt = ht−1(xt)
is done according to the previously learned model ht−1. Afterwards, the true
label is revealed and the loss L(ŷt, yt) determined. The on-line accuracy for a
sequence up to the current time t is given by:

E(S) =
1

t

t∑
i=1

1− L(hi−1(xi), yi). (1)
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The main difference to the previous setting is that all intermediate models are
considered for the performance evaluation, but each of them predicts only the
following example. Additionally, the data for training and testing is not strictly
disjunct, but instead each instance is initially used for model testing and then
for the adaption.
Regarding non-stationary data, a high on-line accuracy does not necessarily
imply a high generalization ability of the models. For instance in case of strong
auto-correlation of the labels, an algorithm simply predicting the previous label
achieves accurate results without learning any structure in the data. However,
for i.i.d. data the on-line accuracy of an incremental algorithm is in general
correlated with the average generalization ability of all constructed models.
The on-line accuracy is a reasonable evaluation measure for tasks requiring an
immediate prediction even after a few training examples.

The combination of both accuracies, off- and on-line, enables conclusions
about the learning curve: In case of two different models A, B having the
same off-line accuracy, but A having a higher on-line accuracy implies that A
converges on average faster than B and vice versa.

5. Experiments

In this chapter, we precisely describe how the experiments were conducted.
This includes the evaluated datasets, the process of HPO and the different set-
tings in which the algorithms were compared. Furthermore, we discuss whether
methods are capable of lifelong learning and give a brief analysis of their train-
ing and run-time complexities.

5.1. Datasets & implementations

We used the implementations of the Scikit-learn package [65] for SGDLin

and NBGauss. All the others are derived from the code of the respective authors.
Only publicly available datasets (see [66, 67]), predefining a fixed train-test-split,
were used to enable reproducibility and comparability of our results. Table 1
gives the main attributes of the selected datasets. Artificial and real world
problems are included, differing widely in the number of classes, instances and
dimensions. Even though the largest data set has about 4.5 million instances,
our evaluation does not specifically target learning from big data. Instead, our
focus is the practical evaluation of incremental learning algorithms in terms
of different key properties. Sources for all implementations and datasets are
available at https://github.com/vlosing/Online-learning.

5.2. Hyperparameter optimization

The model selection is varying in complexity depending on the parameter
amount and type. Table 2 gives an overview of all relevant hyperparameters.
The most crucial parameters are those adjusting the scale such as learning rates
or σ of the RBF kernel. These do not only affect the achieved accuracy, but
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Dataset #Train #Test #Feat. #Class

Border 4000 1000 2 3
Overlap 3960 990 2 4

Letter 16000 4000 16 26
SUSY 4500000 500000 18 2

Outdoor 2600 1400 21 40
COIL 1800 5400 21 100
DNA 1400 1186 180 3
USPS 7291 2007 256 10
Isolet 6238 1559 617 26

MNist 60000 10000 784 10
Gisette 6000 1000 5000 2

Table 1: The evaluated datasets and their characteristics.

also strongly influence the overall model complexity. For instance, an inappro-
priately chosen σ can increase the number of support vectors quite drastically.
A wrongly set learning rate of the ILVQ leads to more errors during training
and, therefore, more inserted prototypes.
Some models allow to control the speed of model expansion directly such as
the ILVQ and ORF. This does not only affect the model complexity but also
influences the convergence rate as well as the achieved accuracy and may lead
to overfitting when a too aggressive growth is set. Rather uncritical are pa-
rameters increasing the leeway of an algorithm. Larger values are in this case
always beneficial for the performance and only limited by the amount of avail-
able resources. The number of trees of the ORF or the window size of the ILVQ
are such parameters. Generally speaking, tree based models are easy to tune
and perform usually well out of the box, whereas scale sensitive models such as
ISVM, LASVM or ILVQ require an accurate, dataset dependent configuration
of multiple parameters to deliver good results.
Both SVM algorithms are solely paired with the RBF kernel. We use the metric
learning of ILVQ only for datasets with up to 250 dimensions (the distance cal-
culations using the metric is quadratic in the number of dimensions and hence
not feasible for very high dimensional data). The NBGauss algorithm is param-
eterless, hence no tuning is required at all. We minimize the hinge loss function
with SGDLin and adjust only the learning rate. LPPCART requires the number
of base classfier per chunk as well as the parameters of the base classifier itself
(non-parametric Classification and Regression Trees in our case).
All parameter are set by Hyperopt [68] using the Tree-of-Parzen-Estimators [69]
search algorithm. Each parameter is individually adjusted by performing 250
iterations of a 3-fold cross validation using only the training data.

5.3. Measure of model complexity

We measure the model complexity by the number of parameters required for
the representation, enabling a comparison with respect to memory consumption.
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Hyperparameter Task independent

SVMs

Kernel function 3
RBF σ 7
Regularization 7
# stored candidate vectors (only ISVM) 3

ORF
Growing speed 7
# evaluated random splits 3
# trees 3

ILVQ

Learning rate 7
Growing speed 7
Window size 3
(Metric learning rate) (7)

LPPCART

Chunk size 7
# base classifier per chunk 3
(Parameter of base classifier) (7)

IELM
Activation function 3
# hidden nodes 7

NBGauss None

SGDLin
Loss function 3
Learning rate 7

Table 2: All relevant hyperparameters of the considered algorithms. The most critical are
those which cannot be generally chosen and, therefore, require a task specific setting.

However, the models are fundamentally different so that this measure, even
though there is some correlation, should not generally be equated with training-
or run-time. We rather use this measure as an indicator to decide whether an
algorithm struggles (unreasonable high amount of parameters) or is especially
suited (sparse representation paired with high accuracy) for a given task.

5.4. Evaluation Settings

We evaluate the algorithms in three different scenarios as it is illustrated
by Figure 4. During the first we compare them in classical off-line scheme
and use the complete training set for the HPO. This allows a conclusion about
the generalization ability of the final model. However, the usage of the whole
training set for the HPO is usually not possible in practical applications and
contradicts the paradigm of incremental learning. Therefore, we optimize the
parameters only with a proportion of the training examples. This is not only
closer to practice but also, in combination with the results of the first setting,
enables to infer whether the hyperparameters of a corresponding method can
be reliably estimated on a subset of the data. Since the number of training
examples vary considerably across the datasets, we decided to use a relative
proportion bounded by a maximum number of examples. Precisely, we use 20%
of the training data for HPO but never more than 1000 examples. The last
evaluation uses the hyperparameters of the second scenario, but examines the
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methods in the on-line setting. Here, we draw conclusions about the learning
curves of the respective algorithms. To keep the number of training instances
similar among all evaluations, we use only the training set (samples that are
used in the HPO are excluded) as data stream in the on-line setting.

5.5. Results

The evaluation of LASVM, NBGauss, ORF and SGDLin is straightforward,
since these access consecutively only the current training example. But methods
such as ISVM and ILVQ store additionally a window of recent samples or require
chunk-wise training, as LPPCART and IELM3 do. In both cases, results depend
on the window-/chunk size. Therefore, we treated the window-/chunk size as
another hyperparameter and used once again Hyperopt to find the best value.
We allowed a maximum size of 500 samples. All methods were trained single-
pass, in the same order after initial shuffling.

5.5.1. Off-line setting - HPO with all training samples

Table 3 shows on the top the accuracies and corresponding model complexi-
ties at the end of training. Both SVMs achieve on average the highest accuracy,
often with a large margin, but at the expense of having by far the most com-
plex models. The large amount of parameters is partly due to the fact that
the model is designed to discriminate two classes, resulting in multiple SVMs
to perform schemes such as one vs. all in case of more classes. Another rea-
son is the linear growth of support vectors with the amount of samples. The
model gets exceedingly complex for noisy or overlapping datasets such as Isolet
or Overlap. The SVMs deliver very similar results and mainly are different in
terms of their training run-time. The high training-complexity of ISVM, result-
ing from the computation and incremental update of the inverse kernel matrix,
prevents an application for datasets consisting of substantially more than 10000
samples such as MNist. The approximate nature of LASVM allows it to process
the MNist dataset but it also reaches its limit for significantly larger datasets
as SUSY. The instance based ILVQ constructs a far sparser model and achieves
high accuracies throughout all datasets. It handles efficiently noisy datasets by
sustaining its sparse model.
As expected, tree based models require a comparably large amount of param-
eters for low dimensional data, but are eminently efficient in high dimensional
spaces, due to their compressing representation. The opposite is true for in-
stance based models4.

3 IELM requires for the initialization at least as many samples as it has hidden neurons but
afterwards it can be updated after each sample.

4 The number of parameters for instance based models can often be clearly reduced with a
sparse representation for sparse high dimensional data as MNist. However, our results rely
on a dense vector representation.
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Figure 4: The first setting determines the hyperparameters by using the whole training set
for optimization. It evaluates then the off-line accuracy on the test set. The second setting
uses a small subset of the training set to determine the hyperparameters. In the third setting
the same hyperparameters are used as in the second one, but here we evaluate the on-line
accuracy on the training set (samples that are used in the HPO are excluded). The test set
is not used in the third setting.
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Figure 5: Influence of the window-/chunk size on the off-line accuracy (left) and model com-
plexity (right) for dataset Overlap.

.

The ORF has the third highest accuracies and constantly beats LPPCART.
One explanation, already noticed in [70], is that LPPCART trains each base
classifier with samples of only one chunk. Therefore, the knowledge integration
across chunks is limited since it is exclusively established by the weighting pro-
cess. Furthermore, the ORF benefits more from the sub-linear tree complexity
because it generates a few deep trees instead of the numerous, shallow ones as
done by LPPCART. In contrast to the SVMS, which were not able to process
the large dataset SUSY due to algorithmic aspects, were IELM and LPPCart

only limited by their specific implementation.
The linear model of SGDLin uses the fewest parameters and performs especially
well for high dimensional data. However, it struggles by design with non-linear
separability as it is the case for the Border dataset, or whenever a small amount
of examples is available per class (COIL, Outdoor). The last rank of NBGauss

obscures the fact that it performs reasonably well without severe hiccups, incor-
porating a simple and sparse model. Nonetheless, the restriction to unimodal
distributions is reflected in the results of the MNist and Isolet datasets.
The typical effects of different window-/chunk sizes are shown in Figure 5 ex-
emplary for the Overlap dataset. Usually the algorithms do benefit from an
increased window-/chunk size. For instance, a larger window enables the ILVQ
to find better positions for new prototypes and the ISVM to miss less support
vectors. Simultaneously, the model complexity of ILVQ is reduced since the
insertion rate is coupled with the training-error. The IELM benefits from large
chunks due to a more stable initialization of the output weight matrix. In case
of LPPCART, however, larger chunks reduce the overall number of base classifier,
but at the same time each of them is trained on more training data, requiring
a balancing of these criteria.
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5.5.2. Off-line setting - HPO with a small set of training samples

An overview of the achieved performance in terms of accuracy and model
complexity is given at the bottom of Table 3. The results of NBGauss are only
reported for the sake of consistency, since it incorporates no meta parameters
and consequently achieves similar results.
Regarding the accuracy, most methods perform slightly worse than in the first
setting, leading to the conclusion that hyperparameters can be robustly chosen
based on few samples. However, the method losing the most performance is the
IELM. This can be explained by the drastically sparser constructed model which
is sufficient for the classification of a few examples but not complex enough for
the whole dataset. Hence, the number of hidden neurons is underestimated in
the optimization.
By contrast, all dynamically growing models tend to use significantly more
parameters for various reasons: The kernel width σ of the SVMs is estimated
less accurate with few examples leading to an increased number of support
vectors. In case of the ILVQ and ORF the growth is explicitly controlled by a
meta parameter. Here, the required rate is overestimated because the model is
obliged to converge faster when few instances are available. This leads to a more
complex model than necessary and can even end up in overfitting. One solution
could be to adjust the growth rate during learning guided by a supervised signal,
e.g. the current accuracy.
SGDLin is the only algorithm which incorporates hyperparameters and achieves,
nonetheless, similar results as in the first evaluation. Its model complexity is
exclusively determined by the number of dimensions and the amount of different
classes in the dataset. The only considered parameter, the learning rate, is
reliably estimated on a subset of the data.

5.5.3. On-line setting - Same hyperparameters as in setting 2 (section 5.5.2)

The resulting on-line accuracies are given by Table 4. In general, the on-line
accuracies are slightly lower accounting for the relatively high number of false
classifications done at the beginning of learning. The SVMs maintain also in
this setting the upper hand, albeit with less dominance. Tree based methods
in particular lose the most performance, indicating that the construction of an
accurate tree model requires distinctly more examples than an instance based
one. This is due to the fact that split nodes are only added when they are
necessary for the classification of the data seen so far. A few training examples
can already be differentiated along one or two dimensions. Sophisticated tree
models consisting of multiple splits are only required for larger amounts of
training data.
In contrast, instance based methods immediately classify examples along every
dimension. Figure 6 highlights the different adaption rates between both model
types by depicting exemplary learning curves.
The on-line accuracy is expected to be slightly below the off-line accuracy for

i.i.d. data because more mistakes are made at the beginning. However, in case of
the Outdoor dataset the algorithms have partly a 20% higher on-line accuracy.
Figure 7 depicts the learning curves in both settings. The only explanation for

17



On-line accuracy
Setting 3 ISVM LASVM ORF ILVQ LPPCART IELM SGDLin NBGauss

Border 98.5 97.6 94.0 94.7 88.4 88.0 37.5 94.4
Overlap 81.7 78.8 78.2 81.1 72.7 74.8 67.9 67.5

Letter 91.3 92.7 75.4 88.4 79.3 35.4 41.0 64.2
SUSY DNF DNF 79.3 78.5 DNF DNF 78.7 73.5

Outdoor 86.4 82.3 34.2 82.6 68.5 73.3 18.0 65.0
COIL 75.4 66.3 66.6 79.1 58.7 63.1 9.6 70.2
DNA 89.5 89.5 73.1 84.6 67.9 49.1 84.7 86.1

USPS 96.7 96.6 84.5 92.7 86.6 88.8 88.5 76.0
Isolet 93.6 92.9 69.2 84.7 76.3 80.7 74.3 75.2

MNist DNF 97.5 87.1 90.8 89.0 86.5 83.7 56.5
Gisette 96.3 96.4 90.3 91.1 86.7 80.5 92.1 74.0

∅ 89.9 89.1 75.6 86.3 77.4 72.0 61.4 73.0
∅ rank 1.3 2.1 5.1 2.7 5.5 5.8 6.0 5.7

∅ r̂ank 2.7 2.8 4.7 3.2 5.0 5.5 5.8 5.8

Table 4: On-line accuracy averaged over ten repetitions. The On-line accuracy uses each
example of a given input stream first for testing and afterwards for model construction (see
equation 1). We used the hyperparameters of the second off-line setting, which are optimized
on a small set of training examples (see section 5.5.2). The model complexity is neglected
because it is similar to those of the second off-line setting, due to the same hyperparameters.
Only the training set of the original data was utilized as input stream (samples that were used
in the HPO are excluded). We calculated two different rankings. The first is the average rank
based on all datasets the algorithms were able to deliver a result for. The second ranking

(r̂ank), punishes algorithms with DNF entries. In this case, they are ranked as the last in the
respective dataset.

this discrepancy is that data in the training set is quite different from those in
the test set, implying a non identical and independent distribution. As noted
in [37] this visual dataset consists of objects recorded outdoors. The lighting
conditions significantly vary within the dataset regarding the respective object
and affect the underlying color based representation.

5.6. Restriction of the overall classifier complexity

Methods as SGDLin, NBGauss and IELM are on-line algorithms and viable in
endless learning applications, since they are constant in their complexity. ILVQ
and LPPCART can be easily restricted to a certain limit by strategies such as
removing the ”worst“ prototype/classifier [71, 72]. In case of the SVMs, how-
ever, it is less trivial. Even though approaches as [73] do reduce the number
of support vectors, there is to the best of our knowledge no practical method
to bound them strictly. This applies to a lesser degree also for the ORF. It
learns by growing its trees continuously. Therefore, a depth reduction or prun-
ing mechanism would be necessarily at some point.

5.7. Training- and run-time

The algorithm implementations vary in the written programming languages
as well as their efficiency. For instance, the fastest method NBGauss, written
in C, required four seconds for the Isolet dataset while the slowest method the
ISVM, implemented in Matlab, took ten minutes. Simply measuring the run
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Figure 6: Learning curves of tree - and instance based models in comparison. Instance based
methods are particularly at the beginning more accurate and converge faster.

.

Figure 7: Learning curves for the Outdoor dataset in the off- and on-line setting. The dramatic
discrepancy is subject to distinctly different training examples compared to those of the test
set, implying the overall data of being not i.i.d.

.

time results not in a fair comparison, since the impact of the specific imple-
mentation is unclear. Therefore, we do not explicitly compare training- and
run-time but instead give a broad categorization based on complexity analysis
and practical experience.
The training of both SVMS take by far the most time since a quadratic program-
ming problem is solved. However, LASVM is due to its approximate manner
significantly faster than ISVM but has the same worst case complexity. Clearly
faster is LPPCART and since we use it in combination with CART its complexity
is O(n log(n)), with n being the number of training examples. By performing
the training chunk-wise, n is kept small and the training time is significantly
reduced. The ORF has the same complexity class but the random splits drasti-
cally reduce the time in practice. The ILVQ and IELM have a similar training
complexity O(np), where p is the number of prototypes / hidden neurons and
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Figure 8: The concept drift experiments are using streaming datasets, which have a predefined
order and there is no splitting into train- and test examples. The evaluation is performed in
the on-line setting and the first 1000 samples are used for HPO.

usually p � n. However, the insertion of new prototypes in ILVQ requires
additional calculations slowing it noticeably down. SGDLin and NBGauss are
clearly the quickest with linear complexity O(n). In general, the train- and run
time of growing models (LASVM, ISVM, ILVQ, LPP, ORF) naturally increase
with model size, affecting the processing time, particularly, for large datasets.
The run time of tree based methods is sub-linear in regard to the model size
O(log l), l being the number of leaves, which makes them extremely efficient.
All remaining models have a linear relation between model complexity and run
time. Nonetheless, the sparse models of SGDLin and NBGauss are usually the
fastest in the field.

5.8. Concept Drift

Learning from data streams in non-stationary environments is a crucial part
of incremental learning. Various algorithms have been published explicitly tack-
ling this challenge [74, 75, 76]. It is typically distinguished between real drift,
referring to a changing class posterior distribution, and virtual drift, imply-
ing only a varying input distribution. These types of changes can occur in an
abrupt or incremental way. A more extensive categorization is given in [20].
We exemplary investigate the robustness of the methods to different types of
real concept drift, as a practically important scenario in practice. Figure 8 illus-
trates the setting of the experiments. We optimized the meta parameters using
the first 1000 instances and performed an evaluation in the on-line setting on
the remaining instances.

5.8.1. Datasets

Mainly artificial datasets with known drift characteristics were utilized. It is
usually unclear whether concept drift is present at all within a given real world
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dataset. However, we included two commonly used real world benchmark. The
characteristics of the datasets are given in Table 5 and we precisely describe
them in the following 5.

Dataset #Instances #Feat. #Class Drift type

Inter. RBF 200000 2 15 abrupt real
Electricity 45312 5 2 unknown

Moving RBF 200000 10 5 incremental real
Cover Type 581012 52 7 unknown

Table 5: The evaluated datasets and their characteristics.

Interchanging RBF Fifteen Gaussians with random covariance matrices are
replacing each other every 3000 samples. Thereby, the number of Gaus-
sians switching their position increases each time by one until all are simul-
taneously changing their location. This allows to evaluate an algorithm in
the context of abrupt drift with increasing strength. Altogether 66 abrupt
drifts are occurring within this dataset.

Electricity market dataset This problem is often used as a benchmark for
concept drift classification. Initially described in [77], it was used there-
after for several performance comparisons [78, 79, 74]. A critical note to
its suitability as a benchmark can be found in [80]. The dataset holds
information of the Australian New South Wales Electricity Market, whose
prices are affected by supply and demand. Each sample, characterized by
attributes such as day of week, time stamp, market demand etc., refers
to a period of 30 minutes and the class label identifies the relative change
(higher or lower) compared to the last 24 hours.

Moving RBF Gaussian distributions with random initial positions, weights
and standard deviations are moved with constant speed v in d-dimensional
space. The weight controls the partitioning of the examples among the
Gaussians. We used the Random RBF generator in MOA [81] with the
same parametrization as in [82] (10 dimensions, 50 Gaussians, 5 classes,
v=0.001).

Forest Cover Type Assigns cartographic variables such as elevation, slope,
soil type, . . . of 30 × 30 meter cells to different forest cover types. Only
forests with minimal human-caused disturbances were used, so that re-
sulting forest cover types are more a result of ecological processes. It is
often used as a benchmark for drift algorithms [82, 83, 84].

5 All datasets are available at https://github.com/vlosing/Online-learning.
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On-line accuracy Complexity
Drift setting ORF ILVQ LPPCART IELM SGDLin NBGauss ORF ILVQ LPPCART IELM SGDLin NBGauss

Inter. RBF 45.9 76.8 29.4 29.5 44.3 29.9 762k 46k 166k 900 45 60
Electricity 69.9 72.5 67.5 54.8 84.6 63.2 140k 1.4k 30k 560 6 20

Moving RBF 45.6 76.6 18.0 15.9 40.6 17.2 721k 2.6k 32k 1.0k 45 60
Cover Type 89.6 88.3 39.7 51.3 94.6 54.6 1.3M 292k 76k 6.0k 385 756

∅ 62.7 78.5 38.7 37.9 66.0 41.2 729k 85k 76k 2.1k 123 234
∅ Rank 2.3 1.8 5.0 5.5 2.0 4.5 6.0 4.3 4.8 3.0 1.0 2.0

Table 6: Achieved on-line accuracy (left) and model complexity (right). Hyperparameters
were optimized on the first 1000 samples.

5.8.2. Results

The resulting on-line accuracies as well as model complexities are given by
Table 6. We excluded the SVMs from the ranking, since the highly overlapping
distributions led to an extensive growth of support vectors and to DNF results
in all datasets but Electricity. Methods simply learning an average model for
all seen data instances such as NBGauss and LPPCART are inappropriate for
non-stationary environments as can be seen by the poor results. In general, a
mechanism to forget obsolete knowledge is crucial to be able to deal with con-
cept drift. This is given to some extent for the ILVQ and the SGDLin. Both
incorporate a learning rate, which, if set flexible enough for the rate of drift,
allows the model to adapt to new concepts. A common technique to deal with
concept drift is the sliding window [82, 85]. The ILVQ utilizes one to insert new
prototypes such that the classification on recent examples is optimized. Hence,
it weights new information stronger by design and has, therefore, the highest
capacity of the methods to deal with concept drift. Note that the methods
considered in this article are not especially designed to handle concept drift.
Nonetheless, our brief evaluation shows that some of the methods yield surpris-
ingly accurate results for the considered datasets, while others simply fail. It
might be advisable to use dedicated techniques developed for non-stationary
environments in applications where strong drift is expected, such as those in-
corporating explicit drift detection [86, 74] or recent approaches incorporating
dedicated memory models [87].

6. Conclusion

We analyzed the most common algorithms of incremental learning on diverse,
stationary and non-stationary datasets. The outcomes of our experiments are
summarized in Table 7. It provides a fast overview about the core attributes
of the diverse set of considered methods, guiding the choice of an appropriate
algorithm for a given task. Regarding the results, the SVMs deliver usually the
highest accuracy at the expense of the most complex model. The approximate
nature of the LASVM reduces the training time and allows it to perform for
larger data sets in comparison to the ISVM. The ORF performs slightly worse
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SVMs ORF ILVQ LPPCART IELM SGDLin NBGauss

Endless learning 7 7 (3) (3) 3 3 3
Accuracy ? ? ? ?? ?? ?? ?? ? ?

Convergence speed ? ? ? ?? ? ? ? ?? ?? ?? ? ? ?
Model complexity ? ?? ?? ?? ?? ? ? ? ? ? ?

Training time ? ? ? ? ?? ?? ? ? ? ? ? ? ? ? ?
Run time ?? ? ? ? ?? ? ? ? ?? ? ? ? ? ? ?

Complexity of HPO ? ? ? ? ? ? ? ? ? ? ? ?? -
Robustness of subset based HPO ?? ?? ?? ?? ?? ? ? ? -

Viable for concept drift 7 7 (3) 7 7 (3) 7

Table 7: Discretized assessment of the core algorithmic properties. Especially, the major
categories accuracy and model complexity are highly affected by the evaluated datasets and
represent the average results on the diverse tasks considered in our experiments.

but has a very fast training- and run-time. However, its model as well as those of
both SVMs grows linearly with the number of samples and cannot be limited in
a straightforward way. Therefore, these algorithms are not suited for learning in
endless streams in contrast to all remaining methods, having either a constant or
easily boundable complexity. The ILVQ offers an accurate and sparse alternative
to the SVMs. LPPCART is quite flexible since the base classifier can be arbitrary
selected, however, it may struggle by its limited knowledge integration across
chunks. Tree based models are especially suitable for high dimensional data
because of their compressed representation as well as their sub-linear run-time,
which does not depend on the number of dimensions. However, the compressed
representation infringes the learning speed, such that instance based models
are converging faster and are more appropriate for learning tasks comprising
only a few examples. The sparse models of SGDLin and NBGauss make them to
particularly viable choices for large-scale learning in high dimensional space on
the one hand, but it turns out to be not complex enough for low dimensional
tasks on the other. NBGauss and tree based methods are the easiest to apply
in practice requiring no or just a little HPO. Whereas the SVMs and the ILVQ
require the most delicate setting.
In the future we want to extend our work and provide an analysis especially
targeting data streams comprising concept drift. In contrast to the work here, we
want to exclusively focus on algorithms which were designed to handle concept
drift. It is particularly interesting to see how algorithms are able to deal with
specific types of drifts at various strengths.
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[56] P. Richtárik, M. Takáč, Parallel coordinate descent methods for big data
optimization, Mathematical Programming 156 (1-2) (2016) 433–484.

[57] Z. Akata, F. Perronnin, Z. Harchaoui, C. Schmid, Good practice in large-
scale learning for image classification, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 36 (3) (2014) 507–520.

[58] M. Sapienza, F. Cuzzolin, P. H. Torr, Learning discriminative space–time
action parts from weakly labelled videos, International journal of computer
vision 110 (1) (2014) 30–47.

[59] S. Ertekin, L. Bottou, C. L. Giles, Nonconvex online support vector ma-
chines, IEEE Transactions on Pattern Analysis and Machine Intelligence
33 (2) (2011) 368–381.

[60] R. Elwell, R. Polikar, Incremental learning of concept drift in nonstationary
environments, IEEE Transactions on Neural Networks 22 (10) (2011) 1517–
1531.

[61] G. Ditzler, R. Polikar, Incremental learning of concept drift from stream-
ing imbalanced data, ieee transactions on knowledge and data engineering
25 (10) (2013) 2283–2301.

[62] J. Zhao, Z. Wang, D. S. Park, Online sequential extreme learning machine
with forgetting mechanism, Neurocomputing 87 (2012) 79–89.

[63] Y. Ye, S. Squartini, F. Piazza, Online sequential extreme learning machine
in nonstationary environments, Neurocomputing 116 (2013) 94–101.

[64] R. Johnson, T. Zhang, Accelerating stochastic gradient descent using pre-
dictive variance reduction, in: Advances in Neural Information Processing
Systems, 2013, pp. 315–323.

[65] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn:
Machine learning in Python, Journal of Machine Learning Research 12
(2011) 2825–2830.

[66] M. Lichman, UCI machine learning repository (2013).
URL http://archive.ics.uci.edu/ml

[67] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines,
ACM Transactions on Intelligent Systems and Technology 2 (2011) 27:1–
27:27.

[68] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, D. D. Cox, Hyperopt: a
python library for model selection and hyperparameter optimization, Com-
putational Science & Discovery 8 (1) (2015) 014008.
URL http://stacks.iop.org/1749-4699/8/i=1/a=014008

28

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://stacks.iop.org/1749-4699/8/i=1/a=014008
http://stacks.iop.org/1749-4699/8/i=1/a=014008
http://stacks.iop.org/1749-4699/8/i=1/a=014008


[69] J. S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-
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