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a b s t r a c t 

This paper contributes to the literature on energy efficient gaits on unknown terrains for humanoid 

robots, the locomotion system of which has anthropomorphic characteristics. In this work, we firstly 

present an energy efficient gait for humanoid robots. The main feature of the new gait is the absence 

of an area of support. The stiffness-free foot can rotate freely around the ankle joint. This feature makes 

the gait suited for uneven terrains. We then present a group of neural network controllers to regulate the 

sagittal and lateral motion of the robot’s gait in the presence of an unknown terrain. The resulting gait 

evaluated on an Aldebaran Nao robot, (1) reduces the energy consumption by 41% on a flat ground com- 

pared to the conventional Aldebaran gait, (2) can handle small disruptions caused by an uneven terrain, 

and (3) looks more like a human gait. A video showing the gait in the simulator is available. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Bipedal walking for humanoid robots is one of the most

nteresting challenges in robotics. In the papers [1–3] , we have in-

estigated the possibility of creating a dynamically stable and en-

rgy efficient gait without an area of support. Here, the absence

f an area of support means that the ankle joint can move freely

hile the foot is on the ground. In the sagittal direction the robot’s

enter of Mass (CoM) is falling forward till the foot of the swing

eg touches the ground. In the lateral direction, the robot balances

bove the stance foot in the single support phase, and falls towards

he new stance foot in the double support phase. The falling to-

ards the new stance foot is stopped by putting a force on the

ew stance leg. The resulting gait 1 was subsequently evaluated on

 real Nao robot. The stability of the gait is validated on a flat

round but not on an uneven terrain. Since there is no feedback in

he controller, the robot cannot adjust the gait parameters to com-

ensate for the uneven floor. In this paper, we improve the gait’s

tability on an uneven terrain by introducing feedback in the con-

roller. 

Our contributions are as follows: First, we integrate the previ-

us insights to develop a simple new gait with less energy con-

umption for omni-directional biped walking. This gait exhibits

obust dynamically stable behavior on a flat floor. Second, we
∗ Corresponding author. 

E-mail address: z.sun@maastrichtuniversity.nl (Z. Sun). 
1 A video of the new gait at: https://project.dke.maastrichtuniversity.nl/robotlab/ 

attachment _ id=153 . 
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emonstrate that feed-forward neural network controllers can be

sed to enhance the stability control for the locomotion on an un-

ven terrain. The simple framework opens the door to develop-

ng wider sets of bipedal skill, and is applicable to other types of

umanoid robots. 

The remainder of this paper is organized as follows. In the

ext section, we will give a brief overview of existing research

bout kinematics models for humanoid robots, stability criteria

nd various approaches to obtain energy efficient bipedal walk-

ng. Section 3 briefly describes the new gait that we developed

nd presented in [1] . We used the Inverted Pendulum Model

IPM) to investigate the energy consumption in the sagittal plane.

ubsequently, we extended the model to the lateral plane and

escribe a gait controller with multiple parameters for a 3D full-

ody humanoid robot. The controller can achieve a stable gait

n a physical robot in the real world after we optimize its pa-

ameters through Policy Gradient Reinforcement Learning (PGRL).

ection 4 introduces our work on the neural network controller

o enhance the gait’s stability on an uneven terrain. Section 5 de-

cribes the implementation of proposed methods in the simulator

nd on a Nao robot. The results are demonstrated in this section as

ell. Section 6 concludes this paper. We provide a brief summary

f the results and outline the future research. 

. Related work 

.1. Models of bipedal walking 

Humanoid robots have complex bodies with irregular shape

nd mass distribution. Therefore, it is advantageous to obtain an

https://doi.org/10.1016/j.neucom.2017.08.077
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.08.077&domain=pdf
mailto:z.sun@maastrichtuniversity.nl
https://project.dke.maastrichtuniversity.nl/robotlab/?attachment_id=153
https://doi.org/10.1016/j.neucom.2017.08.077
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elemental representation of the robot’s dynamics. Ideal features of

a model are simplicity, and both a conceptually and mathemati-

cally accurate representation of the dynamics of the real system.

The main approaches employed to model the kinematics of hu-

manoid robots are based on the Inverted Pendulum Model (IPM)

( [4] ), which involves a simplification compared to the body of the

robot. The IPM represents the whole body of the robot as a point

mass located at the center of mass (CoM) of the actual robot.

The point mass is linked to the base of the robot by a telescopic

massless leg. Restraining the movements of the CoM to a horizon-

tal plane allows to simplify the motion equation of the IPM. The

resulting model is known as the Linear Inverted Pendulum Model

(LIPM), which [5] proposed to describe humanoid robot locomo-

tion. The LIPM provides an efficient means to represent the kine-

matic behavior of the robot and it is therefore a popular tool to

understand and manipulate the balance of a humanoid robot. With

the LIPM and zero moment point (ZMP) stability criteria [6] , in-

stitutes/companies have successfully built biped robots that can

walk with various gaits adapting to different walking situations

(e.g. [7–10] ). 

2.2. Energy consumption 

The dynamic model is not the only factor to be considered.

The energy consumption of a gait is an important issue. Various

approaches have been proposed to reduce the energy consump-

tion of a gait. One of these approaches is passive-dynamic walk-

ing where the robot’s dynamics are designed to enable a robot

to walk down slight slopes without control input, except for the

gravitational force. The paper of [11] explained this well. Kuo A.

et al. [12] believed that passive-dynamic walkers have three pri-

mary flaws: (1) they can only walk down slopes, (2) their gaits are

restricted by their dynamics, and (3) they are sensitive to pertur-

bations. Realizing these limitations, researchers [13] have sought to

improve passive-dynamic walker by adding actuators. 

A second approach to obtain energy efficient bipedal walking

is through the application of mechanical compliances. In the work

of [13] and [14] , springs were added across the hip, thigh, knee

and ankle simultaneously. Yang T. et al. [15] exploited parallel knee

compliance on the robot ERNIE and discussed how soft/stiff springs

affect the ener gy efficiency at different walking speeds. Jerry P.

et al. [16] described the implementation of series-elastic actua-

tion on Spring Flamingo (a MIT’s planar bipedal walking robot) to

enable the control of the ground reaction forces during walking. In

the commercial platform used in our experiments, such hardware

modifications are not possible. 

A third approach to improve the energy-efficiency of bipedal

walking is by designing gaits that minimize the energy cost. The

most common means of design is to use parametric optimization

of the parameters that specify the gait of the robot. For exam-

ple, Chevallereau et al. [17] used parametric optimization to de-

sign fourth degree polynomial functions that give the joint mo-

tions over a step as functions of time. Unlike the previous example,

in the work of [18] cubic splines connected at points uniformly

distributed along the motion time are used to generate complete

optimal steps, including a double support phase. 

Parametric optimization methods are also implemented to op-

timize the walking gait on humanoid Nao robots. In the work

of [19] , the proposed method models the omni-directional mo-

tion as the combination of a set of periodic signals. The parame-

ters controlling the characteristics of the signals are encoded into

genes and evolutionary learning is used to learn an optimal set of

parameters. The Nao humanoid robot is used as the test platform.

Abdolmaleki et al. [20] augmented the 3D inverted pendulum with

a spring model and use policy search to optimize the parameters of

the walking engines on Nao robots. Shahbazi et al. [21] introduced
 two-stage learning algorithm for Central Pattern Generator (CPG)

f Nao robot’s bipedal walking. 

.3. Stability control on uneven terrains 

A biped robot with a primal walk controller is capable of walk-

ng on flat surfaces. However, it has the defect that its stability may

ot be guaranteed on uneven terrains. A slight irregularity or an

ndulation of the ground can undermine the balance of the robot.

his defect makes the biped robot less practical in real (outdoor)

nvironments where the ideal flat ground is rare. 

A number of researchers have proposed solutions for the sta-

ility control problem of biped robot on uneven surfaces [22–27] .

n the work of Yi [28] , these solutions are divided into three cate-

ories: 

1. Analyze the ground surface using external sensors such as a

laser range finder or a camera [29–31] . The robustness of those

methods rely on the measurement accuracy of the sensors.

Since the position where the sensor is mounted, is usually

above the robot’s chest, this kind of solutions is not applicable

for a wide range of humanoid robots. 

2. Use specialized hardware to ensure the stability of walking on

an uneven terrain. Sano et al. [24] introduce a new foot with

four passive joints, each of which is equipped with a spring

and a sensor, to achieve stable biped walking. Wang et al.

[32] enable stable dynamic walking on an uneven terrain us-

ing a walking model with mechanically compliant ankles. Kang

et al. [25] have developed a new biped foot mechanism capable

of making a large support polygon on an uneven terrain using

three or four spikes. 

3. Gain terrain-adaptive skills using a feedback controller [33–

36] . In these approaches, a feedback controller tunes the gait

parameters to realize stable walking on uneven terrains. Yi

et al. [28] proposed a method using foot measurements and an

on-line learning algorithm, to estimate the surface gradient.

This information is used to modify the robot locomotion and

control parameters. 

Our proposed work uses feedback control. However, it does not

stimate the gradient of the slope, but adapts the torque in the

nee of the stance leg, and, in the double support phase, also the

orque in the knee of the swing leg based on the position of the

enter of mass (CoM), its speed and its acceleration. Another dif-

erence is that our feedback controller does not use a stability cri-

erion such as the zero-moment point (ZPM). 

. Our gait 

This section briefly describes our new gait presented in [1–3] .

e first analyzed the gait without an area of support using an IPM

ith telescopic legs. Then we designed a controller which imple-

ents the gait on a real Nao robot. 

.1. Kinematics model in sagittal direction 

The IPM with telescopic legs allows the length of the virtual

upport leg to vary during a step. We proposed the leg-length

olicy δ : [ −π
2 , 

π
2 ] → [0 , 1] that determines how much the virtual

upport leg will be shortened as function of the angle between

tance leg with vertical axis. The shortening of the stance leg is

ealized by bending the knee joint, see the right side of Fig. 1 . 

To identify the leg-length policy that minimizes the energy con-

umption of a robot, we make use of the fact that the robot has to

end the knee in order to shorten the leg. The knee torque is the

ain factor determining the energy consumption [1] . Fig. 3 shows

he optimal leg-length policy δ( α) as a function of the angle α
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Fig. 1. The abstract Inverted Pendulum Model. 

Fig. 2. The CoM lateral movement during 

double support phase. 

Fig. 3. The optimal leg-length policy. 

Fig. 4. Kinematic of sagittal motion. 
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rom the beginning till the end of the step that we identified, and

ig. 4 shows the realization using the 5-link model. The detailed

nformation can be found in our previous publication [1] . 

Since we assumed the absence of an area of support and to fur-

her reduce the total energy cost, we set the stiffness on both ankle

oints to almost zero. Thus, the stance leg of the robot can freely

otate around ankle joints, and the area of support reduces to a

oint. 

.2. Kinematics model in lateral direction 

For a simple forward step, it is insufficient to only consider 2D

ynamics in sagittal direction. To address the lateral stability, we

esigned a lateral controller to regulate the CoM lateral movement

uring double support phase which is proposed in [3] . 

At the beginning of the double support phase (DSP) the robot

alances in the lateral direction above the stance foot. The angle

of the virtual stance leg with the vertical axis is 0, see Fig. 2 .

here is no force on the swing leg when it touches the ground

t the beginning of the double support phase. During the double

upport phase weight of the robot must shift from the stance leg

o the swing leg. At the end of the double support phase, the angle
′ of virtual swing leg with the vertical axis must become 0, see

ig. 2 . When the angle of β ′ becomes 0 the single leg must carry

he full weight of the robot, the robot balances above the swing

oot, and the double support phase ends. 

We use the upper body tilt to initiate the lateral movement of

he CoM towards the swing foot. Next, we use a force generated by

he swing leg to stop the movement when CoM is balanced above

he swing foot, which then becomes the new stance foot. The force

enerated by the swing leg is described by a force policy. In order

o smooth the CoM transition trajectory, we determine the shape

f the force policy by means of Quadratic Bezier curve which in-

roduces the quadratic Bezier point θ7 , see Fig. 5 . The quadratic

ezier point θ7 is one of the controller parameters discussed in

ext subsection. 

.3. Controller design 

Our gait has been implemented on a Nao robot by defining a

arametrized controller and then searching for parameter values

hat yield appropriate control behavior. Policy search [37,38] is a

ell-known method that has been applied successfully for search-

ng in high-dimensional parameter spaces. This subsection presents

he parameters of a gait controller that realizes the leg-length

olicy described in Section 3.1 and the force policy described in

ection 3.2 . We identified 9 parameters that are essential in con-

rolling a dynamic gait: 

• Step Length ( θ1 ): Defines the distance which Nao moves in a

singe step (sagittal). 
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Fig. 5. Stiffness over angle β ′ by Quadratic Bezier curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Learned parameters set P . 

Parameter ε Learned value 

Step length ( θ1 ) 0.1 3.9 (cm) 

Step height ( θ2 ) 0.02 3.24 (cm) 

Knee bending ( θ3 ) 0.1 14.2 ( °) 
Step time ( θ4 ) 25 650 (ms) 

Stretch time ( θ5 ) 25 78 (ms) 

Torso pitch inclination ( θ6 ) 0.1 8.9 ( °) 
Quadratic Bezier point ( θ7 ) 0.1 (0.9 ∗double support phase time, 0.2) 

Torso roll inclination ( θ8 ) 0.1 6.5 ( °) 
Ratio ( θ9 ) 0.1 0.8 

Velocity 6 (cm/s) 
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2 https://project.dke.maastrichtuniversity.nl/robotlab/?attachment _ id=153 . 
• Step Height ( θ2 ): Defines the maximal altitude between ground

and lifting feet. A high step height requires a faster movement

of the swing leg, which may cause instabilities. A low step

height increases the possibility of tripping and limits the step

length. 

• Knee Bending ( θ3 ): Defines the bending angle of the stance leg

(front support leg in Fig. 4 ) at the beginning of single sup-

port phase (SSP). δ( αb ) in Fig. 3 is represented by the angle

θ3 . δ(αb ) = 1 corresponds to the knee angle: 180 ° (the fully

stretched leg), and δ( αb ) ≈ 0.53 corresponds to the knee angle:

0 ° (the completely bend leg). The parameter θ3 determines the

sagittal velocity and the energy cost. 

• Step Time ( θ4 ): Defines how long a single step lasts. This

parameter determines the sagittal walking velocity. 

• Stretch Time ( θ5 ): Defines how long it takes for the stance leg

to stretch from δ( αb ) (angle of bent knee) to its full length, see

Fig. 3 . 

• Torso Pitch Inclination ( θ6 ): Defines the maximum angle that

torso leans in sagittal direction at the beginning of the first

step. If positive, it will move the center of mass (CoM) in sagit-

tal direction. If it is set not appropriate, a fall will occur. In our

experiments, the inclination lasts for 200 ms. 

• Quadratic Bezier point ( θ7 ): Defines the magnitude of middle

points in Quadratic Bezier Curves, which determines the force

policy of the swing leg (introduced in Section: 3 ). 

• Torso Roll Inclination ( θ8 ): Defines the maximum angle that

torso leans in lateral direction. If positive, it will move the cen-

ter of mass (CoM) towards the swing leg in lateral plane as dis-

cussed in Subsection: 3.2 . In our experiments, the inclination

lasts for 50 ms. 

• Ratio of single support duration ( θ9 ): Defines how long the single

support phase lasts in one single step. The single support phase

duration equals this parameter times θ4 (the step time). 

All parameters except θ1 (the step length) will be optimized in

the experiments. We do not consider the step length for optimiza-

tion because we need step length to be variable when the velocity

is changing. We manually set a different walking velocity v in each

experiment and determined the optimal Step Time θ4 . The corre-

sponding step length is given by: θ1 = v θ4 . 

3.4. Learning optimal parameters 

We use a policy gradient reinforcement learning method [39] to

search the set of possible parameters with the goal of finding the

stable and low energy cost walk. In order to generate a gait that is
nergy efficient and stable, we considered a fitness function based

n the total energy cost and the stability over a certain distance of

orward walk. The energy cost determines 30% of the fitness func-

ion value and the distance which the robot walks without falling

etermines 70% of the fitness function value [1] . 

To generate the optimal gait parameters and validate the gait’s

erformance, we uploaded the controller of our proposed gait to-

ether with an implementation of the policy gradient algorithm

nto the Webots simulator. We used a relatively elementary hand-

une gait as a starting policy for the policy gradient algorithm.

ach new policy was evaluated by letting a robot walk at a con-

tant distance of 0.75 meters. During the walking, the energy

onsumption and stability were determined. The policy gradient al-

orithm converges to a parameters set P shown in Table 1 . 

The algorithm presented here converges to a local optimum. In

rder to investigate whether the results could be a global opti-

um, we repeated the learning experiment 500 times, each time

tarting from a randomly generated parameter vector x π with the

ame velocity. The results of the experiments indicate that the lo-

al optimum we have in Table 1 is probably the global optimum.

herefore, the parameters set P most likely results in the most en-

rgy efficient gait. The accompanying video material 2 shows the

ao robot walking on flat ground with our proposed gait controller

t a speed of 6 cm / s . We also compare the new gait on the flat

round with the standard gait that Aldebaran supplies with the

ao. The energy consumption of the new gait is 41% less than the

ldebaran gait on a real Nao robot. 

. Analysis of gait on uneven terrain 

.1. Overview of system 

The new gait proposed in [1] uses a controller that generates

he joint angles for the knee joint and the hip joints of the stance

ag using a leg-length policy, and realizes the force policy de-

cribed by a Bezier curve for the swing leg by controlling the stiff-

ess of knee joint. Though the results show the effectiveness of

sing a mixture of a leg length policy, a force policy and a policy

radient reinforcement learning method to obtain a bipedal gait

hich is specialized in the aspect of energy efficiency, the gait has

ts own defect that the stability can not be guaranteed when ex-

ernal disturbances occur. This means any disturbance such as a

ush or stepping on uneven terrain may jeopardize its balance be-

ause the ankle stiffness is set to almost zero. For example, if the

obot is standing on a slope or stepping on a bump, its feet are

ot on the same altitude. This may cause the CoM to undershoot

r overshoot the balance position when switching the stance leg.

o enhance the walking stability especially on complex terrains, we

urther extend the controller. 

https://project.dke.maastrichtuniversity.nl/robotlab/?attachment_id=153
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Fig. 6. The assumption: the complex terrain with obstacles can be uniformly transformed as the discrete slopes with variable angles. We define the slope angle is positive 

if left foot is landed higher than right foot on lateral plane or new support foot is landed higher than rear foot on sagittal plane and vice versa. 
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In order to make the problem tractable, we made a simplifying

ssumption. Since the altitude of robot’s two feet can be different

hen walking on an uneven terrain, each step of the walk on an

neven floor can be viewed as a step on a (virtual) slope. The an-

le of the slope is determined by the relative elevation of both feet

hen they are firmly placed on the ground. Therefore, the complex

errain with obstacles, including bumps, pits and slopes, can be

niformly transformed to slopes with variable angles. To solve the

alancing problem on an uneven terrain, the gait controller should

dapt the gait parameters to the various slopes. 

We implemented three neural networks to control and im-

rove the robot’s stability on unknown slopes. An overview of the
Fig. 7. System overview of the controller 
ystem is shown in Fig. 7 , which illustrates two loops that each

orresponds to a different step phase. In the following description,

e review its operation of the gait control on an uneven terrain. 

The upper loop controls the leg length policy in single sup-

ort phase. During each step, the neural network determines leg

ength and sent this value to the gait controller. The individual

oint torques on the support leg are computed by low-level con-

rol structures. 

The bottom loop operates during the double support phase. The

ouch-down of the swing foot marks the beginning of the double

upport phase, and from this moment the neural network deter-

ines the proper stiffness of the swing leg’s knee joint. 
in single and double support phase. 
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Table 2 

Learned control parameters relevant for the single support phase on different slopes 

in sagittal direction 

p (slope angle) H (cm) θ2 θ3 θ4 (ms) θ5 (ms) θ6 θ9 

−10 ° −0.68 3.24 8.5 ° 650 64 0 ° 0.8 

−7 ° −0.48 3.24 9.2 ° 650 68 1.4 ° 0.8 

−5 ° −0.34 3.24 11.7 ° 650 70 4.1 ° 0.8 

−3 ° −0.20 3.24 13.7 ° 650 75 5.7 ° 0.8 

0 ° 0.00 3.24 14.2 ° 650 78 8.9 ° 0.8 

3 ° 0.20 3.24 14.4 ° 650 76 10.2 ° 0.8 

5 ° 0.34 3.24 15.2 ° 650 75 13.5 ° 0.8 

7 ° 0.48 3.24 15.7 ° 650 74 14.9 ° 0.8 

10 ° 0.68 3.24 16.1 ° 650 72 16.3 ° 0.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Sampled leg-length policy. 
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o  
4.2. Controller design 

Our robot is an Aldebaran H25 Nao (version 5). It is 574 mm

tall and has a mass of 5.4 kg. The pelvis is designated as the root

link and each link is connected to its parent link with a revolute

joint, yielding a total of 25 internal degrees of freedom. The motion

of the joints are driven by the application of internal joint torques

and is simulated in the Webots simulator. 

Analysis of single support phase. A total of 8 control parameters

serve to define the walking gaits. These include the specification of

the step height, the target joint angles for the knee and the torso

inclination, as applied in the single support phase. Additionally, the

parameters about time control of knee stretching and single sup-

port phase duration are also part of the parameter set. Therefore,

when designing a controller that can handle disturbances influenc-

ing the sagittal stability, we determine the proper control parame-

ters which guarantees the robot’s stable walk on a uneven terrain

in the sagittal direction. Moreover, as we mentioned in this sec-

tion, the robot’s single step on the complex terrain with obstacles

is assumed to be one on a (virtual) slope with a certain angle. So

when the robot makes one step on the ground, according to the

sign of height difference of both feet, we can categorize the terrain

where robot’s feet are placed into two types: the (virtual) uphill or

downhill. 

Without the predefined information of terrain, the only avail-

able information the robot has is (1) the angle α of the CoM w.r.t

the stance foot, (2) the angular velocity ˙ α of the rotation of the

CoM around the ankle of the stance foot, and (3) the sagittal ac-

celeration measured by the Inertial Measurement Unit (IMU). The

latter value approximates the angular acceleration α̈ of the CoM

w.r.t. the stance foot. We choose to use these variables as inputs

of the controller to directly determine the trajectory of leg-length

policy. 

We designed a series of experiments in the simulator Webots

to obtain the optimal control parameters. In the experiments, the

same reinforcement learning method as used in Section 3.4 , is used

to find the proper control parameters that guarantee a stable walk-

ing gait on different slopes. The experiments required the robot to

walk on slopes where tilt angles varies from −0.17 to 0.17 (rad)

in robot’s sagittal plane. We let the robot walk with a fixed step

length ( θ1 = 3 . 9 cm ) and execute the reinforcement learning to get

the proper controller parameters that ensure the robot’s stability.

Each new policy was evaluated by letting a Nao robot move for 5 s.

The fitness function of each policy will get high score if the robot

keeps stable. Otherwise, the function gets a penalized score. After

the result of reinforcement learning converged while the robot’s

movement become stable, the control parameters are recorded. 

Table 2 shows the control parameters of the gait on the dif-

ferent slopes and the corresponding feet height difference H =
θ1 sin (p) due to the slope angle p . As the slope angle increases

from negative to positive, the parameters θ ( Step Height ), θ ( Step
2 4 
ime ) and θ9 ( Ratio ) remain constant, while H (feet height differ-

nce), θ3 ( Knee Bending ), θ5 ( Stretch Time ) and θ6 ( Torso Pitch Incli-

ation ) depend on the slope angle. Since these control parameters

egulate the locomotion in singe support phase, we designed the

agittal controller to adjust those variable parameters to maintain

he gait’s stability on unknown slopes. Note that, the parameter θ3 

 Knee Bending ) solely depends on the relative elevation between

tance and swing leg, and its value can be determined at end of

he double support phase of the previous step. 

agittal Controller. The main task of sagittal controller is to gen-

rate a leg-length policy that is adaptive to unknown slopes. As

hown in Fig. 3 , the leg length policy is determined by two fac-

ors: θ3 and θ5 . θ3 ( Knee Bending ) (or δ( αb ) which represents it in

ercentage) is the knee joint angle at the beginning of single sup-

ort phase. The parameter θ3 ( Knee Bending ) solely depends on the

elative elevation between stance and swing leg, and its value has

o be updated when a new step begins. 

In the previous work, we regulate the trajectory of the leg

ength policy with Quadratic Bezier Curve in the following equa-

ion: 

 (t) = (θ5 − t)[(θ5 − t) P 0 + tP 1 ] + t[(θ5 − t) P 1 + tP 2 ] (1)

here 0 ≤ t ≥ θ5 , P 0 = (0 , δ(αb )) , P 1 = (0 , 1) , P 2 = (θ5 , 1) (see

ig. 3 ). Given θ3 ( Knee Bending ) and θ5 ( Stretch Time ), this equation

an generate a smooth trajectory from 0 to θ5 in x axis and from

( αb ) to 1 in y axis. This method is feasible for the gait on the flat

round, but it is not a robust method for the gait on the uneven

errain. Without the predefined information of terrain, the parame-

er θ5 ( Stretch Time ) of each step are hard to determine. Therefore,

e decided to use a trained neural network to directly generate

he trajectory of leg-length policy (see Fig. 8 ) that is adaptive to

nknown slope using α, ˙ α, α̈ and θ3 as inputs. 

nalysis of Double Support Phase. When designing the controller

hat can handle disturbances during the double support phase, we

etermined the control parameters of the gait which guarantee the

obot’s side-way stability on an uneven terrain. (Note that, in all

he experiments of this section, the length of step is fixed, so the

elevant control parameters θ1 is excluded from the optimization.)

ince left and right foot are at different heights, the control pa-

ameters for the left and right leg might be different. Therefore,

he control parameters are split into two parameter sets for the

eft leg θ L 
i 

and the right leg θR 
i 

, respectively. Next we addressed

ow to adapt the control parameters. 

The robot does not know that it walks on a slope or about

ther disturbances. The only available information it has is (1) the
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Table 3 

Learned control parameters relevant for the double support phase on different slopes in lateral direction. 

p H (cm) θ L 
2 (cm ) θ L 

3 θ L 
4 (ms) θ L 

5 (ms) θ L 
6 θ L 

7 θ L 
8 θ L 

9 

0 ° 0.00 3.24 14.2 ° 650 78 8.9 ° (0.90 0.20) 6.5 ° 0.8 

1 ° 0.17 3.24 14.5 ° 650 75 8.9 ° (0.86 0.16) 5.5 ° 0.8 

2 ° 0.33 3.24 15.3 ° 650 76 8.9 ° (0.84 0.14) 3.5 ° 0.8 

3 ° 0.50 3.24 15.5 ° 650 74 8.9 ° (0.80 0.12) 2.0 ° 0.8 

4 ° 0.66 3.24 16.1 ° 650 72 8.9 ° (0.78 0.12) 1.5 ° 0.8 

5 ° 0.83 3.24 16.4 ° 650 70 8.9 ° (0.76 0.12) 1.5 ° 0.8 

p H (cm) θR 
2 (cm ) θR 

3 θR 
4 (ms) θR 

5 (ms) θR 
6 θR 

7 θR 
8 θR 

9 

0 ° 0.00 3.24 14.2 ° 650 78 8.9 ° (0.90 0.20) 6.5 ° 0.8 

1 ° 0.17 3.24 13.5 ° 650 74 8.9 ° (0.90 0.22) 6.5 ° 0.8 

2 ° 0.33 3.24 11.7 ° 650 70 8.9 ° (0.91 0.26) 7.5 ° 0.8 

3 ° 0.50 3.24 9.6 ° 650 68 8.9 ° (0.92 0.28) 8.5 ° 0.8 

4 ° 0.66 3.24 8.5 ° 650 65 8.9 ° (0.92 0.29) 9.5 ° 0.8 

5 ° 0.83 3.24 8.2 ° 650 65 8.9 ° (0.94 0.29) 9.5 ° 0.8 
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Fig. 9. Sampled stiffness over angle β ′ . 
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b  
ngle β ′ of the CoM w.r.t the swing foot (see Fig. 2 ), (2) the

ngular speed 

˙ β of the rotation of the CoM around the ankle of

he stance leg, and (3) the lateral acceleration measured by the In-

rtia Measurement Unit (IMU). The latter value approximates the

ngular acceleration β̈ . We chose to use these three parameters as

nputs for the controller that can adapt the gait parameters. 

We designed the same experiments as we did for sagittal con-

roller to obtain the optimal control parameters. In the experi-

ents, the same policy reinforcement learning method as used

n Section 3.4 , is used to find the proper control parameters that

uarantee a stable walking gait on different slopes. The experi-

ents require the robot to walk on various slopes where tilt an-

les varies from -0.09 to 0.09 (rad) in robot’s lateral plane. Since

n the lateral plane, slopes with negative tilt angles are opposite

o these with positive angles, the results of the left leg on slopes

ith negative angles is identical to the results of the right leg on

lopes with positive angles and vice versa. Therefore, we decide to

un the experiments on slopes where tilt angles varies only from 0

o 0.09 (rad) in robot’s lateral plane (see Fig. 6 ). We kept the robot

alking on the slope and ran the reinforcement learning method

o get the controller parameters that ensure the robot’s stability.

ach new policy was evaluated by letting a Nao robot move for 5 s.

he fitness function of each policy will get high score if the robot

eeps stable. Otherwise, the function gets a penalized score. After

he result of reinforcement learning converged while the robot’s

ovement become stable, the control parameters are recorded. 

Table 3 shows the control parameters of the gait on the differ-

nt slopes and corresponding feet height difference H = D sin (p)

ue to the slope angle p . Here, D denotes the distance between

oth feet in the lateral direction, which is 9.5 cm in our experi-

ents. As the slope angle increases from 0 ° to 5 °, the parameters

2 , θ4 , θ6 and θ9 keep constant, while H, θ3 , θ5 , θ7 and θ8 depend

n the slope angle. The parameters θ3 and θ5 overlap with the pa-

ameters controlled by the sagittal controllers. Tables 2 and 3 show

hat the same height difference H results in the same values for the

arameters θ3 and θ5 . Therefore, the lateral controller only needs

o adapt θ7 and θ8 . Moreover, the sagittal and the lateral controller

an operate independently. We designed the controller for double

upport phase to adjust the parameters θ7 and θ8 to maintain the

ait’s stability on unknown slopes. 

ateral Controller. To maintain the gait’s stability on unknown

lopes, the parameters θ7 and θ8 must be controlled. Note that, the

arameter θ3 solely depends on the relative elevation between the

tance and the swing leg, and its value can be determined at end

f the double support phase where β ′ should become zero (shown

n Fig. 2 ). Since θ3 encodes the information about the slope angle,

ts value can be used to set the value of parameters θ8 . Therefore,

e use a neural network which takes the input the value of θ3 to

utput the values of θ . 
8 
Besides, the parameter θ7 , relevant to stiffness trajectory, needs

o be controlled as well. However, θ7 cannot be adapted by a neu-

al network that uses (β ′ , ˙ β, β̈ ) as inputs. At the end of the double

upport phase, (β ′ , ˙ β, β̈ ) must become equal to (0, 0, 0) for every

7 value. So, in the neighborhood of (0, 0, 0) the correct θ7 value

s not well defined. Therefore, instead of θ7 , the trajectory of stiff-

ess will be directly determined by a neural network controller.

he sampled stiffness values from the trajectories defined by dif-

erent values of θ7 can be seen in Fig 9 . 

. Controller implementation and evaluation 

We implemented three neural networks to control the robot’s

tability by adjusting the controller parameters to unknown slope.

he back-propagation method has been applied for training multi-

ayer feed-forward networks, see Fig. 10 . With the trained network,

e realized a group of neural network controllers that enables a

table walk on uneven terrains. 

We evaluate the bipedal gait in the simulation environment on

ultiple classes of terrain obstacles that include bumps, pits and

lopes. The results are based on the commercial simulator Webots

hat uses the Open Dynamics Engine (ODE) for physics simulation.

t is possible to make the terrain obstacles arbitrarily difficult and

hus we use environments that are challenging while remaining

iable. All of the terrains are generated randomly based on Per-

in noise and the parameters in Table 4 characterize each type of

bstacle. 

When the robot walks on the uneven floor and a new step

egins with the single support phase, the neural network in the
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Fig. 10. Backpropagation neural network. 

Table 4 

The parameters to generate uneven terrain in Webots. 

Type Parameter Value 

SFVec3f Translation 0 0 0 

SFRotation Rotation 0 1 0 0 

SFVec3f Size 50 5 50 

SFInt32 xDimension 50 

SFInt32 zDimension 50 

SFInt32 randomSeed 0.5 

SFBool flatCenter TRUE 

SFBool flatBounds TRUE 

SFInt32 perlinNOctaves 1 
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3 https://www.youtube.com/watch?v=7DxHVEd8hc8 . 
sagittal controller takes the values θ3 ( Knee Bending ), (α, ˙ α) re-

trieved from the joint sensors and α̈ from the IMU as the input

vector and outputs the leg-length value for the stance leg. When

double support phase begins, the first network in the lateral con-

troller uses ( β ′ , ˙ β, β̈) as input and outputs the stiffness value of

the swing leg, which guarantees that the CoM rotation around an-

kle stops at the balance point. The second neural network takes

the value of θ3 ( Knee Bending ) as input at the end of the double

support phase and outputs the value of θ8 , which is used to deter-

mine the angle of torso that leans in lateral direction during next

double support phase. Together with other fixed parameters, the

gait controller generates updated joints commands to avoid CoM

undershoot or overshoot caused by uneven terrains and other dis-

turbances. 

5.1. Evaluation of stability 

In order to validate the gait’s dynamic stability on randomly

generated uneven terrains, we perform a series of experiments

with the Nao (version 5) humanoid robot. We implemented the

proposed controller and validated the result by letting the robot

walk a constant distance (0.5 meters). The step size was fixed to

3.9 cm. 

Fig. 11 shows the vertical projection of the CoM on the ground.

Each foot shown in this figure does not represent an area of sup-

port. Because of the low stiffness on the support ankle joint, the

ankle can move freely in sagittal and lateral direction. Therefore,

the area of support of a foot is constrained to a small area formed

by the location of the ankle joint, instead of the foot area that

contacts the ground. Each red dot in Fig. 11 indicates the posi-

tion of ankle joint in the contact area of a foot during one step.
ig. 11 shows that there is no stability in the sagittal direction of

he proposed gait. Stability criteria such as the ZMP are not ap-

licable. Moreover, the figure shows that, in the lateral direction,

he CoM trajectory does not overshoot or undershoot the support

oints (red dots) on uneven grounds, which proves that the pro-

osed gait is stable on randomly generated terrains. 

Fig. 12 shows the roll angles trajectories of left and right leg

hen robot walks on slope in 0.02 rad ( ≈ 1 °), 0.05 rad ( ≈ 3 °) and

.09 rad ( ≈ 5 °). In this figure, we can see that left foot is higher

han the right one on the slope because the joint of right leg

otates less than the joint on left leg to let the CoM approach

ts balance point. Moreover, under the different slope angles, the

uration of one step does not change, which means that our pro-

osed gait can make a stable walk on different slopes without the

oss of walking velocity. The reason why we constrain the slope

ngle within 0.09 ( ≈ 5 °) is because the behavior of the robot be-

omes unstable when it walks on slopes up to 10 ° or more. We

bserved that the chance of a collision between the front of the

aos big feet and slope surface increases as the slope angle in-

reases. The collision undermines the dynamics of the gait and

ay cause the robot tip over. To avoid this situation, the walking

attern of swing leg needs to be changed and the robot should be

ble to observe in some way the angle of the surface. For exam-

le, given information of terrain, the foot sole can be pre-paralleled

ith slope to avoid a collision before landing on the ground. This

olution is problematic because the slope angle may change and

isual feedback is a challenging problem. Another problem is the

ao’s smooth sole, which do not provide sufficient grip when the

lope angle becomes too large. So, after many tests, we choose 5 °
s the maximal slope angle in the demo to ensure the success rate

f uphill walking. 

The accompanying video material 3 shows the Nao robot walk-

ng on an uneven terrain with our proposed gait controller in the

imulator Webots, which shows that our controller can handle the

ltitude differences of the foot placement and adjusts the control

arameters to maintain balance. 

.2. Evaluation of energy efficiency 

To evaluate the energy efficiency of the proposed gait, we ran

rials with the Nao humanoid robot in the simulator environment.

n the first experiment, the average electric currents that flow

https://www.youtube.com/watch?v=7DxHVEd8hc8
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Fig. 11. The trajectory of the CoM projection on randomly generated uneven terrain. The sample rate retrieved from IMU is 120 Hz, and each 4 samples are averaged to 

smooth the curve. The red dots denote the locations to the ankle joins. Also the location of the feet are shown. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 12. The roll angle trajectory of both legs under different slope in 1, 3, 5 degree. 
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hrough the leg joints, are recorded and compared for two gaits:

he Aldebaran gait and our new gait, while walking a constant

istance on the flat ground. The electric current in the joints for

agittal movement ( HipPitch, KneePitch and AnklePitch ) and lateral

ovement ( HipRoll and AnkleRoll ) are recorded separately. Fig. 13

hows how much the sagittal motion and lateral motion contribute

o the total energy consumption. In the hip joints, the average cur-
ents for lateral motion ( HipRoll ) are almost the same (0.095 A

n the Aldebaran gait, 0.09 A in the proposed new gait), but

verage currents (0.07 A) in the HipPitch for the sagittal motion in

he proposed new gait is 17.6% less than that in the Aldebaran gait

0.085 A). The reason is that, compared to Aldebaran gait, we use a

arger and proper step size in the proposed gait, which makes the

obot cover the same distance in fewer steps. In the knee joint, the
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Fig. 13. The electric current consumption on hip, knee, ankle joints of proposed new gait and Aldebaran gait. 

Fig. 14. The electric current of the proposed walk gait on different slopes. 
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average current (0.25 A) in the proposed gait is 28.6% less than

the one in the Aldebaran gait (0.35 A). Regulated by the optimal

leg-length policy, the proposed gait keeps the stance leg stretched

most of the step time, which has the advantage in energy effi-

ciency over Aldebaran gait. Since the knee joint has only one de-

gree of freedom ( KneePitch ) in forward direction, it does not have

lateral motion thus no lateral energy cost. Moreover, in the pro-

posed gait, the design of a none-stiff ankle joint ( AnklePitch ) de-

creases the energy cost for sagittal movement to zero. The average

current in a fully stiff ankle joint in the Aldebaran gait is 0.03 A.

In the lateral plane, the average current (0.05 A) in the ankle joint

in the proposed gait is 28.6% less than that in the Aldebaran gait

(0.07 A) because of a low stiffness (10%) is applied in the previous

one. The overall energy consumption of joints on the leg in our

new gait reduces by 31% compared to the Aldebaran gait on the

flat ground. In our previous work [1] , we implemented the new

gait on a real Nao robot and conducted the same experiment. The

results show that, compared to the Aldebaran gait of the Nao on

the flat floor, the overall energy consumption of the gait reduces

by 41%. The disparity between the energy costs in the simulator

and the real Nao robot is caused by the different ways of energy
easurement on both platforms. For example, on the real Nao

obot, the electric current of joints can be read directly from

he joint sensor. Whereas, in the simulation environment, the en-

rgy consumption is estimated using the torque applied on the

oints. 

The second experiment shows the energy consumption of the

roposed gait w.r.t the increasing slope angles up to 5 ° in the

agittal and lateral plane. The energy costs of the proposed gait

re recorded and plotted in Fig. 14 . In the experiment, the Nao

obot is placed on a slope of angle p both in sagittal and lateral

lane. In this way, the energy cost of sagittal motion and lateral

otion can be recorded at the same time. We let the robot walk a

onstant distance on the slope of 0, 3, 5 and 7 degree separately,

nd record the average electric currents in the joints for sagittal

ovement ( HipPitch, KneePitch, AnklePitch ) and lateral movement

 HipRoll, AnkleRoll ). Fig. 14 shows that more energy is consumed in

he joints for the sagittal and the lateral motion as the angle of

lope increases. Notably, our new gait on the slopes requires less

nergy than the Aldebaran gait on the flat ground. This indicates

hat the proposed gait has better performance not only w.r.t. the

tability but also w.r.t. the energy efficiency on uneven terrains. 
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. Conclusion 

In our previous work we have presented a new gait for hu-

anoid robots. An implementation of the gait on a Nao robot re-

uces the energy consumption by 41% compared to the Aldebaran

ait of the Nao on a flat floor. An important feature of new the

ait is that it does not use an area of support. That is, the robot

an rotate freely around the ankle joint while walking. This makes

he new gait suited for uneven terrains because the feet can adapt

o the slope of the terrain. 

The absence of an area of support implies that, in principle, the

obot is unstable. In the sagittal plane, the robot falls forwards in

ach step, and in the lateral plane, the robot balances above the

tance foot in the single support phase and falls towards the swing

oot in the double support phase. Nevertheless, experiments with

 Nao robot on an almost flat floor consisting of wooden planks

howed that the gait is stable. 

In this paper, we investigate how we can improve the sagit-

al and lateral stability of the gait when a Nao robot walks on an

neven terrain. We first assume that single step on an uneven ter-

ain can be modelled as a step on the (virtual) slope with a cer-

ain angle. This assumption maps various terrain classes to slopes,

hereby, transforming the balance control problems on uneven ter-

ain as those on slopes. Since in the single support phase, the robot

an turn freely around the ankle joint, a bump or a hole on the

alking surface may disrupt the sagittal stability. Moreover, dur-

ng the double support phase the robot may overshoot or under-

hoot its stable end point, namely, balancing stable above the new

tance foot. We presents a feedback controller based on three feed-

orward neural networks that adapts the gait parameters in order

nsure the robot’s stability while it walks on an uneven terrain. 

The presented approach shows how to develop simple neural

etwork controllers for an energy efficient gait that enables walk-

ng on an uneven terrain: 

1. Analyze the gait using an abstract mathematical model of a

robot, 

2. Build a controller with 8 control parameters implementing the

gait, 

3. Identify for each slope angle the optimal control parameters

using reinforcement learning. The control parameters define a

different controller for each slope angle. 

4. Use the set of controllers (one for each slope angle) to train

a neural network controller that determines the length of the

stance leg, and another neural network controller which deter-

mines the stiffness of the knee joint of the swing leg in the

double support phase. 

The method is not limited to the Nao robot and can be applied

o humanoid robots with a similar design as a Nao robot, such as

HR-3, DARWIN-OP2. Moreover, the method that we used to de-

elop a new gait can be used for a wider range of robot designs,

nd even robots with point feet. The only essential sensor in our

ait controller is the IMU, which is present in most of the modern

obot. The method can also be applied to other movements such

s: kicking a ball, running, dancing, walking with foot placement

ontrol, etc. Further research into these possibilities is required. In

he longer run, the method might be used to analyze the effects of

alking disabilities in humans and identify the best way of deal-

ng with these disabilities. Robots can be used to evaluate possible

mprovements. 
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