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Recursive Filtering for Communication-Based Train
Control Systems with Packet Dropouts

Tao Wen, Lei Zou, Jinling Liang and Clive Roberts

Abstract—Accurate information about the train position and
velocity is critically important for Communication-based Train
Control (CBTC) systems. However, it is practically difficult to
obtain the precise information of such information due mainly
to the “inaccurate measurements” induced by the measurement
noises and the “unreliable communication” caused by the wireless
train-ground communication. In this paper, a recursive filtering
algorithm is proposed to generate the estimates of the train
position and velocity for CBTC systems subject to the mea-
surement noise and packet dropouts. Firstly, the dynamics of a
train is modeled based on the Newton’s motion equation. Then,
a Bernoulli distributed sequence is introduced to describe the
packet dropout phenomenon of the wireless communication. The
purpose of the problem addressed is to design a recursive filter
such that there exists an upper bound for the filtering error
covariance. Subsequently, such an upper bound is minimized
by properly designing the filter parameter recursively. The
desired filter parameter is obtained by solving two Riccati-like
difference equations that are of a recursive form suitable for
online applications. Finally, an illustrative example is given to
show the effective of the proposed filter design scheme.

Index Terms—Recursive filtering; Communication-based Train
Control Systems; Packet dropouts; Riccati-like difference equa-
tions.

I. INTRODUCTION

With experiencing fast economic growth, population expan-
sion and urbanisation in worldwide, especially in some major
developing counties, the demand for a safer, more efficient
and comfortable mass transit system is very urgent [22].
Railway system is a good choice for either urban commuting
or intercity transport, as they meet the increasing needs for
low emissions and high capacity. In railway systems, it is
particularly important to ensure that train control systems
could obtain the data from trains including the locations,
velocities, identities and other operation information. In early
years, railway systems tended to apply the track circuits to
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realize the communication between trains and the train control
center. Such kind of train control systems are known as
Track-circuit Based Control (TBTC) systems. TBTC systems
would give rise to low detection resolution, which finally leads
to long operation headway for trains in order to guarantee
there is no possibility for potential collisions. In other words,
track-circuit based technology would probably result in low
operation efficiency. In recent years, by utilizing modern wire-
less communication technology, Communication-based Train
Control (CBTC) systems have been developed to meet the
rapidly increasing demand on efficiency and safety. Compared
with the TBTC systems, the CBTC systems could dramatically
increase capacity and lower the unreliability in operation.

CBTC systems are automatic train control systems. A typi-
cal CBTC system structure is shown in Fig. 1, which contains
five subsystems, namely Automatic Train Protection (ATP),
Automatic Train Operation (ATO), Automatic Train Super-
vision (ATS), Computer-based Interlocking (CI) and Data
Communication System (DCS). ATP is the most significant
subsystem of CBTC systems. The main task of ATP is to
trigger the braking when emergencies happen so as to protect
the train from dangers. ATO is the driving part of the operation
which is utilized to automatically operate trains. ATS is a
supervision system managing the railway traffic through com-
manding the CI. DCS is in charge of exchanging the data flow
within each subsystems [15]. Most of the DCSs are distributed
systems, which are formed by wayside communication system,
onboard communication system and radio communication
system respectively. The wayside communication system and
onboard communication system are realized through secure
wired networks. The radio communication system employs
the wireless local area network (WLAN) to exchange data
between trains and the wayside access points (APs). Each AP
has certain radio coverage. When a train is moving into the
coverage of an AP, a bidirectional train-to-wayside wireless
connection will be built. When the train is running away the
radio coverage of an AP, the connection will be replaced by
another one whose radio coverage better covers the current
position of the train. Such a phenomenon is referred as the
hand-off procedure. In most of the DCSs, the WLAN utilizes
the signals with 2.4 GHz industrial, scientific and medical
(ISM) band and the IEEE 802.11 family of standards for
the media access control (MAC) layer protocol. Obviously,
in DCS, APs are very important for the wireless train-ground
communication. Continuous data transmissions are carried out
between wayside APs and on-board equipment, which enables
trains timely receive the moving authorities (MA), speed limit
and route data. However, as a radio-based communication
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technology, the communication performance of such a tech-
nology is not always perfect. Packet dropouts might happen
and result in operational risks in railway systems.

Fig. 1: The typical system structure of CBTC

Due to only a limited spectrum allocated in WLANs and
unlicensed ISM band used as the working frequency, the co-
channel interference could be the biggest threat for packet
dropouts. A main resource of co-channel interference comes
from the unwell-planned AP deployment in the DCS. A
number of research works have been done on exploring how
to decrease the packet dropout rate by planning a more
reasonable AP deployment [23]. For example, in [4], a novel
AP placement planning method in railway context has been de-
veloped. In [24], [16] and [8], various AP placement planning
strategies focusing on indoor Code Division Multiple Access
(CDMA) networks have been discussed. In [9], [10] and [12],
the planning strategies focusing on WLANs are proposed.
To further reduce the affection caused by the co-channel
interference, channel assignment in WLNAs is discussed in
[2], [3], [21] and [13], in which channel assignment has been
considered alongside the AP deployment aiming to further
improve the DCS system performance in terms of decreasing
the packet dropout rate. In addition to co-channel interference,
hand-off could be regarded as another important reason of
packet dropouts in DCS. In [28] and [7], improved hand-
off schemes have been proposed, which have been designed
to minimize the packet dropouts when hand-off phenomena
happens. However, the aforementioned research results could
not eliminate packet dropouts in DCS due to the wireless
communication nature, thereby affecting the reliability and
Quality of Service (QoS) of CBTC systems. Obviously, packet
dropouts would greatly reduce the precision of the train data
(e.g. location and velocity) obtained by the Zone Controller
(ZC). On the other hand, it is worth mentioning that the
train location for most of CBTC systems is measured by
the combination of balises and axle counting based speed
odometers. In CBTC systems, balises are intermittently placed
on the track. When a train runs in the interval between two
adjacent balises, train data will be measured by counting the
rotations of wheel axel, and when the train passes a balise,
the train data will be adjusted. However, due to the unavoid-
able wheel slip, the estimated train data might be polluted
by the measurement noise before the adjustment is made.
Accordingly, it is practically difficult to achieve the exact train
data under the influence of “inaccurate measurements” and

“unreliable communication”.
In order to achieve accurate information of the train data,

in this paper, a recursive filtering algorithm is developed to
generate the estimate of the train data based on the received
measurements. The filtering (or state estimation) problems
have long been fundamental issues in control and signal
processing fields, whose purpose is to derive an estimate of
the internal state for a given system based on the obtained
measurements. So far, various filtering methods have been
reported in the literature (e.g. Kalman filtering [19], Extended
Kalman filtering [5], H∞ filtering [18], [29], set-membership
filtering [30]). Considerable effort has been devoted to the
filtering problems with different conditions and performance
requirements. For instance, in [17], the Kalman filtering
problem with intermittent observations has been illustrated
where the packet dropouts have been modeled by the general
finite state Markov channel (FSMC). A novel hybrid filtering
algorithm has been developed in [6] to deal with the state
estimation problem for power systems where the signal is
obtained from the phasor measurement units. In [25], the
robust H2 and H∞ filtering problems for linear discrete-time
systems with polytopic parameter uncertainty has been studied
based on a parameter-dependent Lyapunov function approach.

In this paper, we aims to develop a recursive filtering
algorithm for the CBTC systems where the measurements of
the train might be corrupted by noises and experience packet
dropouts in the wireless communication. This is a nontrivial
problem because of two challenges identified as follows: 1)
how to develop an accurate dynamic model accounting for
the CBTC system with packet dropouts? 2) how to develop
appropriate methodology to design the recursive filter for the
CBTC system with the consideration of the model description
and packet dropouts? It is, therefore, the main purpose of
this paper to offer satisfactory answers to the two questions.
The primary contributions of this paper are highlighted as
follows. 1) The recursive filtering problem is, for the first
time, investigated for CBTC systems with packet dropouts. 2)
The design procedure of the filter gain is implemented in a
recursive manner which is suitable for online applications.

The rest of this paper is organized as follows. In Section
II, the mathematical description of the CBTC systems with
packet dropouts is proposed and the corresponding recursive
filtering problem is introduced. In Section III, the desired filter
gain matrix is recursively computed based on two Riccati-
like difference equations. Moreover, a numerical simulation
example is given in Section IV to demonstrate the effectiveness
of the main results. Finally, we conclude the paper in Section
V.

Notations: The notation used here is fairly standard except
where otherwise stated. Rn and Rn×m denote, respectively,
the n dimensional Euclidean space and the set of all n ×
m real matrices. The notation X ≥ Y (X > Y ), where X
and Y are real symmetric matrices, means that X − Y is
positive semi-definite (positive definite). Prob{·} means the
occurrence probability of the event “·”. E{x} and E{x|y} will,
respectively, denote the expectation of the stochastic variable
x and expectation of x conditional on y. 0 represents the zero
matrix of compatible dimension. The n-dimensional identity
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matrix is denoted as In or simply I , if no confusion is caused.
The shorthand diag{· · · } stands for a block-diagonal matrix.
‖x‖ refers to the Euclidean norm of a vector x. ‖A‖ denotes
the spectral norm of the matrix A. MT ∈ Rn×m represent the
transpose of the matrix M ∈ Rm×n.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. The system model

Fig. 2: Diagram of the train

As shown in [14], the dynamics of a train could be described
by the following Newton’s motion equations:





dx(t)

dt
= v(t)

Mtr
dv(t)

dt
= u(t)− fr(t)− Fgrad(t)

(1)

where x(t), v(t), u(t) and fr(t) represent, respectively, the
position, the velocity, the traction force and the resistive force
of the train. Mtr is the effective mass of the train. Fgrad(t) is
the force due to the gradient.

The force due to the gradient shows the effect of the gradient
profile and gravity acceleration. In an uphill situation, the train
receives a negative gravity component acceleration against
the moving direction, while in a downhill situation the train
receives a positive gravity component acceleration, as shown
in Fig. 2. Such a force can be computed as follows:

Fgrad(t) = Mg sin(θ(x(t))) (2)

where θ(x(t))denotes the gradient angle of the track which is
dependent on the location of the train. For easy notation, we
denote θ̄(t) = θ(x(t)).

Remark 1: In real applications, the gradient angle of the
track could always be measured in advance. Such an angle
varies from one place to another and could be easily detected
by track mounted balises. For technical convenience, the
force due to the gradient is rewritten as follows: Fgrad(t) =
Mg sin(θ̄(t)). Obviously, such a force is a known variable
which is always modeled by a piecewise constant function in
most of the situations.

The moment of inertia (e.g. the rotational inertia) is a
measure of a body’s resistance to angular acceleration, which
would increase with the accelerated train mass and be trans-
formed by gear ratio and wheel diameter [20]. For the purpose
of improving the accuracy of the plant modeling, the moment
of inertia should be taken into consideration in the derivation
of the effective mass by using a rotary allowance. As such,
the effective mass could be calculated as follows:

Mtr = (1 + λ)M (3)

where M is the total mass of the train (i.e. the tare mass plus
passenger mass). λ denotes the rotary allowance.

Denoting ~x(t) =
[
xT (t) vT (t)

]T
, the dynamics of the

train can be rewritten as follows:

d~x(t)

dt
= ~A~x(t) + ~Bu(t) + ~E

(
fr(t) + Fgrad(t)

)
(4)

where

~A =

[
0 1
0 0

]
, ~B =

[
0
1

(1+λ)M

]
, ~E =

[
0

− 1
(1+λ)M

]
.

In this paper, it is assumed that both the position and ve-
locity could be easily obtained via certain sensors equipped in
the train with a constant sampling period T . The measurement
output of the system (4) is given by

~y(kT ) = C̃~x(kT ) + ν(kT ) (5)

where ~y(kT ) and ν(kT ) (k ∈ N+) denote, respectively, the
measurement output and the measurement noise of the k-th
sampling instant. C̃ = diag{c1, c2} is the weight matrix of
the measurement data. The constants c1 and c2 represent the
weights of the position and velocity, respectively.

Remark 2: The measurement output is obtained from the
position sensors and velocity sensors located in the train.
In this paper, the units of position x(t) and velocity v(t)
are chosen as “meter” and “meter per second” according
to the SI units (international system of units), respectively.
Nevertheless, the units for measuring the position and velocity
in sensors might be different from the SI units. In this case,
the weight matrix C̃ is introduced to cope with the conversion
between different units.

Suppose that the traction force, the resistive force and the
gradient remain unchanged between two adjacent sampling
instants, i.e. u(t) = u(kT ), fr(t) = fr(kT ) and θ̄(t) = θ̄(kT )
for kT ≤ t < (k + 1)T . Then, the discrete-time model of
system (4) can be characterized as follows:
{
x̃(k + 1) = Ã1x̃(k) + B̃ũ(k) + Ẽ

(
f̃r(k) + F̃grad(k)

)

ỹ(k) = C̃x̃(k) + ν̃(k)

(6)

where

x̃(k) = ~x(kT ), ũ(k) = u(kT ), f̃r(k) = fr(kT ),

F̃grad(k) = Fgrad(kT ), ν̃(k) = ν(kT ), ỹ(k) = ~y(kT ),

Ã1 = e
~AT , B̃ =

∫ T

0

e
~Atdt ~B, Ẽ =

∫ T

0

e
~Atdt ~E.

The resistive force f̃r(k) exists consistently during the
train operation. Generally speaking, the resistive force can be
expressed as the sum of the ramp resistance, aerodynamic drag
and rolling mechanical resistance. According to the resistance
model in [27], the resistive force f̃r(k) could be described as

f̃r(k) = (a0 + a1v(kT ))M + a2Mv2(kT ) + ω̃(k) (7)

where the coefficients a0, a1 and a2 can be obtained by
experimental test. ω̃(k) is the unexpected wind force. It is
assumed that ω̃T (k)ω̃(k) ≤ qk.

Note that the speed of the train could not exceed the speed
limit for the purpose of safe operations. Hence, we assume that
the velocity of the train belongs to a given set, i.e. v(kT ) ∈
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[0, vmax]. Then, the model of the resistive force (7) can be
reformulated as follows:

f̃r(k) = (a0 + a1v(kT ))M + a2M
(vmax

2
+ ∆v(k)

)
v(kT )

+ ω̃(k) (8)

with |∆v(k)| ≤ vmax

2 . Therefore, the vector f̃r(k) can be
reformulated as follows:

f̃r(k) =
(
Ã2 + F̃∆Ã(k)

)
x̃(k) + ω̃(k) + ~f (9)

where

Ã2 =
[
0 a1M + a2Mvmax

2

]
, ~f = a0M, F̃ =

a2Mvmax

2
,

∆Ã(k) =
[
0 ∆v(k)

0.5vmax

]
.

Obviously, the uncertainty ∆Ã(k) satisfies ∆Ã(k)∆ÃT (k) ≤
I . Substituting (9) into (6), the system dynamics can be
transformed into the following easy-to-handle formulation:




x̃(k + 1) =
(
Ã+ ẼF̃∆Ã(k)

)
x̃(k) + B̃ũ(k) + Ẽ

(
~f

+ F̃grad(k)
)

+ Ẽω̃(k)

ỹ(k) = C̃x̃(k) + ν̃(k)

(10)

where Ã = Ã1 + ẼÃ2.
The initial state x̃(0) and the measurement noise ν̃(k)

are mutually uncorrelated and have the following statistical
properties:

E{x̃(0)} = x̄0, E{(x̃(0)− x̄0)(x̃(0)− x̄0)T } = P0|0,

E{ν̃(k)} = 0, E{ν̃(k)ν̃T (k)} = Rk,

where P0|0 > 0 and Rk > 0 are known matrices with
appropriate dimensions.

B. Structure of the filter

Before we introduce the structure of the filter, let us first
consider the data transmission via the train-ground communi-
cation. In this paper, the communication between each wayside
AP and trains in its coverage area is scheduled by the carrier
sense multiple access with collision avoidance (CSMA/CA)
protocol. Furthermore, an automatic repeat request (ARQ)
scheme is utilized in the CSMA/CA protocol at the medium-
access control layer of IEEE 802.11. As shown in [1], the
packet dropout (missing measurements) phenomenon would
occur in such a communication scheme. As such, the trans-
mission model of the system is given by

ȳ(k) = α(k)ỹ(k) (11)

where ȳ(k) denotes the measurement signal received by the
ZC via WLANs and α(k) ∈ {0, 1} is a Bernoulli distributed
stochastic variable indicating whether the packet dropout phe-
nomenon occurs at time instant k. Furthermore, we assume
that α(k) is independent of the noise and initial state.

Assume the maximum number of retransmission times of
the CSMA/CA protocol is r, and the frame error rate (FER)

of the communication channel is p. Then, the probability
distribution law of α(k) can be given by





Prob{α(k) = 1} = ᾱ ,
r−1∑

j=0

pj(1− p)

Prob{α(k) = 0} = 1− ᾱ
(12)

Based on the system dynamics (10) and the transmission
model (11), the recursive filter to be designed is of the
following form:




x̂(k + 1|k) = Ãx̂(k|k) + B̃ũ(k) + Ẽ
(
~f + F̃grad(k)

)

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)
(
ȳ(k + 1)

− α(k + 1)C̃x̂(k + 1|k)
)

(13)

where x̂(k|k) is the estimate of x̃(k) at time instant k with
x̂(0|0) = x̄0, x̂(k + 1|k) is the one-step prediction at time
instant k, K(k + 1) is the filter gain to be determined.

Remark 3: It is worth mentioning that the identity in-
formation of each train could be transmitted to the filter
simultaneously in the transmission. As such, the value of the
stochastic variable α(k) is available to the filter.

Given the maximum duration kmax for the CBTC system
(i.e. the maximum duration for a train covering the given
distance), the objective of this paper is to design a recursive
filter of the structure (13) such that, for all packet dropout
phenomenon, an upper bound of the filtering error covariance
is guaranteed, that is, there exists a family of positive-definite
matrices Σ(k + 1|k + 1) (0 ≤ k ≤ kmax) satisfying

E
{

(x̃(k + 1)− x̂(k + 1|k + 1))(x̃(k + 1)

− x̂(k + 1|k + 1))T
}
≤ Σ(k + 1|k + 1). (14)

Moreover, the designed filter gain K(k + 1) is expected to
minimize the trace of the matrix Σ(k + 1|k + 1) through a
recursive scheme.

Remark 4: In this paper, we aim to develop a recursive
filtering algorithm for the CBTC system with packet dropouts.
Obviously, the recursive filtering algorithm is implement in
a discrete-time manner. For ease of analysis on the filtering
performance, we transform the continuous-time system (4) into
the discrete-time counterpart (6). Based on the assumption that
the traction force, the resistive force and the gradient remain
unchanged between two adjacent sampling instants, i.e. u(t) =
u(kT ), fr(t) = fr(kT ) and θ̄(t) = θ̄(kT ) for kT ≤ t <
(k+1)T , the discrete-time system (6) is the exact discretization
of the continuous-time system (4). At each sampling instant
kT , the discrete-time system (6) could exactly derive the same
value of (4), which implies that the results obtained for (6) still
valid for the original system (4) (i.e. E

{
(~x((k+ 1)T )− x̂(k+

1|k+ 1))(~x((k+ 1)T )− x̂(k+ 1|k+ 1))T
}
≤ Σ(k+ 1|k+ 1)

and the designed gain K(k + 1) could minimize the trace of
Σ(k + 1|k + 1)).

III. MAIN RESULTS

In this section, we shall develop a unified framework to
deal with the addressed filtering problem in the simultane-
ous presence of parameter uncertainties and packet dropout
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phenomenon. Before proceeding further, we are in a position
to introduce the following lemmas which will be used in
subsequent developments.

Lemma 1: [26] Given matrices A, H , E and F with
appropriate dimensions such that FFT ≤ I . Let X be a
symmetric positive definite matrix and γ be an arbitrary
positive constant such that γ−1I − EXET > 0. Then the
following inequality holds

(A+HFE)X(A+HFE)T

≤A(X−1 − γETE)−1AT + γ−1HHT . (15)

Lemma 2: For 0 ≤ k ≤ N , suppose that X = XT > 0,
Sk(X) = STk (X) ∈ Rn×n. If

Sk(Y ) ≥ Sk(X), ∀X ≤ Y = Y T (16)

then the solutions Mk and Nk to the following difference
equations

Mk+1 ≤ Sk(Mk), Nk+1 = Sk(Nk), M0 = N0 > 0
(17)

satisfy Mk ≤ Nk.
Proof: The proof of this lemma is performed by math-

ematical induction, which is divided into two steps, namely,
the initial step and the inductive step.

Initial step. For k = 0, it can be immediately known from
the condition M0 = N0 that Mk ≤ Nk is satisfied for k = 0.

Inductive step. Now that the assertion of this lemma is true
for k = 0. Next, given that the assertion is true for k = t
(i.e. Mt ≤ Nt), we aim to show that the same assertion is
true for k = t + 1 (i.e. Mt+1 ≤ Nt+1). Obviously, it follows
from (16) and (17) that

Mt+1 ≤ St(Mt) ≤ St(Nt) = Nt+1.

Hence, by the induction, it can be concluded that the assertion
of this lemma is true for k ≥ 0. The proof is complete.

Lemma 3: [11] For matrices M , N , X and P with
appropriate dimensions, the following equalities hold:

∂tr{MXN}
∂X

= MTNT ,
∂tr{MXTN}

∂X
= NM,

∂tr{MXNXTL}
∂X

= MTLTXNT + LMXN.

In what follows, let us consider the dynamics of the filtering
error. Define the one-step prediction error as e(k + 1|k) =
x̃(k+1)−x̂(k+1|k) and the filtering error as e(k+1|k+1) =
x̃(k+ 1)− x̂(k+ 1|k+ 1). Subtracting (13) from (6), we have




e(k + 1|k) = Ãe(k|k) + ẼF̃∆Ã(k)x̃(k) + Ẽω̃(k)

e(k + 1|k + 1) =
(
I − α(k + 1)K(k + 1)C̃

)
e(k + 1|k)

− α(k + 1)K(k + 1)ν̃(k + 1)
(18)

Subsequently, the following theorem can be easily accessi-
ble and therefore we omit the proof for conciseness.

Theorem 1: Let Pk+1|k+1 = E{e(k+ 1|k)e(k+ 1|k)T } and
Pk+1|k = E{e(k+1|k)e(k+1|k)T }. Then, the value of Pk+1|k
could be given by

Pk+1|k = ÃPk|kÃ
T + ÃE{e(k|k)x̃T (k)}∆ÃT (k)F̃T ẼT

+ ẼF̃∆Ã(k)E{x̃(k)eT (k|k)}ÃT + ẼQkẼ
T

+ ẼF̃∆Ã(k)E{x̃(k)x̃T (k)}∆ÃT (k)F̃T ẼT . (19)

where Qk = ω̃(k)ω̃T (k). Furthermore, the second-moment
matrix Pk+1|k+1 satisfies

Pk+1|k+1 =
(
I − ᾱK(k + 1)C̃

)
Pk+1|k

(
I − ᾱK(k + 1)C̃

)T

+ ᾱ(1− ᾱ)K(k + 1)C̃Pk+1|kC̃
TKT (k + 1)

+ ᾱK(k + 1)Rk+1K
T (k + 1). (20)

Remark 5: In Theorem 1, the recursive form of the second-
moment matrix Pk+1|k+1 has been established which contains
all the information contributes to the system complexities
(e.g. the system parameters, the parameter uncertainty and the
system noise). However, due to the simultaneous consideration
of parameter uncertainty and packet dropout phenomenon, (19)
and (20) are contaminated by some unknown terms such as
E{e(k|k)x̃T (k)}, ∆Ã(k) and E{x̃(k)x̃T (k)}, which lead to
essential difficulty in determining the accurate value of the
second-moment matrix Pk+1|k+1. In the following, we shall
present an alternatively way to design an appropriate filter
parameter K(k + 1), such that an upper bound of Pk+1|k+1

is guaranteed.
Theorem 2: Consider the second-moment matrices Pk+1|k

and Pk+1|k+1 in (19)-(20), respectively. Let γk, εj (j = 1, 2)
be positive scalars. If the following two discrete-time Riccati-
like difference equations:

Σk+1|k(Σk|k) = qkẼẼ
T + (1 + ε)

(
Ã
(
Σ−1
k|k − γkI

)−1
ÃT

+ γ−1
k ẼF̃ F̃T ẼT

)
+ (1 + ε−1)λ̄k|kẼF̃ F̃

T ẼT (21)

Σk+1|k+1(Σk+1|k) =
(
I − ᾱK(k + 1)C̃

)
Σk+1|k

(
I

− ᾱK(k + 1)C̃
)T

+ ᾱK(k + 1)Rk+1K
T (k + 1)

+ ᾱ(1− ᾱ)K(k + 1)C̃Σk+1|kC̃
TKT (k + 1) (22)

with the initial condition Σ0|0 = P0|0 > 0 have posi-
tive definite solutions Σk+1|k and Σk+1|k+1 where λ̄k|k =
λmax{x̂(k|k)x̂T (k|k)} such that, for all 0 ≤ k ≤ kmax, the
following constraint

γ−1
k I − Σk|k > 0 (23)

is satisfied, then with the filter gain Kk+1 given by

K(k + 1) = ᾱΣk+1|kC̃
T
(
Rk+1 + C̃Σk+1|kC̃

T
)−1

(24)

the matrix Σk+1|k+1 is an upper bound for Pk+1|k+1, i.e.,
Pk+1|k+1 ≤ Σk+1|k+1. Moreover, the filter gain Kk+1 given
by (24) minimizes the upper bound Σk+1|k+1.

Proof: To begin with, based on (19), the second-moment
matrix Pk+1|k could be rewritten as follows:

Pk+1|k(Pk|k) = ÃPk|kÃ
T + ÃE{e(k|k)(e(k|k) + x̂(k|k))T }

×∆ÃT (k)F̃T ẼT + ẼF̃∆Ã(k)E{(e(k|k) + x̂(k|k))

× eT (k|k)}ÃT + ẼF̃∆Ã(k)× E{(e(k|k) + x̂(k|k))

× (e(k|k) + x̂(k|k))T }∆ÃT (k)F̃T ẼT + ẼQkẼ
T

= ÃPk|kÃ
T + Ã

(
Pk|k + E{e(k|k)x̂T (k|k)}

)
∆ÃT (k)F̃T

× ẼT + ẼF̃∆Ã(k)
(
Pk|k + E{x̂(k|k)eT (k|k)}

)
ÃT
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+ ẼF̃∆Ã(k)
(
Pk|k + E{e(k|k)x̂T (k|k)

+ E{x̂(k|k)eT (k|k)}+ x̂(k|k)x̂T (k|k)}
)
∆ÃT (k)

× F̃T ẼT + ẼQkẼ
T

=
(
Ã+ ẼF̃∆Ã(k)

)
Pk|k

(
Ã+ ẼF̃∆Ã(k)

)T
+
(
Ã

+ ẼF̃∆Ã(k)
)
E{e(k|k)x̂T (k|k)}∆ÃT (k)F̃T ẼT

+ ẼF̃∆Ã(k)E{x̂(k|k)eT (k|k)}
(
Ã+ ẼF̃∆Ã(k)

)T

+ ẼF̃∆Ã(k)x̂(k|k)x̂T (k|k)∆ÃT (k)F̃T ẼT

+ ẼQkẼ
T (25)

where Qk = ω̃(k)ω̃T (k).
Notice that the following elementary inequality

(
ε0.5a− ε−0.5b

)(
ε0.5a− ε−0.5b

)T
≥ 0 (26)

yields

abT + baT ≤ εaaT + ε−1bbT (27)

where ε > 0 is a scalar. Then, it can be concluded that
(
Ã+ ẼF̃∆Ã(k)

)
E{e(k|k)x̂T (k|k)}∆ÃT (k)F̃T ẼT

+ ẼF̃∆Ã(k)E{x̂(k|k)eT (k|k)}
(
Ã+ ẼF̃∆Ã(k)

)T

≤ ε
(
Ã+ ẼF̃∆Ã(k)

)
Pk|k

(
Ã+ ẼF̃∆Ã(k)

)T

+ ε−1ẼF̃∆Ã(k)x̂(k|k)x̂T (k|k)∆ÃT (k)F̃T ẼT (28)

Based on (28) and Lemma 1, we have the following inequality:

Pk+1|k(Pk|k)

≤ (1 + ε)
(
Ã+ ẼF̃∆Ã(k)

)
Pk|k

(
Ã+ ẼF̃∆Ã(k)

)T

+ (1 + ε−1)ẼF̃∆Ã(k)x̂(k|k)x̂T (k|k)∆ÃT (k)F̃T ẼT

+ ẼQkẼ
T

≤ (1 + ε)
(
Ã
(
P−1
k|k − γkI

)−1
ÃT + γ−1

k ẼF̃ F̃T ẼT
)

+ (1 + ε−1)λ̄k|kẼF̃ F̃
T ẼT + ẼQkẼ

T . (29)

Noticing that Qk = ω̃(k)ω̃T (k) ≤ tr{ω̃(k)ω̃T (k)}I ≤
ω̃T (k)ω̃(k)I ≤ qkI , we have

Pk+1|k(Pk|k)

≤ (1 + ε)
(
Ã
(
P−1
k|k − γkI

)−1
ÃT + γ−1

k ẼF̃ F̃T ẼT
)

+ (1 + ε−1)λ̄k|kẼF̃ F̃
T ẼT + qkẼẼ

T . (30)

Next, according to (29), we continue to rewrite Σk+1|k as
the function of Σk|k as follows:

Σk+1|k(Σk|k) = qkẼẼ
T + (1 + ε)

(
Ã
(
Σ−1
k|k − γkI

)−1
ÃT

+ γ−1
k ẼF̃ F̃T ẼT

)
+ (1 + ε−1)λ̄k|kẼF̃ F̃

T ẼT (31)

Obviously, the matrix functions Σk+1|k(·) and Σk+1|k+1(·)
satisfies

Σk+1|k(Y ) ≥ Σk+1|k(X), ∀XT = X ≤ Y = Y T

Σk+1|k+1(Ȳ ) ≥ Σk+1|k+1(X̄), ∀X̄T = X̄ ≤ Ȳ = Ȳ T

which implies that for all XT = X ≤ Y = Y T , we have

Σk+1|k+1

(
Σk+1|k(Y )

)
≥ Σk+1|k+1

(
Σk+1|k(X)

)
.

By applying Lemma 2, it is easy to see that Pk+1|k+1 ≤
Σk+1|k+1.

Next, we are ready to show that the filter gain given by
(24) is the optimal in the sense that it minimizes the upper
bound Σk+1|k+1. Taking the partial derivative of Σk+1|k+1

with respect to Kk+1 and letting the derivative be zero, we
have

∂tr{Σk+1|k+1}
∂Kk+1

= − 2ᾱΣk+1|kC̃
T + 2Kk+1(Rk+1 + C̃Σk+1|kC̃

T ) = 0
(32)

Based on the above equation, the optimal filter gain Kk+1 can
be determined as

K(k + 1) = ᾱΣk+1|kC̃
T
(
Rk+1 + C̃Σk+1|kC̃

T
)−1

(33)

which is identical to (24). It is clear that the filter gain given
by (33) is optimal that minimizes the upper bound Σk+1|k+1

for the second-moment matrix Pk+1|k+1. This completes the
proof.

Remark 6: So far, we have studied the dynamics of the
CBTC systems and then developed a robust Kalman filter
to minimize the upper bound of the second-moment matrix
about the filtering error. In our main results, all the important
aspects are dealt with in a unified yet effective framework.
The proposed filter is designed in terms of the solutions
of two Riccati-like difference equations, which is recursive
and therefore suitable for online applications. Furthermore,
note that the scalar γk is involved in the discrete Riccati-
like difference equation (21). In the implementation, the value
of γk could be adjusted at each time instant to guarantee
the inequality (23) so as to help enhance the solvability of
the filtering algorithm proposed in this paper. It is worth
mentioning that, in most of the existing CBTC systems, the in-
formation about the position and velocity is always derived by
direct measurements. The Zone-Controller would receive such
information via the network-based communication directly,
which would lead to significant error between the true values
and the received data (especially when the the transmitted data
is missing due to the packet dropouts phenomenon). To the
best of our knowledge, this paper represents the first attempt
to study the filtering problem for CBTC systems with packet
dropouts. Based on our developed recursive filtering, we could
generate an accurate estimates of the position and velocity for
the train.

IV. SIMULATION RESULTS AND DISCUSSIONS

In order to verify the effectiveness of the proposed filtering
strategy, a series of simulations studies are carried out. The
parameters are given in the following Table. In the following
simulation, the corresponding data of the train is selected from
a real railway system.

The rotary allowance of the train is 0.16 (i.e. λ = 0.16).
The initial location and velocity of the train is 1333.8031 and
0, respectively (i.e. x(0) = 0.16 and v(0) = 0). The gradient
angle of the track is given as follows:

Assume the frame error rate (FER) of the communication
channel p is 0.5, and the maximum number of retransmission
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TABLE I: Parameters of the high speed train

Symbol Value Unit

M 288× 103 kg

vmax 22.23 m/s

a0 3.4818036× 103 None

a1 144.9154 None

a2 8.5212 None

T 1 s

TABLE II: Gradient angle of the track

Gradient angle Location

−3 [0, 1706)

3 [1706, 2372)

−3 [2372, 2479)

−9 [2479, 2619)

times of the CSMA/CA protocol is 3. Hence, the probability
distribution law of α(k) is given by the following equality:





Prob{α(k) = 1} = ᾱ ,
r−1∑

j=0

pj(1− p) = 0.875

Prob{α(k) = 0} = 1− ᾱ = 0.125

Furthermore, the speed limit of the train is vmax = 22.23.
Then, based on the main results of this paper, we can derive the
discrete-time mathematical description of the train according
to (6). Fig. 3 shows the position trajectories of the discrete-
time mathematical description and the measured location data
derived from the experiment. Fig. 4 shows the velocity trajec-
tories of the discrete-time model and the measured velocity
data derived from the experiment. Note that the measurement
data of the train is obtained from the subway experiment.
We assumed that such data is precise enough (e.g. there is
no measurement noise and packet dropouts). It can be found
that that our discrete-time model could track the measurement
data of the experiment well. There exists certain tracking error
between the model and measurement data. In what follows, let
us show that our developed filtering algorithm could achieve
better tracking performance than direct measurements.

In the following simulation, an external measurement noise
is added to the measurement data of the experiment (e.g. Rk =
diag{1, 0.01}). Furthermore, we assume that qk = 0.49. Based
on the derived discrete-time mathematical description and the
“revised” measurement data (with measurement noise and
packet dropouts), we could design the recursive filter of the
form (13). By applying Theorem 2, we could achieve the
desired filter parameter recursively. The simulation results are
shown in Figs. 5-6.

In order to show the improvements of the tracking perfor-
mance compared with direct measurements. We shall make a
simulation comparison on the statistical variances. Due to the
existence of the packet dropout phenomenon, sometimes the
received measurement data would be zero when α(k) = 0.
A reasonable scheme is to “compensate” the missing data
by some easy-to-implement algorithm. In this simulation, we
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Fig. 3: The position simulation trajectories (discrete-time model and
measurement data from experiment(without packet dropouts))
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Fig. 4: The velocity simulation trajectories (discrete-time model and
measurement data from experiment(without packet dropouts))
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Fig. 5: The position tracking trajectories

adopt the well-known First-Order Hold (FOH) scheme to
generate the corresponding data if the measurement data is
missing. The corresponding statistical variances of our pro-



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

REVISION 8

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10

12

14

16

18

Time (k)

V
el
o
ci
ty

 

 
Estimates
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Fig. 6: The velocity tracking trajectories

posed filtering scheme and the direct measurements with FOH
scheme is given in the following table. It can be observed from
Tab. III that our proposed recursive filtering scheme could
significantly improve the accuracy on the obtained information
of position and velocity.

TABLE III: Comparison on the statistical variances

Direct measurements

with FOH scheme

Recursive filtering

scheme

Statistical variance

(location)
8.4972 5.1516

Statistical variance

(velocity)
0.3226 0.0518

V. CONCLUSION

This paper has addressed the recursive filtering problem for
the Communication-based Train Control (CBTC) systems. The
dynamics of the train has been first modeled by a continuous-
time system and then reformulated as a discrete-time system.
Due to the nature of wireless communication, a Bernoulli
distributed sequence has been employed to characterize the
packet dropouts of the train-ground communication. A re-
cursive filter has been developed to generate the estimates
of the train position and velocity for CBTC systems subject
to the measurement noise and packet dropouts. By solving
two Riccati-like difference equations, the desired filter gain
has been calculated in a recursive form suitable for online
applications. The derived recursive filter has ensure that there
exists an upper bound for the second-moment matrix about the
filtering error. Furthermore, the designed filter parameter could
minimize such an upper bound. An illustrative example has
been adopted to demonstrate the effectiveness of the proposed
filter design method.

Further research topics include the extension of the main
results to 1) recursive filtering problem for CBTC systems
with quantization effects; and 2) H∞ filtering problem for
CBTC systems.
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