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Abstract

Rician noise removal for Magnetic Resonance Imaging (MRI) is very important because the MRI 

has been widely used in various clinical applications and the associated Rician noise deteriorates 

the image quality and causes errors in interpreting the images. Great efforts have recently been 

devoted to develop the corresponding noise-removal algorithms, particularly the development 

based on the newly-established Total Variation (TV) theorem. However, all the TV-based 

algorithms depend mainly on the gradient information and have been shown to produce the so 

called “blocky” artifact, which also deteriorates the image quality and causes image interpretation 

errors. In order to avoid producing the artifact, this paper presents a new de-noising model based 

on sparse representation and dictionary learning. The Split Bregman Iteration strategy is employed 

to implement the model. Furthermore, an appropriate dictionary is designed by the use of the 

Kernel Singular Value Decomposition method, resulting in a new Rician noise removal algorithm. 

Compared with other de-noising algorithms, the presented new algorithm can achieve superior 

performance, in terms of quantitative measures of the Structural Similarity Index and Peak Signal 

to Noise Ratio, by a series of experiments using different images in the presence of Rician noise.
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1. INTRODUCTION

The issue of image restoration in the presence of noise, (including either de-noising or de-

noising plus de-blurring), is a basic and important topic in the field of image processing. 

Many de-noising algorithms have been proposed to deal with, for example, the Gaussian 

white noise [1][2], Poisson noise [3][4], multiplicative noise [5][6][7], and impulse noise [8]

[9]. As Magnetic Resonance Imaging (MRI) is being widely used in daily clinical 

applications, the associated Rician noise becomes a clinically-significant concern, because 

the noise deteriorates the image quality and causes errors in interpreting the images in the 
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clinical applications. To relieve these concerns, our main goal here can be mathematically 

described as restoring the true (or desired) image u from the acquired image f, which is 

degraded by the Rician noise. For the particular Rician noise occurred in MRI, the degraded 

image f can be expressed as:

f = (u + η1)2 + η2
2 (1)

where η1 and η2 represent independent Gaussian white noise.

Recently there have been many algorithms reported for removing the Rician noise, such as 

non-local mean filtering [10], wavelet packet [11], and wavelet domain filtering [12]. At the 

same time, other models or theories for Rician noise removal were presented, for example, 

the model proposed by Rudin, Osher and Fatemi [13], where the primal-dual algorithm [14] 

was employed to solve the model; and the maximum a posteriori (MAP) model [15], where 

the L2 gradient-descent numerical method was used to solve the model. In the MAP model, 

the first item reflects the data fidelity under the image acquisition process condition and the 

second term considers the characteristics of the desired true image as much as possible. 

Unfortunately, these two items of the MAP model together render a non-convex cost 

function, resulting in a challenging task for solving the model or minimizing the cost 

function. To mitigate the challenge, Getreuer et al proposed a convex model [15] to 

approximate the MAP solution and solved the convex model by the Split Bregman Iteration 

(SBI) algorithm [16][17]. Although this approximated model is convex, its fidelity item is a 

piecewise function which is complicated and its mathematical properties are not very clear. 

To avoid the complication of the piecewise function, Chen et al [18] proposed a convex 

model to describe and remove the Rician noise, based on the newly-established Total 

Variation (TV) theorem.

Although the newly-established TV regularization strategy can preserve the nature of the 

edge very well, it will make flat areas spread along the edge direction and produce virtual 

edges inside a flat image area. This results in the so called blocky artifact. On the other hand, 

sparse is an important characteristic of natural images [19] and it has been applied 

successfully in the domain of image processing, such as image de-noising [20][21][22], 

image de-blurring [23], super resolution imaging [24][25][26][27], etc. Based on these two 

observations, a new regularization strategy for the Chen model [18] is proposed in this study. 

Using sparse representation, we avoid computing the gradient so the removal of Rician noise 

does not generate blocky artifacts. The SBI algorithm is employed to solve the new model or 

cost function. We update the associated dictionary in the sparse representation by the Kernel 

Singular Value Decomposition (K-SVD) algorithm [21] to find the most appropriate 

dictionary for image restoration. Compared with most of the TV-based Rician noise 

removing models, the effect of sparse feature representation used in this paper is much 

better. The experimental results show that our model can retain more edge details in the 

restored images.

Chen et al. Page 2

Neurocomputing. Author manuscript; available in PMC 2018 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The rest of this paper is organized as follows. Section 2 introduces the related works and our 

new model. Section 3 shows some experimental results. Conclusion is drawn in Section 4.

2. METHOD

2.1. Some relevant models

Getreuer et al. [15] propose a TV-based model based on the MAP framework. According to 

equation (1), f is a known degraded image and u is the original image. The probability 

distribution function of f, for Rician noise, is given by

P( f |u) = u
σ2exp( − u2 + f 2

2σ2 )B0( f ⋅ u
σ2 ) (2)

where σ is the standard deviation of the noise, and B0 is the modified Bessel function [28] of 

zero order Bn(x) = 1
π∫0

π
excosθcos(nθ)dθ. The MAP solution for the original image u is 

expressed as u = arg max
u

P(u | f ). By using the Bayes’ theorem, we obtain

arg max
u

P(u | f ) arg max
u

P(u)P( f |u) arg min ( − log(P(u)) − log(P( f |u)))
u

(3)

According to the Gibbs prior [5], we assume the prior P(u) = exp(γ | ∇u |dx), where γ is a 

parameter and ∇ is the gradient operator. Then, according to the Rician distribution (2), we 

can obtain

inf
u

1
2σ2∫

Ω
u2 + f 2 dx − ∫

Ω
log B0

f · u
σ2 dx + γ∫

Ω
|∇u|dx (4)

where Ω is the image domain. Since the noisy image f is known, the model (4) can be 

written as

inf
u

1
2σ2∫

Ω
u2dx − ∫

Ω
log B0

f · u
σ2 dx + γ∫

Ω
|∇u|dx (5)

Chen et al. [18] add the penalty term 1
σ ∫

Ω
u − f 2dx into the original model (5) and obtain a 

new model as follows
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inf
u

1
2σ2∫

Ω
u2dx − ∫

Ω
log B0

f · u
σ2 dx + 1

σ∫
Ω

u − f 2dx + γ∫
Ω

|∇u|dx (6)

This model is solved by primal-dual algorithm [14]. In the rest of the paper, we refer to this 

as Chen’s model for simplicity.

2.2. The new model based on sparse representation and dictionary learning

2.2.1. The de-noising model—Assume I ∈ RN is an image (N represents the size of 

image, it also can be seen as a number of total pixels in the image if the image matrix piles 

up by column) and Ii ∈ R
Niis one of the image patches extracted from the image I with size 

Ni. Using an over-complete dictionary matrix D ∈ R
N × Ni, every image patch can find an 

appropriate sparse vector αi ∈ R
Ni such that Ii ≈ Dαi. The entire image can also be 

represented by the set of αi and the sparse coefficients α obtained through all sparse 

vectors. We change the regularization term of the model (6) and rewrite it as:

min
u, α

1
2σ2 u 2

2
− log B0

f · u
σ2 + 1

σ u − f 2
2 + μ α 0 , s . t u = Dα (7)

where f, u, B0, σ and α were defined before, μ is a parameter, ||·||0and ||·||2 represent 0-norm 

and 2-norm separately. The SBI algorithm [16] is used to solve the problem (7). Equation (7) 

can be converted into an equivalent form as follows,

min
u, α

G u + R α , s . t . u − Dα = 0 (8)

where G u = 1
2σ2 u 2

2
− log B0

f u

σ2 + 1
σ u − f 2

2 and R α = μ α 0. According to the SBI 

algorithm, the problem (8) can be solved as

αk + 1 = argmin
α

R α + ρ
2 Dα − uk + yk

2
2

(9)

uk + 1 = argmin
u

G u + ρ
2 Dαk + 1 − u + yk

2
2

(10)
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yk + 1 = yk − ρ uk + 1 − Dαk + 1 (11)

where y is the related variable of the SBI algorithm, ρ is a parameter and k is the number of 

iteration. We will describe the solution of variables α and u in detail below.

The α sub-problem: The problem (9) can be rewritten as

αk + 1 = argmin
α

μ
ρ α 0 + 1

2 Dα − rk
2
2

(12)

where rk = uk − yk, every image patch r j = R jr,   R j is an operator that extracts the patch rk

from r. From the view of image patch, the problem (12) can be changed to

α = argmin
α

∑
j

1
2 Dα j − R jr

k
2
2 + ∑

j

μ j
ρ α j 0 (13)

where α j is a sparse vector and μ j is a parameter. Sparse image coefficient α can be obtained 

by Equation (13) and the initial training dictionary D is a complete DCT dictionary. The 

problem (13) can be solved by the orthogonal matching pursuit (OMP) algorithm [29]. 

Figure 1 is the procedure of the new model based on sparse representation and dictionary 

learning.

The u sub-problem: The problem (10) can be converted to:

min
u, v

G u + F v , s . t . u − v = 0 (14)

where G u = 1
2σ2 u 2

2
− log B0

f u

σ2 + 1
σ u − f 2

2, F v = ρ
2 Dαk + 1 − v + yk

2
2
. According to 

SBI algorithm, the problem (14) can be changed to

vk + 1 = argmin
v

F v + λ
2 uk − v − bk

2
2

(15)

uk + 1 = argmin
u

G u + λ
2 u − vk + 1 − bk

2
2

(16)
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bk + 1 = bk − λ uk + 1 − vk + 1 (17)

where b is the related variable of the SBI algorithm and λ is a parameter.

Solution of variable v: It can be seen from equation (15), solution of the variable v contains 

sparse coefficient α, and then we can convert this problem into a sparse representation for 

each patch,

vk + 1 = argmin
v

∑
j

ρ
2 Dα j

k + 1 − R jv + y j
k

2
2 + λ

2 uk − v − bk
2
2

(18)

The problem (18) is a convex problem and it can be solved as follows,

vk + 1 = λE + ρ∑
j

R j
TR j

−1

λ uk − bk + ρ∑
j

R j
T(Dα j

k + 1 + y j
k) (19)

where E is identity matrix and T means transpose.

Solution of variable u: The derivative equation of objective function (15) has a unique 

solution because the objective function is convex. Therefore, we can use the Newton’s 

method [7][15] to solve the derivative equation.

2.2.2. The model of de-noising plus de-blurring—The Rician noise removal model 

has been described in the past subsection. Now we will try to deal with the de-noising plus 

de-blurring problem by the new model. The two kinds of blur models we consider in this 

paper are Gaussian blur and motion blur. Meanwhile, images are also degraded by Rician 

noise. Some visual effects are shown in Fig. 2.

With both the system blur and the presence of Rician noise, the degraded image f can be 

expressed as

f = (Au + η1)2 + η2
2 (20)

where A is a known linear blurring operator or a matrix if the image seen as a matrix. Then, 

the following optimization problem should be solved in order to restore image.

min
u, α

1
2σ2 Au 2

2 − log B0
Au · f

σ2 + 1
σ Au − f 2

2 + μ α 0 , s . t . u − Dα = 0 (21)
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Equation (21) can be converted into an equivalent form,

min
z, u, α

G z + R α , s . t . u − Dα = 0, Au − z = 0 (22)

where G z = 1
2σ2 z 2

2
− log B0

f · z

σ2 + 1
σ z − f 2

2, R α = μ α 0, z is a variable and it is 

constrained by Au. Then, the problem (22) can be changed to

min
z, u, α

1
2σ2 z 2

2
− log B0

f z
σ2 + 1

σ z − f 2
2 + μ α 0 +

ρ1
2 Dα − u + y1 2

2

+
ρ2
2 z − Au + y2 2

2

(23)

where y1 and y2 are variables related to the SBI algorithm, ρ1, ρ2are two weighted 

parameters. The optimization problem (23) can be converted into the following sub-

optimization problems

αk + 1 = argmin
α

R α +
ρ1
2 Dα − uk + y1

k
2
2

(24)

zk + 1 = argmin
z

G z +
ρ2
2 z − Auk + y2

k
2
2

(25)

uk + 1 = argmin
u

ρ1
2 Dαk + 1 − u + y1

k
2
2 +

ρ2
2 zk + 1 − Au + y2

k
2
2

(26)

y1
k + 1 = y1

k − ρ1 uk + 1 − Dαk + 1 (27)

y2
k + 1 = y2

k − ρ2 Auk + 1 − zk + 1 (28)

We will discuss the solution of the sub-problems one by one.

According to equation (24),
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αk + 1 = argmin
α

μ
ρ1

α 0 + 1
2 Dα − r1

k
2
2

(29)

where r1
k = uk − y1

k, the problem (29) can be written as

α = argmin
α

∑
j

1
2 Dα j − R jr1

k
2
2 + ∑

j

μ j
ρ1

α j 0 (30)

This problem is similar to problem (13) and it also can be solved by OMP algorithm [29]. 

Then the initial training dictionary can be updated by K-SVD algorithm.

It is obvious that the objective function of problem (25) is strictly convex, we can use the 

same method as (16) to solve it. The sub-optimization problems of variables z and u can also 

be solved similarly as described in the previous section.

3. EXPERIMENTAL RESULTS

We use MATLAB 7.10 (R2010a) as the tool to carry out all algorithms on a PC with 

Windows 7 operating system. The parameter μ is manually selected as 1 in our algorithm for 

all experiments. De-noising performance is evaluated using the structural similarity 

index(SSIM) [30] and Peak Signal to Noise Ratio (PSNR) values in dB which is defined by

10 ⋅ log10( M2

1
m ⋅ n ∑

i = 1

m
∑
j = 1

n
(u′(i, j) − u(i, j))2

) (31)

where u′(x, y) denotes the restored image with respect to the original image u(x, y), m and n 
are the width and height of image, M = max ( max

1 ≤ i ≤ m
1 ≤ j ≤ n

u(i, j), max
1 ≤ i ≤ m
1 ≤ j ≤ n

u′(i, j)).

Figure 3 shows some slices of T1 and T2 MRI images obtained from [30]. All slices come 

from normal brain MRI images with slice thickness of 1 mm, no noise, and no intensity non-

uniformity. There are 181 slices for one 3D MRI brain image. We chose some slices 

manually that contain more brain information for testing. The result of the new model will 

be compared with MAP model [15], Getreuer’s model [15] and Chen’s model [18]. Some 

visual effects of T2 weighted MRI images are shown in Fig. 2. Figure 4 shows the 

corresponding SSIM and PSNR values for the images in Fig. 2. Together these demonstrate 

that our model produces better results than the traditional methods on T2 weighed MRI 

images. The average time of MAP model, Getreuer’s model, Chen’s model and our model 

are 58.2896, 45.9461,60.7792 and 1774.2 seconds separately. Our model will spend more 

time due to the dictionary learning. At the same time, the cost also depends on the size of the 
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image, the hardware and software of the computer. It can be sped up with a stronger 

computer and optimized algorithm.

The de-noised results of A T1 weighted MRI image slice and their corresponding SSIM and 

PSNR values under different models are shown in Table 1 and Fig. 6. The details of images 

obtained by our model are clearer than the results of other models. Notably, the blocky 

artifact that appears from the other models does not occur in the images generated by our 

model. This is more obvious for images with heavier noise levels. The SSIM and PSNR 

values in Fig. 6 also reflect this phenomenon. Figure 6 and Table 1 show that our model is 

superior to other models, not only in visual effects, but also in SSIM and PSNR values.

We also test some natural images with Rician noise to further evaluate the effectiveness of 

our model. The size of the dictionary is 64×512 and the size of each image patch is 8×8 

pixels. Experimental results indicate that our model is superior to the other three models on 

natural images with simulated Rician noise as well. The blocky artifact does not appear in 

the de-noised images from our model. This can be seen in Fig. 7, Fig. 8 and Fig. 9.

Figure 7 is the results of different models in removing the Rician noisy image “Barbara 

(512×512)” with σ = 15. Figure 7(g) is the result of our model and the texture of it is clearer 

than other results. Figure 8 shows the de-noising results on image “peppers (256×256)” with 

Rician noise of standard deviation σ = 20. The PSNR value of our model (seen in Fig. 8(g)) 

is higher than the results of the other three models. We test the de-noising method on 

“monarch (256×256)” with higher noise level of standard deviation σ = 25 and the results are 

shown in Fig. 9. More PSNR values of experimental results are shown in Table 2. We also 

emphasize the results of our method and have marked them in bold color in the Table. The 

compared PSNR values can also be seen from Fig. 10 directly. It is obvious that the PSNR 

values of our results are higher than the other three models.

Since we have demonstrated that our model outperforms the other three for both MRI and 

natural images, we test some natural images for de-blurring and de-noising where the effects 

are more readily visible. These images are tested with two kinds of blur models. One of 

them is Gaussian blur with the window size 9×9 and standard deviation is 1, the other is 

motion blur with the blur length 5 and the angle 30°. Meanwhile, after blurring, images are 

also degraded by Rician noise with σ = 20. Figure 11 is the visual effects of different models 

in removing the Rician noise and Gaussian blur in image “boat (512×512)”. Fig. 12 shows 

the restored effects of “lena (512×512)” with Motion blur. Table 3 lists the corresponding 

PSNR values. We also emphasize the result of our method and have marked them in bold 

color in the Table. We note that in the presence of noise and blur, our model still performs 

better than the other three models tested.

4. CONCLUSION

Image restoration is very important in the field of image processing. There are many types of 

noise and proposed methods to deal with them. For the particular Rician noise occurred in 

MRI, great efforts have been recently devoted to develop the corresponding noise-removal 

algorithms, most notably the development based on the newly-established Total Variation 
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theorem. However, all the developed algorithms have produced the “blocky” artifacts, which 

deteriorate the image quality and causes image interpretation errors. On the other hand, 

sparse is an important characteristic of natural images and it has been applied successfully in 

the domain of image processing, such as image de-noising, image de-blurring, super 

resolution imaging, etc.

Based on these two observations, a new regularization strategy for Chen’s model is proposed 

in this study, based on sparse representation, to avoid gradient computing and therefore 

prevent the blocky artifact in removal of the Rician noise. The SBI algorithm is employed to 

solve the new model or cost function. We update the associated dictionary in the sparse 

representation by the K-SVD algorithm to find the most appropriate dictionary for image 

restoration. Compared with most of the TV-based Rician noise removing models, the effect 

of sparse feature representation used in this paper is much better. The experimental results 

show that our model can retain more edge details in the restored images.

Acknowledgments

This paper is partially supported by the Guangdong Provincial Key Laboratory of Medical Image Processing 
(2014B030301042), the NSF of China (61272252, 61472257), the Natural Science Foundation of Guangdong 
Province (2015A030313544), the Special Fund of the Central Finance for the Development of Local Universities 
(000022070152) and the Science and Technology Planning Project of Shenzhen City (JCYJ20140828163633997). 
B. Chen acknowledges the China Scholarship Council Project (201508440370). Z. Liang is partially supported by 
the NIH Grant (CA206171, CA143111). The authors would like to acknowledge the support of The HD Video R 
and D Platform for Intelligent Analysis and Processing in Guangdong Engineering Technology Research Centre of 
Colleges and Universities (GCZX-A1409) and Interdisciplinary Innovation Team of Shenzhen University for this 
work. The authors also acknowledge Prof. Lihong Li from City University of New York and Marc Pomeroy from 
Stony Brook University for their suggestions.

References

1. Buades A, Coll B, Morel J. A non-local algorithm for image denoising[J]. IEEE Computer Society 
Conference on Computer Vision & Pattern Recognition. 2005; 2(7):60–65.

2. Tai X, Borok S, Hahn J. Image denoising using TV-Stokes equation with an orientation-matching 
minimization[J]. Scale Space and Variational Methods in Computer Vision. 2009; 5567:490–501.

3. Le T, Chartrand R, Asaki T. A variational approach to reconstructing image corrupted by Poisson 
noise[J]. Journal of Mathematical Imaging & Vision. 2007; 27(3):257–263.

4. Zhang B, Fadili J, Starck J. Wavelets, ridgelets, and curvelets for Poisson noise removel[J]. IEEE 
Transactions on Image Processing. 2008; 17:1093–1108. [PubMed: 18586618] 

5. Aubert G, Aujol J. A variational approach to removing multiplicative noise[J]. Siam Journal on 
Applied Mathematics. 2008; 68(4):925–946.

6. Chen B, Cai J, Chen W, Li Y. A multiplicative noise removal approach based on partial differential 
equation model[J]. Mathematical Problems in Engineering. 2012; 2012:14. Article ID 242043. 

7. Dong Y, Zeng T. A convex variational model for restoring blurred images with multiplicative 
noise[J]. Siam Journal on Imaging Sciences. 2012; 6(3):1598–1625.

8. Cai J, Chan R, Nikolova M. Two-phase approach for deblurring images corrupted by impluse plus 
Gaussian noise[J]. Inverse Problems & Imaging. 2008; 2(2):187–204.

9. Dong Y, Hintermuller M, Ner M. An efficient primal-dual method for L1-TV image restoration. 
Siam Journal on Imaging Sciences. 2009; 27(4):1168–1189.

10. Wiest-Daessle N, Prima S, Coupe P, Morrissey S. Rician noise removal by non-local means 
filtering for low signal-to-noise ratio mri：Applications to DT-MRI[J]. Medical image computing 
and computer-assisted intervention. 2008; 5242(2):171–179.

11. Wood J, Johnson K. Wavelet packet denoising of magnetic resonance images: Importance of Rician 
noise[J]. Magnetic Resonance in Medicine. 1999; 41:631–635. [PubMed: 10204890] 

Chen et al. Page 10

Neurocomputing. Author manuscript; available in PMC 2018 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Nowak R. Wavelet-based Rician noise removal for magnetic resonance imaging[J]. IEEE 
Transactions on Image Processing. 1999; 8:1408–1419. [PubMed: 18267412] 

13. Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica 
D Nonlinear Phenomena, pp. 1992:259–268.

14. Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to 
image[J]. Journal of Mathematical Imaging & Vision. 2011; 40(1):120–145.

15. Getreuer P, Tong M, Vese L. A variational model for the restoration of mri images corrupted by 
blur and Rician noise[J]. Lecture Notes in Computer Science. 2011; 6938:686–698.

16. Goldstein T, Osher S. The split bregman algorithm for l1 regularized problems[J]. Siam Journal on 
Imaging Sciences. 2009; 2(2):323–343.

17. Zhao D, Zhang J, Zhao C, Gao W. Image compressive sensing recovery using adaptively learned 
sparsifying basis via l0 minimi-zation[J]. Signal Processing. 2014; 103:114–126.

18. Chen L, Zeng T. A convex variational model for restoring blurred images with large Rician 
noise[J]. Journal of Mathematical Imaging & Vision. 2014; 53(3):1598–1625.

19. Bruckstein A, Donoho D, Elad M. From sparse solutions of systems of equations to sparse 
modeling of signal and images[J]. Siam Review. 2009; 51(1):34–81.

20. Michael E, Michal A. Image denoising via sparse and redundant representation over learned 
dictionaries[J]. IEEE Transactions on Image Processing. 2006; 15(12):3736–3745. [PubMed: 
17153947] 

21. Michal A, Michael E, Alfred B. K-SVD: An algorithm for designing overcomplete dictionaries for 
sparse representation[J]. IEEE Transactions on Signal Processing. 2006; 54(11):4311–4322.

22. Zhang J, Zhao D, Gao W. Group-Based Sparse Representation for Image Restoration[J]. IEEE 
Transactions on Image Processing. 2014; 23(8):3336–3351. [PubMed: 24835225] 

23. Shi G, Wu X, Dong W, Zhang L. Image deblurring and super-resolution by adaptive parse domain 
selection and adaptive regulariza-tion[J]. IEEE Transactions on Image Processing. 2011; 20(7):
1838–1857. [PubMed: 21278019] 

24. Marquina, Osher S. Image super-resolution by TV-regularization and bregman iteration[J]. Journal 
of Scientific Computing. 2008; 37:367–382.

25. Dong W, Zhang L, Shi G, Wu X. Image deblurring and super-resolution by adaptive sparse domain 
selection and adaptive regularization. IEEE Transactions on Image Processing. 2011; 20(7):1838–
1857. [PubMed: 21278019] 

26. Xu J, Deng C, Liu X, et al. Image Super-resolution Based on Sparse Representation With Joint 
Constraints[C]. 2014:381–385.

27. Yang J, Wright J, Huang TS, et al. Image super-resolution via sparse representation.[J]. IEEE 
Transactions on Image Processing A Publication of the IEEE Signal Processing Society. 2010; 
19(11):2861–2873. [PubMed: 20483687] 

28. Bowman F. Introduction to Bessel Functions. Dover Publicatuons; Mineoal: 2012. 

29. Pati YC, Rezaiifar R, Krishnaprasad PS. Orthogonal matching pursuit: Recursive function 
approximation with applications to wavelet decomposition. Proceedings of 27th Asilomar 
Conference on Signals, Systems and Computers. 1993

30. http://www.bic.mni.mcgill.ca/brainweb/

Chen et al. Page 11

Neurocomputing. Author manuscript; available in PMC 2018 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.bic.mni.mcgill.ca/brainweb/


Figure 1. 
The procedure of the new model based on sparse representation and dictionary learning.

Chen et al. Page 12

Neurocomputing. Author manuscript; available in PMC 2018 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
MRI brain image with blur and noise. (a) original image; (b) Gaussian blur; (c) Motion blur; 

(d) Rician noise only; (e) Guassian blur plus Rician noise; (f) Motion blur plus Rician noise.
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Figure 3. 
Some slices of MRI images with size 217×181.
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Figure 4. 
Experimental results for different slices. The 1st, 2nd, 3rd rows are 78th, 88th, 98th slice from 

the same 3D T2 weighted MRI image. The 1st, 2nd, 3rd, 4th, 5th 6th columns are original 

image, noisy image, the result of MAP model, Getreuer’s model, Chen’s model and our 

model separately.
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Figure 5. 
SSIM (top) and PSNR (bottom) values of denoised Brain MRI images corresponding to Fig. 

3.
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Figure 6. 
SSIM and PSNR values of denoised Brain MRI image with different models.
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Figure 7. 
Visual effects of different models in removing the Rician noise σ = 15 of image “barbara”. 

(a) original image; (b) zoomed original image; (c) noisy image; (d) result of MAP model; (e) 

result of Getreuer’s model; (f) result of Chen’s model; (g) result of our model.
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Figure 8. 
Visual effects of different models in removing the Rician noise σ = 20 of image “peppers”. 

(a) original image; (b) zoomed original image; (c) noisy image; (d) result of MAP model; (e) 

result of Getreuer’s model; (f) result of Chen’s model; (g) result of our model.
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Figure 9. 
Visual effects of different models in removing the Rician noise σ = 25 of image “monarch”. 

(a) original image; (b) zoomed original image; (c) noisy image; (d) result of MAP model; (e) 

result of Getreuer’s model; (f) result of Chen’s model; (g) result of our model.
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Figure 10. 
PSNR(dB) values of denoised image “Barbara”, “House” and “Lena” with different models.
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Figure 11. 
Visual effects of different models in removing the noise σ = 20 and Gaussian blur in image 

“boat”. (a) original image; (b) zoomed original image; (c) noisy image; (d) result of MAP 

model; (e) result of Getreuer’s model; (f) result of Chen’s model; (g) result of our model.
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Figure 12. 
Visual effects of different models in removing the noise σ = 20 and Motion blur in image 

“lena”. (a) original image; (b) zoomed original image; (c) noisy image; (d) result of MAP 

model; (e) result of Getreuer’s model; (f) result of Chen’s model; (g) result of our model.
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Table 1

The results of images and SSIM, PSNR values of de-noised Brain MRI image under different models.
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Table 3

The result of PSNR(dB) values of deblurring and denoised image under different models.

Image Models Gaussian Blur Motion Blur

Boat Degraded 21.40 21.12

MAP 26.41 25.66

Getreuer’s 26.25 25.86

Chen’s 26.34 26.05

Ours 26.52 26.05

Barbara Degraded 23.55 20.12

MAP 23.64 23.55

Getreuer’s 23.57 23.50

Chen’s 23.63 23.62

Ours 23.78 23.71

Lena Degraded 21.79 21.67

MAP 29.20 28.61

Getreuer’s 29.00 28.73

Chen’s 29.08 28.84

Ours 29.25 28.85
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