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Abstract. Activation function is crucial to the recent successes of deep
neural networks. In this paper, we first propose a new activation func-
tion, Multiple Parametric Exponential Linear Units (MPELU), aiming
to generalize and unify the rectified and exponential linear units. As the
generalized form, MPELU shares the advantages of Parametric Rectified
Linear Unit (PReLU) and Exponential Linear Unit (ELU), leading to
better classification performance and convergence property. In addition,
weight initialization is very important to train very deep networks. The
existing methods laid a solid foundation for networks using rectified lin-
ear units but not for exponential linear units. This paper complements
the current theory and extends it to the wider range. Specifically, we put
forward a way of initialization, enabling training of very deep networks
using exponential linear units. Experiments demonstrate that the pro-
posed initialization not only helps the training process but leads to bet-
ter generalization performance. Finally, utilizing the proposed activation
function and initialization, we present a deep MPELU residual archi-
tecture that achieves state-of-the-art performance on the CIFAR-10/100
datasets. The code is available at https://github.com/Coldmooon/Code-
for-MPELU.
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1 Introduction

Over the past few years, the landscape of computer vision has been noticeably
changed from the engineered feature architecture to an end-to-end feature learn-
ing architecture, deep neural networks, by which many state-of-the-art work
advanced the development of classical tasks such as object detection [I], seman-
tic segmentation [2], and image retrieval [3]. Such a revolutionary change mainly
results from several crucial elements, such as big datasets, high-performance
hardware, new effective models, and regularization techniques. In this work, we
focus on two notable elements, activation function and the corresponding ini-
tialization of network.

One of known activation functions is Rectified Linear Unit (ReLU) [45] which
produced profound effect on the development of deep neural networks. ReLLU is a
piecewise-linear function that keeps positive inputs and outputs zero for negative
inputs. Owing to this form, it can alleviate the problem of vanishing gradient,
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allowing the supervised training of much deeper neural networks. However, it ex-
periences a potential disadvantage that units will never activate once gradients
reach zero. Seeing this, Maas et al. [6] presented Leaky ReLU (LReLU) where
the negative part of activation function is replaced with a linear function. He et
al. [7] further extended LReLU to a Parametric Rectified Linear Unit (PReLU)
which can learn the parameters of the rectifiers, leading to higher classification
accuracy with little overfitting risk. In addition, Clevert et al. [8] presented the
Exponential Linear Unit (ELU), leading to faster learning and better general-
ization performance than the rectified unit family on deep networks. The above
rectified and exponential linear units are commonly adopted by the recent deep
learning architectures [BI9TO/IT] to achieve good performance. However, there
exists a gap of representation space between the two types of activation func-
tions. For the negative part, ReLU or PReLU are able to represent the linear
function family but not the non-linear one, while ELU is able to represent the
non-linear function family but not the linear one. The representation gap to
some extent undermines the representational power of those architectures using
a particular activation function. In addition, ELU is at a potential disadvantage
when used with Batch Normalization [I2]. Clevert et al. [8] showed that using
Batch Normalization with ELU could harm the classification accuracy, which is
also verified in our experiments.

This work is mainly motivated by PReLU and ELU. Firstly, we present a
new Multiple Parametric Exponential Linear Unit (MPELU), a generalization
of ELU, to bridge the gap. In particular, an extra learnable parameter, (3, is
introduced into the inputs of ELU to control the shape of negative part. By
optimizing [ through stochastic gradient descent (SGD), MPELU is able to
adaptively switch between the rectified and exponential linear units. Secondly,
motivated by PReLU, we make the hyper-parameter a of ELU learnable to
further improve its representational ability and tune the function shape. This
design makes MPELU more flexible than its antecedents, ReLU, PReLU, and
ELU that can be seen as special cases of MPELU. Therefore, through learning
« and 3, the linear and non-linear space of the negative part can be covered in a
single activation function module, whereas its special existing cases do not have
this property.

The introduction of learnable parameters into ELU may likely bring an addi-
tional benefit. This is inspired by the observation that Batch Normalization does
not improve ELU networks but can improve ReLU and PReLLU networks. To see
this, MPELU can be inherently decomposed into a composition of PReLLU and
learnable ELU:

MPELU = ELU|PReLU (), (1)

where x is the inputs of activation function, and ELU denotes the ELU [8] with
a learnable parameter o. Applying Batch Normalization to the inputs gives

MPELU = ELU{PReLU[BN (z)]}. (2)
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As we can see, the outputs of Batch Normalization flow into PReLU before
ELU, which can result in not only the improvement of the classification per-
formance, but the alleviation of the potential problem of working with ELU.
Eqn. @) suggests that MPELU is also able to share the advantages of PReLU
and ELU simultaneously, for example, the superior learning behavior of ELU
compared to ReLU and PReLU, as described in [§]. Our experimental results
on CIFAR-10 and ImageNet 2012 demonstrate that by introducing the learnable
parameters, MPELU networks provide better classification performance and con-
vergence property than its counterparts.

Because of the introduction of extra parameters, overfitting could be a con-
cern. To address this, we adopt the same strategy as PReLLU to reduce the over-
fitting risk. For each MPELU layer, a and [ are initialized as the channel-share
version or the channel-wise version. Therefore, the increment of parameters of
the entire network is at most twice the total number of channels, which is neg-
ligible compared to the number of weights.

Although lots of activation functions, e.g., ELU [8], were proposed recently,
few works determine a weight initialization for networks using them. Improper
initialization often hampers the learning of very deep networks [9]. Glorot et al.
[13] proposed an initialization scheme but only considered the linear activation
functions. He et al. [7] derived an initialization method that considers the recti-
fier linear units (e.g., ReLU) but not makes allowance for the exponential linear
units (e.g., ELU). Even though Clevert et al. [8] applied it to the networks using
ELU, this lacks theoretical analysis. Furthermore, none of these works is suitable
for non-convex activation functions. Observing this, this paper presents a strat-
egy of weight initialization, enabling the training of networks using exponential
linear units including ELU and MPELU, and thus extends the current theory
to the wider range. In particular, since MPELU is non-convex, the proposed
initialization also applies to non-convex activation functions.

The main contributions of this work are:

1. A new activation function MPELU that covers the solution space of both
the rectified and exponential linear units.

2. A technique of weight initialization, allowing the training of extremely deep
networks using ELU and MPELU.

3. A simple architecture of ResNet with MPELU, achieving state-of-the-art
results on the CIFAR [I4] dataset with comparable time/memory complexity
and parameters to the original versions [I1IT5].

The remainder of this paper is organized as follows. Sec. [2reviews the related
work. In Sec. B, we propose our activation function and initialization method.
The experiments and analysis are given in Sec. H] to show their effectiveness.
Utilizing the proposed methods, Sec. [l presents a deep MPELU residual archi-
tecture to provide state-of-the-art performance on CIFAR-10/100. Finally, Sec.
concludes. To keep the paper at a reasonable length, the implementation details
of our experiments are given in appendix.
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2 Related Work

This paper mainly focuses on activation functions and the weight initialization
of deep neural networks. Therefore, we review the related work in the two fields.
Note that training very deep networks can also be realized by developing new
architectures such as introducing skip connection as in [I6J11], but this is beyond
the scope of the paper.

Activation Functions. Even though activation functions are an early inven-
tion, they were not formally defined until recently [I7]. Activation functions
allow deep neural networks to learn a complex non-linear transformation, which
is crucial to the power of modeling. From the feature point of view, the outputs
of activation functions can be used as high-level semantic representations (can
also be obtained by subspace learning, e.g., [18]) that are more robust to variance
than low-level ones, which facilitates recognition tasks.

Among recent work is Rectified Linear Unit (ReLU) [4l5], one of keys to the
breakthrough of deep neural networks. ReLLU keeps positive inputs unchanged
and outputs zero for negative inputs, and therefore it can avoid the problem
of vanishing gradients, enabling the training of much deeper supervised neural
networks, whereas sigmoid nonlinearity can not. LReLU [6] was proposed that
multiplies the negative inputs by a slope factor, aiming to avoid zero gradients in
ReLU. According to [6], LReLU provides comparable performance to ReL.U and
is sensitive to the value of the slope. He et al. [7] found that the cost function is
differentiable with respect to the slope factor and therefore proposed optimizing
the slope through SGD. This parametric rectified linear unit is named PReLU.
Experiments showed that PReLU can improve the performance of convolutional
neural networks with little overfitting risk. They also proved that PReLU has
the ability of pushing off-diagonal blocks of FIM closer to zero, which enables
faster convergence than ReLLU. None of the above activation functions can learn
the non-convex functions since their essence of convex function. To address this,
Jin et al. [19] proposed a S-shaped rectified linear activation unit (SReLU) to
learn both convex and non-convex functions, which is inspired by the Webner-
Fechner law and the Stevens law. In addition to the above rectified linear units,
Clevert et al. [8] presented a novel form of activation function, Exponential
Linear Unit (ELU). ELU is similar to sigmoid for negative inputs and has the
same form as ReLU for positive inputs. It has been proved that ELU is able to
bring the gradient closer to the unit natural gradient, which accelerates learning
speed and leads to higher performance. When used with Batch Normalization
[12], ELU tends to expose an unexpected degradation problem. In this case,
ELU has a negligible impact on the generalization capability and classification
performance. In addition to the above deterministic activation functions, there
is another random version. Recently, Xu et al. [20] proposed a randomized leaky
rectified linear unit, RReLU. RReLU also has negative values which is helpful
to avoid zero gradients. The difference is that the slope of RReLU is not fixed or
learnable but randomized. Through this strategy, RReLU is able to reduce the
overfitting risk to some extent. However, Xu et al. only verified RReLLU on small
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datasets, like CIFAR-10/100. How RReLU performs on large datasets such as
ImageNet is still needed to be explored.

Initialization. Initialization of parameters is very important especially for deep
networks and the case of large learning rate. If not initialized properly, it may
be very hard to converge through SGD. Many efforts have concentrated on this
subject. Hinton et al. [2I] introduced a learning algorithm that utilizes layer-
wise unsupervised pre-training to initialize all layers. Before this, there is no
suitable algorithms for training deep fully-connected architectures. Shortly af-
ter, Bengio et al. [22] studied the pre-training strategy and conducted a series
of experiments to substantiate and verify it. Erhan et al. [23] further performed
a number of experiments to confirm and clarify the procedure, showing that it
can initialize the starting point in parameter space in a better basin of attrac-
tion than picking starting parameters at random. During the development of
deep learning, another important work is ReLU [4] which addresses the problem
of vanishing gradients. With ReL.U, deep networks are able to converge even
randomly initialized from a Gaussian distribution. Krizhevsky et al. [5] applied
ReLU to supervised convolutional neural networks with random initialization
and won the ILSVRC 2012 challenge. Since that, deeper and deeper networks
have been proposed, leading to a sequence of improvements in computer vision.
However, Simonyan et al. [9] showed that deep networks still face the optimiza-
tion problem once the number of layers reaches some value (e.g., 11 layers).
This phenomenon is also mentioned in [I3ITO/7IT6]. Glorot et al. [I3] proposed a
method to initialize weights according to the size of a layer. This strategy holds
under the assumption of linear activation functions, which works well in many
cases but not holds for rectified linear units (e.g., ReLU and PReLU). He et
al. [7] extended this method to the case of rectified linear units and proposed a
new initialization strategy usually MSRA filler which has shown great help for
training very deep networks. Nevertheless, for exponential linear units, there is
currently no appropriate strategy to initialize weights. Observing this, we gener-
alize the MSRA filler to a new initialization for deep networks using exponential
linear units (e.g., ELU and MPELU) based on the first-order Taylor expansion
of MPELU at zero.

3 The Proposed Activation Function and Weight
Initialization

This section first presents the Multiple Parametric Exponential Linear Unit
(MPELU), then derives the weight initialization for networks using exponen-
tial linear units.

3.1 Multiple Parametric Exponential Linear Unit

PReLU and ELU have limited but complementary representational power for
their negative parts. This work proposes a general form of activation function
that unifying the existing ReLU, LReLU, PReLU, and ELU.



6 Yang Li, Chunxiao Fan, Yong Li, Qiong Wu, Yue Ming

2t ReLU 2 ReLU (a = 0)
PReLU (a = 0.25) PReLU (a = 25.6302; 4 = 0.01)
| ELU (a = 1) ELU (a=3=1)
— MPELU (a=3;3=1) — MPELU
E 0 2 0
1 1
2 2
-3 n n n n n n n -3 n n n n n n
-5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2
X X
(a) shapes of activation functions (b) other activation functions are

special cases of MPELU

Fig. 1. The graphical depiction of activation functions. (a) shapes of activation func-
tions. a of PReLU is initialized with 0.25. The hyper-parameter a of ELU is 1. a and (8
of MPELU are initialized with 3 and 1, respectively. (b) other activation functions are
special cases of MPELU. With o = 0, MPELU is reduced to ReLU. If a = 25.6302 and
B =0.01, MPELU approximates to PReLU; When «, § = 1, MPELU becomes ELU

Forward Pass. Formally, the definition of MPELU is:

Yi if y; >0
fyi) = {ac(eﬂcyi —1)ify; <0. )

Here, (3 is constrained to be greater than zero, and 7 is the index of input y
corresponding to the ¢, (¢ € {1,..., M}) a and S. Following PReLU, «. and
Bc can be channel-wise (M = the number of feature maps) or channel-shared
(M = 1) learnable parameters, which control the value to and at which MPELU
saturates respectively. Fig. 1(a) shows the shapes of four activation functions.

By adjusting 8., MPELU can switch between the rectified and exponential
linear units. To be specific, if 5. is set to a small number, for example, 0.01,
the negative part of MPELU approximates to a linear function. In this case,
MPELU becomes the Parametric Rectified Linear Unit (PReLU). On the other
side, if B, takes a large value, for example, 1.0, the negative part of MPELU
is a non-linear function, making MPELU turn back into the exponential linear
units.

Introducing . helps further control the form of MPELU, as shown in Fig. 1(b).
If a. and S, are set to 1, MPELU reduces to ELU. Decreasing (. in this case
lets MPELU go to LReLU. Finally, MPELU is exactly equivalent to ReLU when
a. = 0.

From the above analysis, it is easy to see that the flexible form of MPELU
makes it cover the solution space of its special cases, and therefore grants it more
powerful representation. We will show that ResNet [IIIT5] could gain significant
improvement merely by tuning the usage of activation functions, that is, from
ReLU to MPELU.

Another benefit of MPELU is fast learning. Eqn. (2] suggests that MPELU
could potentially share the properties of PReLLU and ELU. Thus, as an exponen-
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tial linear unit, MPELU exhibits the same learning behavior as ELU. Readers
are referred to [§] for more details.

Backward Pass. Since MPELU is differentiable almost everywhere, deep net-
works with MPELU can be trained end-to-end. We use chain rule to derive the
update formulations of «. and f.:

t0p/ = f(yl) + ac (4)
of (i) o { 0 if y; >0 (5)
da.  ePr -1 ifyi <0
of(yi) 0 if yi >0 )
0B.  \wixtop) ifyi<O0
of (yi) _ 1 ify; >0 (7)
dyi |\ Bextop ify <O0.

Note that % and %ﬂyi) are the gradients of activation function with

Qe c
respect to a. and . for a single unit. When computing the gradients of loss

function for the entire layer, the gradients of . and S, should be:

oL - oL 0 ify; >0
. 2= 01" {1 %0 )
oL oL 0 if y; >0
96, ~ 2 37 * Lt %0, )

where X' sums over all the positions corresponding to a,. and S.. Throughout
this paper, we employ the channel-wised version for all the experiments. By this
strategy, the increment of parameters of the entire network is at most twice the
total number of channels, which is negligible compared to the number of weights.
We show in Sec. [l that the model size of the proposed MPELU ResNet archi-
tectures can be comparable to (or even less than) that of ReLU architectures.

For the actual running time, MPELU is roughly comparable to PReLU if we
carefully optimize the codes. This will be analyzed in Section

Initializing o and g with different values has small but non-negligible impact
on classification accuracy. We recommend using o = 1 or 0.25 and 8 =1 as the
initial values, and five times the base learning rate for both of them. Moreover,
we highlight that it is important to use weight decay (I3 regularization) on both
a and §, which is opposite the case of rectified linear units such as PReLU [7]
and SReLU [I9].

3.2 The Proposed Weight Initialization for Networks with MPELU

The previous works [2T22IT3/7] have laid a solid foundation for the initialization
of deep neural networks. This paper complements the current theory and extends
it to the wider range.
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Briefly Review of MSRA filler. MSRA filler contains two cases of initial-
ization, the forward propagation case and the backward propagation case. He
et al. [7] proved that both cases are able to properly scale the backward signal.
Therefore, it is sufficient to only investigate the forward propagation case.

For the Iy, convolutional layer, a pixel in the output channel is expressed as:

Yy = wy xxy + by, (10)

where y; is a random variable, w; and a; are random vectors and independent of
each other, and b; is initialized with zero. The goal is to explore the relationship
between the variance of y;_1 and the variance of y;.

Var(y) = Var(wz, + b)) = Var(wix;) = k?clVar(wlxl), (11)

where k; is the kernel size and ¢; is the number of input channels. Here, both
w; and z; are random variables. Eqn. (1)) holds under the assumption that the
elements in w; and @x; are independent and identically distributed respectively.
Usually, weights of deep network are initialized with zero mean, and Eqn. (I
becomes:

Var(y) = k¥ e,Var(w)E(z}). (12)

Next, we need to find the relationship between E(z?) and Var(y, —1). Note that
there exists an activation function between x; and y;_1,

xr = f(yi-1)- (13)

For different activation functions f, we may derive different relationships, and
thus different initialization methods. Specifically, for symmetric activation func-
tions, the sigmoid non-linearity, Glorot et al. [13] assumed they are linear at
the initialization and therefore proposed the Xavier method. For rectified linear
units, ReLU and PReLU, He et al. [7] removed the linear assumption and ex-
tended the Xavier method to the MSRA filler. In the next section, we further
extend the MSRA filler to a more general form by taking the first-order Taylor
expansion of MPELU at zero and clipping the results to its linear part.

The Proposed Initialization. This section mainly follows the derivation in
[13I7]. Since ELU is a special case of MPELU, we focus on MPELU. As we can
see from Eqn. (@), it is very difficult to obtain the exact relationship between
E(z}) and Var(y,—1). Instead, we use its Taylor series at zero. For the negative
part, MPELU can be expressed as:

afe™ ~ 1) = apy+ 3a(By)’ + alBy)° + .. (14)

Then, the left side of Eqn. ([[4) is approximated by its Taylor polynomial of
degree 1.

a(e? —1) = aBy + R, (y) ~ afy (15)
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Eqn. (I3) introduces the linear approximation only for the negative regime. We
call this semi-linear assumption with which we have:

x; ~ max(0,y;—1) + min(0, afy;—1) (16)

o0

B = [ afple)dn = 51+ o} 18 ) EGE ), (1)

—x

where, p(x) is the probability density function. Following [I3I7], if w;_; having
a symmetric distribution with zero mean, it is also the case for y;_1. Then,

S0+ Py B Var(u ) (15)

By Eqn. (I8) and ([I2)), we obtain:

E(af) ~

1
Var(y) = §I€l20l(1 + a%_lﬁ?_l)Vm“(wl)Var(yl,l). (19)

Through this, it is easy to derive the relationship between 1;_1 and y;:
Var(y) = Var(y H kzcZ 1+ a2B?)Var(w;). (20)

Following [13I7], to keep the signals of the forward and backward pass flowing
correctly, we expect that Var(y1) is equal to Var(y;), which leads to:

k2cl(1 + a2 Var(w;) = 1,Vi. (21)

Therefore, for each layer in deep networks using MPELU, we can initialize
weights from a Gaussian distribution

2
(0’ Fel+ a2 ) )

where i is the index of layer. Eqn. (22]) applies to deep networks using the rectified
or exponential linear units. Note that when o = 1 and g = 1, Eqn. (ZZ) becomes
the initialization for ELU networks. When a = 0, Eqn. ([22)) corresponds to
the initialization for ReLU networks. Furthermore, when o = 0.25 and S = 1,
Eqn. [Z2) can be used to initialize PReLU networks. From this point of view,
MSRA filler is a special case of the proposed initialization.

Comparison with Xavier, MSRA, and LSUV. Xavier method is designed
for symmetric activation functions with the hypothesis of linearity, and MSRA
filler only applies to the rectified linear units (ReLU and PReLU), while the
proposed method addresses the initialization for both rectified and exponential
linear units. Recently, Mishkin et al. [24] proposed the LSUYV initialization that is
data-driven and thus avoids solving the relationship between E(z7) and Var(y,—
1), but Eqn. (22)) is an analytic solution for ELU and MPELU and therefore runs
faster than LSUV.
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Table 1. Test error rate (%) of classification on the CIFAR-10. o and f in MPELU
are initialized with 1 or 0.25, and they are updated by SGD without weight decay. As
in [I6JIT] the best (mean + std) results are reported by five runs for each network

NIN parameter(s) CIFAR-10 CIFAR-10 (augmented)
ReLU 5] - 10.41 8.81

PReLU  a =025 9.02 (9.19 + 0.15) 7.28 (7.49 + 0.14)
ELU a=1 9.39 E9 63 + 0.23; 7.7 E7.83 + 0.05%
MPELU a=18=1 9.06 (9.19 + 0.11 7.37 (7.57 £ 0.16
MPELU a=0.25 =1 9.10 (9.27 + 0.12) 7.30 (7.52 £+ 0.18)

4 Experiment

This section explores the usage of MPELU on a number of architectures. In
Sec. @Il we begin with experiments with Network in Network (NIN) [25] on
CIFAR-10, showing the benefit of introducing learnable parameters into ELU.
Sec. further substantiates this benefit in deeper networks and on the larger
dataset, ImageNet 2012. Finally, Sec. [f.3] verifies the proposed initialization with
a very deep network on ImageNet, showing the ability of training very deep
ELU/MPELU networks. In Sec. Tland Sec. 3] we also provide the convergence
analysis, showing that MPELU, like ELU, possesses the superior convergence
property to ReLU and PReLU.

4.1 Experiments with NIN on CIFAR-10

This section conducts the experiments of Network in Network with different
activation functions on the CIFAR-10 dataset. The goal is to investigate the
benefits of introducing learnable parameters into ELU.

This architecture has nine convolutional layers including six ones with 1 x 1
kernel size and no Fully Connected (FC) layers, which is easy to train and
sufficient for a comprehensive evaluation of effectiveness of learnable parameters.
The implementation details are given in appendix.

For fair comparison, we train networks using ReLU, PReLU, ELU, and
MPELU with the same settings from scratch. Tab. [ shows that MPELU con-
sistently outperforms ELU (e.g., 9.06% vs. 9.39% test error rate without data
augmentation, and 7.30% vs 7.77% test error rate with data augmentation). This
improvement over ELU is completely from « and 3, verifying the benefit from
the learnable parameters.

Some interesting phenomenon can be observed in Tab. [l and Fig. Bl Firstly,
Tab. [ shows that MPELU (a = 8 = 0.25) performs like PReLU (a negligible
difference of 0.03% mean test error when using data augmentation). Secondly,
Fig. a)(b) show that its learning curves are closer to ELU’s, suggesting a
potential superior learning behavior compared to the rectified linear units, as
described in []. Note that all the models learn very quickly on this small dataset
and reach the same test error rate (15%) within 25k iterations, which makes it
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Fig. 2. Comparison of convergence on CIFAR-10. All the models learn very quickly on
this small dataset, and so we adopt the evaluation method similar to [8] according to
which the number of iterations used to reach 15% test error is measured. (a) indicates
that MPELU can reduce the loss earlier. (b) shows that MPELU reaches the 15% error
after 9k iterations, while ReLU and PReLU need 25k and 15k iterations to reach the
same error rate

very hard to compare the learning speed. To deal with this, we adopt the similar
evaluation criterion to [], that is, the iteration to reach the 15% test error rate.
Fig. &(b) shows that MPELU starts reducing the error (also the loss) earlier
and reaches the 15% error after 9k iterations, while ReLU and PReLU need
25k and 15k iterations to reach the same error rate, respectively. The above
better performance arises from the combining advantages of PReLLU and ELU,
as suggested in Eqn. ().

It is also worth noting that MPELU achieves a comparable performance to
PReLU with a bit more parameters. This is not caused by overfitting since ELU
performs much worse than PReLLU and MPELU. The underlying reason is still
unclear and will be studied in the future. Even though MPELU is a bit less
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Table 2. Top-1 error rate (single-view test) on the validation set of ImageNet 2012 with
data augmentation. The comparison is under the same initial values of a. § in MPELU
is initialized with 1 for all cases. o and 8 in MPELU are updated by SGD with/without
weight decay. MPELU outperforms its counterparts consistently and obtains the overall
best result

a [ f Gaussian initialization MSRA our initialization
B for MPELU [ ReLU [ PReLU [ ELU [ MPELU | ReLU [ PReLU | ELU [ MPELU
0/0 1/0 | 37.66 - - 39.40 | 37.45 - - -
0/1 1/0 - - - 37.92 - - - -
0/1 1/1 - - - 37.61 - - - 37.41
0.25/0| 1/0 - 39.48 - 40.94 - 38.72 - 39.46
0.25/1| 1/1 - 39.53 - 37.81 - 38.57 - 37.47
1/0 1/0 - - 40.36 | 39.53 - - 39.83 | 38.42
1/1 1/1 - 38.04 - - - 37.33

a, (: initial value / weight decay multiplier

effective than PReLU in this shallower architecture, we will show that MPELU
outperforms PReLU in deeper architectures.

4.2 Experiments on ImageNet

This section evaluates MPELU on the ImageNet 2012 classification task. Ima-
geNet 2012 contains about 1.28 million training examples, 50k validation exam-
ples, and 100k test examples which belong to 1000 classes. This enables us to
utilize a deeper network with little overfitting risk. Therefore, we build a 15-layer
network modified from the model-E in [26]. The models evaluated in this section
are trained on the training set and tested on the validation set.

Network Structure. Based on the model-E, we add one more convolutional
layer, insert Batch Normalization [12] immediately before activation functions,
and remove dropout [27] layers. Following [261528], the networks are divided
into three stages by max-pooling layers. The first stage contains only one con-
volutional layer with a kernel size of 7 x 7 pixels and 64 filters. The second stage
consists of four convolutional layers with the kernel size of 2 x 2 pixels and 128
filters. We set stride and pad accordingly so as to maintain the feature map size
of 36 x 36 pixels. The third stage consists of seven convolutional layers with
kernel size of 2 x 2 pixels and 256 filters. In the third stage, the feature map
size is reduced to 18 x 18 pixels. The next layer is spp [28] which is followed by
two 4096-d FC layers, one 1000-d FC layer, and one softmax successively. The
networks are initialized through three methods which are Gaussian distribution
with zero mean and 0.01 standard deviation, MSRA filler [7], and the proposed
initialization (see Sec. [B2)). The bias terms are initialized with 0 as usual. «
and f in MPELU are initialized with varying values and updated by SGD with
weight decay. Other implementation details are given in appendix.
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For fair comparison, the participants are evaluated under the same initial
values of «, and Tab. P2llists the results. For clarity, the results that outperform
others are marked in boldface and the overall best result is marked in blue.

Gaussian Initialization. When compared to ELU, all the MPELU layers are
initialized with o« = 8 = 1. As we can see, the MPELU network outperforms
the ELU network by 0.83% top-1 error rate. If weight decay is used, it can
significantly outperform the ELU network by 2.32%. Since the only difference
between them lies in the activation function, this improvement over ELU indeed
demonstrates the advantage of the learnable parameters, o and .

For further examining MPELU, we also compared it with PReLU. In this
case, a in MPELU are initialized with 0.25. Tab. [2 shows that the MPELU net-
work achieves the top-1 error rate 40.94%, which is worse than 39.48% provided
by the PReLLU network. Nevertheless, using weight decay considerably improves
the performance of the MPELU network by 3.13%, reducing the top-1 error rate
to 37.81% which is better than that of the PReLU network by 1.72%.

Other Initialization Methods. Experiments are also conducted with other
initialization methods (see Tab.[]). The experimental results are in line with the
Gaussian initialization case. MPELU surpasses all the counterparts. The overall
best top-1 error rate 37.33% achieved by MPELU is significantly lower than
those achieved by PReLU and ELU. It is interesting to see that the MPELU
networks initialized from the proposed method consistently outperform those
initialized from Gaussian method, demonstrating that our initialization can lead
to better generalization capability, which is also verified in Sec.

Note that MPELU only provides slight improvement over ReLU, and using
weight decay in MPELU tends to decrease the top-1 test error in all three cases.
This result is not caused, however, by overfitting, since adding more layers (more
parameters) to the 15-layer network leads to lower test error, as shown in Sec.
A possible reason is that using weight decay tends to push « and S to zero,
resulting in smaller scale activations or sparser representations, like ReLLU, that
are more likely to be linearly separable in a high-dimensional space [29]. Another
explanation may come from the sparse feature selection [30].

To provide an empirical interpretation, we performed four extra experiments
using LReLLU with different slopes, and gradually decreased the scale of acti-
vations. All the five models (ReLU and LReLU A-D) have the same number
of parameters, which eliminates the influence of overfitting. The only difference
among them is the scale of the negative activations. A noticeable trend is il-
lustrated in Tab. Bl The top-1/top-5 test error decreases with the slope, which
explains why using weight decay to MPELU leads to better results and why
ReLU performs better than PReLLU and ELU. Nevertheless, this phenomenon is
not observed in Sec. .1l which might be due to that small scale or sparsity is
less important for the shallower architecture (The ReLU NIN performs worst).

Convergence Comparison. Since Batch Normalization has a great influence
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Table 3. Classification comparison among different slopes on the ImageNet validation
set. The trend is that the performance increases with the decrease of slope

15-layer network with slope top-1 error rate(%) top-5 error rate(%)

ReLU a=0 37.66 15.98
LReLU (A) a=0.1 37.92 16.26
LReLU EB; a=025 38.54 16.65
LReLU (C a=05 42.76 20.18
LReLU (D) a=1 60.27 36.60

Table 4. The running time (seconds/iteration) of ReLU, PReLU, ELU, and MPELU
based on Caffe implementation. The experiments are performed on a NVIDIA Titan
X GPU. The running time below is the mean value of 600k iterations

ReLU PReLU ELU MPELU

running time 0.2310 0.2417  0.2299 0.2441

on the convergence of networks, we leave the comparison of convergence among
activation functions to Sec.

Running Time. The running time refers to the time consumption of performing
an iteration with batch size 64 during training. Essentially, the computational
cost of MPELU is greater than its counterparts. But this problem can be properly
addressed by carefully engineered implementation (e.g., faster exponential func-
tions). In our Caffe [31] implementation, the backward pass utilizes the outputs
of the forward pass, as shown in Eqn. @) (@) (@), which saves a lot of compu-
tation. Furthermore, the gradients of parameters and inputs can be computed
together for each loop. Consequently, the real running time of MPELU can be
only slightly slower than that of PReLU, as summarized in Tab. @

4.3 Experiments of Initialization

This section conducts experiments on ImageNet 2012. The task is to examine
whether the proposed initialization is able to help with convergence of very deep
networks using exponential linear units. To this end, we add extra 15 convo-
lutional layers to the network in Sec. L2 resulting in a 30-layer network that
suffices for investigating the effect of the initialization. Note that the network is
similar to the 30-layer ReLU network in [7] but differs from it in several aspects
such as batch size, pad, and feature map size.

Since BN has a great influence on the convergence of deep networks, it is na-
ture to take it into account. Following [I2], we remove dropout layers when using
BN. Finally, four methods are compared: the baseline Gaussian initialization, our
initialization, BN + Gaussian initialization, and BN + our initialization. o and
B in MPELU are initialized with 1 and updated by SGD without weight decay,
with other settings identical to Sec.
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Table 5. Comparison of initialization. The top-1 test error (%) on the validation set
of ImageNet 2012 is reported. The 30-layer ELU and MPELU networks with Gaussian
method totally stop learning. On the contrary, the proposed method makes them con-
verge, verifying the effectiveness of Eqn. (22]). When BN is used, the performance can
still be boosted by the proposed method. Note that the results, 44.28% and 42.96%,
achieved by the 30-layer MPELU networks with BN are considerably lower than those,
39.53% and 38.42%, achieved by the 15-layer counterparts, suggesting the emergence
of the degradation problem [IT]

30-layer networks | 15-layer networks
ELU | MPELU | ELU | MPELU
Gaussian X X - -
ours 37.08 36.49 - -
Gaussian + BN - 44.28 40.36 39.53
ours + BN - 42.96 39.83 | 38.42
x: fails to converge

initialization methods

Table 6. Comparison between LSUV and ours through the 15-layer networks. Although
the improvement over LSUV is slight, but still consistent

15 layers MPELU ELU
a, B 0/1,1/10.25/0, 1/0 | 0.25/1, 1/1 | 1/1,1/1|1/0,1/0|1/0, 1/0

LSUV [24) | 37.72 39.93 37.67 37.62 38.57 39.85
ours 37.41 39.46 37.47 37.33 38.42 39.83

a, B: initial value / weight decay multiplier

Comparison to Gaussian. Tab. [l shows that the Gaussian initialization fails
to train the 30-layer ELU/MPELU networks, while our method can help learn,
which justifies the effectiveness of Eqn. ([Z2). Furthermore, the 37.08%/36.49%
top-1 test error rates achieved by the 30-layer ELU/MPELU networks are obvi-
ously lower than those achieved by 15-layer counterparts, meaning that the pro-
posed method indeed addresses the diminishing gradients caused by improper
initialization of very deep networks, hence makes them enjoy the benefit from
the increase of depth. When BN is adopted, the proposed method reduces the
error consistently compared to the Gaussian initialization, showing its benefit
to the generalization capability. In addition, MPELU networks always perform
better than ELU networks, and obtains the overall best result, 36.49% top-1 test
error rate, demonstrating the benefit of introducing learnable parameters. The
above results indicate that although Eqn. ([22]) derives from a first-order Taylor
approximation of Eqn. ([Id)), it indeed works rather well in practice.

Comparison to LSUV. Mishkin et al. [24] verified LSUV in the 22-layer
GoogLeNet [I0] using ReLU. To examine LSUV in deeper networks with ex-
ponential linear units, we build another 52-layer ELU network and initialize the
30- and 52-layer ELU networks with LSUV. Without BN, LSUV makes both
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Fig. 3. learning curves of 15/30-layer MPELU networks on ImageNet. (a) training
loss: All the 30-layer networks tend to converge. (b) top-1 training error (%). (c) top-1
test error (%). the 30-layer networks with BN have higher training/test error than the
15-layer network, suggesting the emergence of the degradation problem [I1]. Somehow
surprisingly, if BN is removed, the problem is eliminated (see the red dashed line)

ELU networks explode within only several iterations, while our method can
make them converge. More experiments are also conducted through the 15-layer
networks from Sec. and the results are given in Tab. [6l The proposed initial-
ization leads to marginal, but consistent, decrease in top-1 test error. In addition,
Eqn. (22) is an analytic solution, while LSUV is a data-driven method, meaning
that the proposed method runs faster than LSUV.

Degradation Analysis. It should be noted in Tab. [l that while the 30-layer
network without BN obtains the overall best result, the 30-layer networks with
BN perform considerably worse than the 15-layer counterparts. To explain this,
we analyze their learning behaviors.

Firstly, Fig. Bla) shows the training loss of all the 30-layer networks at the
end of training. As we can see, the networks with BN have comparable training
loss to the network without BN, demonstrating that they all converge well. Thus,
it is most unlikely that the decrease of accuracy is caused by vanishing gradients.
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Table 7. The statistics (mean and variance) of activations of conv{1, 7, 14, 20, 27}. As
described in [7], the ReLU network can roughly preserve its variance, which leads to
large magnitude of outputs, and thus diverges. As a comparison, the MPELU network
can gradually reduce the magnitude, and thus avoid overflow

convl conv? | convl4 | conv20 | conv27
ReLU 38.95 41.25 28.37 22.52 19.61

MPELU | 25.31 4.77 0.13 0.03 0.003
ReLU | 4196.36 | 4603.98 | 2594.84 | 2381.22 | 2627.62

MPELU | 1840.65 | 74.43 0.71 0.07 0.01

Mean

Var

Secondly, Fig. Bib)(c) show the top-1 training/test error rates. Obviously, the
30-layer networks with BN have higher training/test error than the 15-layer
counterpart, suggesting the emergence of the degradation problem as described
in [I1]. Interestingly, the 30-layer network without BN does not suffer from
this problem. It can enjoy the benefit of increasing depth. Note that the only
difference among these networks is the usage of BN. Therefore, BN might be an
underlying factor causing the degradation problem.

Comparison of convergence. Since deeper networks are harder to train, it
is good to examine the convergence of activation functions by the 30-layer net-
works without BN. To this end, four such networks are constructed and initial-
ized from the corresponding method with FAN_IN, FAN_OUT, and AVERAGE
mode. Experimental results show that the ReLLU network fails to converge in all
three modes. The PReLLU network converges only in the FAN_OUT mode. On
the contrary, ELU/MPELU networks are able to converge in all three modes.
These results may be due to the robust to variations of inputs introduced by the
left saturation of ELU/MPELU. To verify this, the statistics (mean and vari-
ance) are computed. Tab. [{lshows that the ReLU network roughly preserves the
variance of inputs, which results in very large activations at higher layers and
overflow of softmax as discussed in [7]. The MPELU network does not suffer
from this since it has the left saturation to a small negative value and thereby
gradually decreases the variance during forward propagation.

4.4 Residual Analysis of the Proposed Initialization

The left side of Eqn. (I3 is approximated by the first order Taylor expansion.
This section estimates the residual term R,,(y),
98y

= Ta(ﬁyﬁ 0<6<1). (23)

Rn(y)

To this end, two cases with and without BN will be considered.

With BN. BN are usually adopted immediately before MPELU. Therefore, it is
reasonable to assume that the input of MPELU, y, has a Gaussian distribution
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with zero mean at the initialization stage. According to probability theory, over
99.73% inputs fall into the range of [-3/Var(y), 3\/Var(y)], and in this range
only half of them contribute to the residuals. We consider three inputs taking

—/Var(y), —2y/Var(y), and —3+/Var(y) whose corresponding residuals are:

—3608+/Var(y)
R, ( =3y Var(y) )= %aﬁz‘/ar(y) < gozBQVar(y), (24)
Je—208+/Var(y) 4
R.( —2y/Var(y) ) = fchVar(y) < §aﬁ2Var(y), (25)
—0B+/Var(y)
Rl —/Var(y) ) = e afVar(y) < LafVarly).  (26)

Eqn. 4), @3), and (26]) say that at the initialization, more than 99.865%,
97.725%, and 84.135% (the probability of y falling in [—3+/Var(y), +00], [-21/Var(y),
+oo], and [—+/Var(y), +o0], respectively) inputs will have the residuals less
than 2a3%Var(y), 2062Var(y), and $a8%Var(y), respectively. Here, y has unit
variance. If o and /3 are initialized with 1, more than 84.135% inputs will have

the residuals less than 0.5. Furthermore, consider some negative input ¢ whose
residual is less than 10~2. For g,

R A—@ 292 L 22 0.01 27
n(y)—2aﬁy <20zﬁy<-- (27)

If @ and B are initialized with 1, then we obtain:

2
g > _ Y2 g (28)

10/ap

This means there will be about 55.57% inputs having the residuals less than 0.01.
Although the residuals are innegligible, Eqn. ([22)) still works well in practice. The
analysis can be side-verified by Clevert et al. work [8] in which they observed
that ELU does not show better performance when used with BN. ELU (o = 1)
behaves more like LReLU (a = 1), a linear function, for the whole period of
training since most residuals are small, see Tab. 8] LReLU (D).

Without BN. In this case, it is difficult to estimate the residuals analytically.
Fortunately, the residual can be easily computed from the outputs of a convo-
lutional layer. For this purpose, the 30-layer MPELU network without BN from
Sec. 3] is adopted. By Eqn. (1), we consider the inputs of residuals less than
{0.01, 0.5, 2, 4.5}, or equivalently {y | y > —0.1414},{y |y > =1}, {y | y > —2},
and {y | y > —3}.

For simplicity, the statistics are computed every 7 layers. As shown in Tab.[
the deeper layers have a better approximation for Eqn. (). Also, once the
depth reaches the median, e.g., convl4, most of units will have the residuals
less than 0.5. In addition, the statistics of convl4 is very close to a standard
normal distribution, which suggests that it plays a role of BN which ensures that
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Table 8. The histogram of units for residuals. The bins are (0, 0.01), (0, 0.5), (0, 2),
and (0, 4.5). Conv{l, 7, 14, 20, 27} are picked from the 27 convolutional layers. For
each bin (each row), the deeper the layer, the higher percentage of units fall in it.
Once the depth reaches 14, most of units will have residuals 0.5 or less. It is interesting
to note that the outputs of the median layer, conv14, approximately have a standard
normal distribution

residual | convl | conv7 | convI4 [ conv20 [ conv27
0.0T 51.24 146.83 [ 56.70 | 78.1I8 89.45
0.5 51.65 | 50.00 | 84.75 | 99.60 1

2 52.11 | 53.78 [ 97.09 |1 1

4.5 52.53 | 57.54 [ 99.71 |1 1

Table 9. Classification error on CIFAR-10. ReLU is simply replaced with ELU or
MPELU. The mean test error over 5 runs is reported except that we show best (mean
+ std) for depth 110. In MPELU ResNet (A), a and S are initialized with 1 and
updated by SGD with weight decay. For (B), we pay a special attention to MPELU
after addition, and initialize a and 8 with 98 and 0.01, respectively

# layers / # params | 20 32 44 56 110 # params
ResNet [11] 875 | 7.51 | 7.17 | 6.97 6.43 (6.61 £ 0.16) 1.73M
ELU ResNet 7.980 | 7.872 | 7.714 | 7.844 | 8.11 (8.36 + 0.29) 1.73M

MPELU ResNet (A) | 812 | 7.35 | 6.90 | 6.72 | 6.21 (6.89 £ 0.47) | 1.74M
MPELU ResNet (B) | 8.16 | 7.12 | 6.67 | 6.27 | 5.64 (5.77 + 0.15) | 1.74M

gradients can be properly propagated to the lower layers at the initialization. We
argue that the residuals are acceptable for the initialization. Sec. has proven
the effectiveness of the proposed initialization.

5 Deep MPELU Residual Networks

Sec. @l shows that MPELU and the proposed initialization can bring benefits to
the plain networks. This section gives a deep MPELU ResNet to show that the
proposed methods are especially suitable for the ResNet architecture [I1] and
provides state-of-the-art performance on the CIFAR-10/100 datasets.

5.1 MPELU and Batch Normalization

This section demonstrates that MPELU, as opposed to ELU, can be used with
BN. Clevert et al. [§] found that BN can improve ReLU networks, but not (even
be harmful to) ELU networks. Observing this, Shah et al. [32] proposed to remove
most BN layers when constructing ResNet using ELU. While removing BN could
lower the barrier between them, it tends to diminish the desired regularization
properties, which may lead to unexpected negative effect on the generalization
capability. We argue that a proper method to alleviate the problem is introducing
learnable parameters o and 3.
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To examine this, we simply replace ReLU with ELU and MPELU in ResNet,
keeping any other settings unchanged. o and 8 in MPELU (A) are initialized
with 1 and updated by SGD with weight decay. Tab. @ shows the ELU ResNet
performs worse than the original ResNet, potentially demonstrating that BN
does not improve the ELU ResNets. On the contrary, the MPELU ResNets (A)
consistently reduces the test error for different depths.

The improvement over ELU may receive an explanation from Eqn. (2] that
origing from the learnable parameters in MPELU. Eqn. (@) suggests that the
outputs of BN directly flow into its PReLLU submodule and therefore avoid the
ELU submodule. Another possible reason comes from the principle of ResNet,
a hypothesis that it is easier to optimize the residual mapping than the original
mapping. The ResNet architecture is derived from the extreme case of the hy-
pothesis where the identity mapping is optimal. Compared to ReLU and ELU,
MPELU covers larger solution space, which allows the solvers to have more
opportunities for approximating identity mappings, and therefore improves the
performance. To verify this, we pay a special attention to the MPELU layers
after addition, where o and f are initialized with 98 and 0.01 respectively. By
doing so, the shortcut connection and the MPELU layer after addition combine
to an identity mapping. Following the philosophy in [I1], if an identity mapping
were optimal, it would be easier to learn an identity mapping by a shortcut con-
nection plus such a MPELU layer than plus a ReLU or ELU layer since neither
ReLU or ELU covers the identity mapping. The results are given in MPELU
ResNets (B). Tab. [@ shows that MPELU ResNets (B) consistently outperform
the counterparts by a large margin, demonstrating the benefit from the larger
solution space introduced by the learnable parameters.

5.2 Network Architectures

He et al. [TTITH] investigated the usage of activation functions for deep residual
networks. The resulted ResNet and Pre-ResNet architectures are highly opti-
mized for ReLU. Even though the performance can be improved by simply re-
placing ReLU with MPELU as shown in Sec. 5.1l we expect that it would benefit
from an adjusted deployment. For this reason, this section proposes a variant of
the residual architecture, MPELU ResNet which includes two types of blocks,
non-bottleneck and bottleneck, as described in the following.

MPELU Non-bottleneck Residual Block. This block, (Fig. @l(b)), is a sim-
plification of the original non-bottleneck residual block in ResNet [11] (Fig.@(a)).
The experimental results from Sec. b1l suggest that ResNet using MPELU gains
more opportunities for finding a better solution than using ReLU or ELU. How-
ever, introducing nonlinear units (e.g., MPELU) after addition would still affect
the optimization. For example, if an identity mapping were optimal, to the ex-
treme, it would require the solvers to fit an identity mapping by a stack of
nonlinear units in addition to pushing the residual functions to zero. Inspired by
[15133], the identity mapping is directly constructed, as shown in Fig. [d(b), by
removing the MPELU after addition instead of being fit by the solvers.
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Fig. 4. Various residual blocks. (a) the non-bottleneck block in [I1], (b) MPELU non-
bottleneck block, (c¢) the full pre-activation bottleneck block in [15], (d) MPELU full
pre-activation bottleneck block

MPELU Bottleneck Residual Block. A naive MPELU Bottleneck block can
be simply obtained by replacing ReLU (Fig.@d(c)) with MPELU (Fig.d\d)). This
pull pre-activation structure is highly optimized for ReLU.

This section presents a nopre-activation bottleneck block optimized for MPELU
(see Fig.[Bl(d)). Since the pre-activation part is removed, the complexity and the
number of parameters of this block can be largely reduced. As a consequence,
the final complexity and the number of parameters of the entire network is
comparable to the original. Besides, we adopt a BN (denoted by BNy) plus a
MPELU right after the first convolution layer, and a BN (denoted by BNcpq)
plus a MPELU right after the last element-wise addition of the entire network.
The BN; and BN,,,4 are important for the nopre-activation bottleneck block. We
will empirically demonstrate this. In addition to this structure, other alternatives
(see Fig. [l are also investigated.

5.3 Results on CIFAR

This section firstly evaluates the variants and alternatives of the proposed MPELU
ResNet, then compares it to the state-of-the-art architectures. The implementa-
tion details are given in appendix.
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Fig. 5. Alternatives of residual function. (a) MPELU-only pre-activation block ending
with a BN, (b) MPELU-only pre-activation block, (c) nopre-activation with a BN, (d)
nopre-activation bottleneck, (e) nopre-activation without BN.

Classification Results. For shallower architectures, the MPELU ResNets (non-
bottle.) are considered. Tab. [I0 shows that the MPELU ResNets (non-bottle.)
achieve consistent improvement with negligible increase of parameters. For ex-
ample, the 110-layer MPELU ResNet reduces the mean test error rate to 5.47%,
which is 1.14% lower than the original ResNet-110. Note that this improvement
is obtained merely via a simple strategy — changing the usage of activation func-
tions, demonstrating the benefit from MPELU.

When the networks go deeper (164 layers), we focus on the bottleneck archi-
tectures to reduce the time/memory complexity as done in [I1]. Tab. [l shows
that the MPELU full pre-activ., Fig. B{d), provides a marginal decrease in the
mean test error rate from 5.46% to 5.32% compared to the original Pre-ResNet,
Fig.[(c). This is done by simply replacing ReLU with MPELU. For the MPELU-
only pre-activ. with BN (Fig.[E}a)), the network fails to converge under the initial
learning rate 0.1. Following [I1], we warm up the training using learning rate
0.01 for one epoch, then switch back to 0.1. With this policy, the network is
able to converge but to a worse solution than the full pre-activ. architecture.
Based on this observation, we keep the pre-activation part and remove the BN
before addition (see Fig. Bl(b)). Interestingly, the network can converge without
warming up, leading to the mean test error 5.49% which is also worse than the
full pre-activ. architecture. Through these results, the MPELU-only pre-activ.
architectures are not considered in the rest of the paper.
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Table 10. Test error (%) of non-bottleneck architectures on CIFAR-10. We try different
learning rate and weight decay multipliers for  and 3, and pick the one that gets the
best performance. We retrained the original ResNet for 200 epochs and denote the
results by *

Fig. / # layers / # params Fig. 20 32 44 56 110 # params
ResNet [IT] Fig. B(a) | 8.75 | 7.51 | 7.17 | 6.97 | 6.43 (6.61 + 0.16) 1.73M
ResNet [I1]* Fig. B(a) | 8.16 | 7.06 | 6.99 | 6.58 | 6.27 (6.40 &+ 0.18) 1.73M
MPELU ResNet (non-bottle.) | Fig. H(b) | 7.71 | 6.73 | 6.26 | 5.95 | 5.35 (5.47 + 0.14) | 1.74M

Table 11. Test error (%) of bottleneck architectures on CIFAR-10. o and 8 are ini-
tialized with 0.25 and 1, respectively, and updated by SGD with weight decay

Fig. / # layers / # params Fig. 164 # params
the original Pre-ResNet [15] Fig. Hc) 5.46 1.703M
MPELU full pre-activ. Fig. A(d) 5.20 (5.32 & 0.13) 1.728M
MPELU-only pre-activ. with BN Fig. Bl(a) | diverged within few steps | 1.727M
MPELU-only pre-activ. Fig. B(b) 5.49 1.712M
MPELU nopre with BN Fig. Bl(c) | diverged within few steps | 1.713M
MPELU nopre Fig.B(d) | 4.87 (5.04 T 0.14) 1.696M
MPELU nopre (no BNy and BNcy4) - diverged within few steps | 1.696M
MPELU nopre (no BNy) - 5.29 1.696M
MPELU nopre without BN Fig. Bl(e) | diverged within few steps | 1.688M

We focus on the MPELU nopre architecture (Fig. Bld)), and its variants.
Somehow surprisingly, as shown in Tab. [[Il simply removing the pre-activation
brings about lower test error rate with less parameters and complexity, which
suggests that the deep residual architectures have the potential to enjoy the
benefit from MPELU. In addition, the performance is also examined by adding
more BN layers to and removing BN layers from the MPELU nopre architecture.
For the former case (Fig. Bl(c)), as demonstrated in Tab. [[1] adding one more
BN before addition makes the network diverge within few steps. Seeing this, we
tried the warming up and found that the network converged well. Combining this
phenomenon with the observations of Fig. Bl(a) and ResNet-110 [I1], we suspect
that the BN before addition would exert a negative impact on the gradient signals
so that we have to lower the initial learning rate to warm up the training. For the
latter case, removing all the BN from the residual function (see Fig. Ble)) also
leads to divergence. Again, the same result happens when BN; and BNg,4 are
removed from the MPELU nopre. However, if keeping BN.,,4, the network still
converges and performs slightly worse (5.29% wvs. 5.04% mean test error). These
results suggest that BN; and BN,,,4 are important to the nopre architecture.

Considering the time/memory complexity and model size, the MPELU no-
pre is picked as the proposed bottleneck architecture of this paper and used to
compared to other state-of-the-art methods.
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Table 12. Comparison to state-of-the-art methods on CIFAR-10/100. MPELU are
initialized with o = 0.25 or 1 and 8 = 1 that are updated by SGD with weight decay.
1 denotes that the hyper-parameter settings follow [34] (see appendix). Our results are
based on the best of 5 runs with mean + std

Method settings [ depth | # params CIFAR-1I0 CIFAR-100
NIN - - - 881 -
DSN - - - 7.97 34.57
Al-CNN - - - 7.25 33.71
Highway - - - 7.72 32.39
ELU [ - - - 6.55 24.28
Fitnets [37] - - - 8.39 35.04
- - 10 T7M 6.61 .
ResNet [1T] - 1202 | 19.4M 7.93 -
= 110 T.7M 5.23 2458
sto. ResNet [38] | _ 1202 | 10.2M 4.91 -
- k=38 16 TT.0M Z.8T 22.07
Wide ResNet B9] || — 79 | 28 | 36.5M 417 20.50
- 64 T.7M 5.46 24.33
Pre-ResNet 1] | 1001 | 10.2M | 4.62 (4.69 & 0.20) | 22.71 (22.68 & 0.22)
a=1 1647 | 1.696M | 4.58 (4.67 £ 0.06) | 21.35 (21.78 & 0.33)
MPELU nopre | S=1 | 1001f | 10.28M |3.63 (3.78 + 0.09) | 18.96 (19.08 + 0.16)
ResNet a=025| 164 | 1.696M | 4.87 (5.06 £ 0.14) | 23.16 (23.29 £ 0.11)
(Fig. 5(d)) =1 1647 | 1.696M | 4.43 (4.53 £ 0.12) | 21.69 (21.88 4 0.19)

1001t | 10.28M | 3.57 (3.71 + 0.11) | 18.81 (18.98 + 0.19)

Comparison to state-of-the-art methods. To compare to the state-of-the-
art methods, we adopt an aggressive training strategy from [34] (See appendix
for details), denoted by the symbol T.

The test error rate is given in Tab. It is easy to see that with the training
strategy f, the mean test error of MPELU nopre ResNet-164 (o = 0.25) is con-
siderably reduced especially on CIFAR-100 dataset (21.88% wvs. 23.29%). This
might be because that CIFAR-100 is challenger than CIFAR-10. Training for
more epochs with large learning rate would help the model learn the underlying
elusive concepts. Interestingly, changing the initial value of o to 1 in MPELU
can further improve the test error on CIFAR-100 (21.78%) but not on CIFAR-10
(4.67%). For comparison, we also trained the 1001-layer MPELU nopre ResNet.
Tab. shows that even though more parameters are introduced, the MPELU
ResNet architectures do not suffer from overfitting and still enjoy the perfor-
mance gains from increased parameters and depth. The best results from the
proposed MPELU nopre ResNet-1001 are 3.57% test error on CIFAR-10 and
18.81% on CIFAR-100, which are considerably lower than those by the original
Pre-ResNet [15].

6 Conclusions

Activation function is the pivotal component of deep neural networks. Recently,
some work on this subject has been proposed. This paper generalized the exist-
ing work to a new Multiple Parametric Exponential Linear Units (MPELU). By
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introducing the learnable parameters, MPELU can become the rectified or the
exponential linear units and combine their advantages. Comprehensive experi-
ments via networks of varying depth (from 9-layer NIN [25] to 1001-layer ResNet
[11]) are conducted to examine the performance of MPELU. Experimental results
showed that MPELU can bring benefits to the classification performance and the
convergence of deep networks. In addition, MPELU can work with Batch Nor-
malization as opposed to ELU. Weight initialization is also an important factor
in deep neural networks. This paper proposes an initialization for networks using
exponential linear units, which complements the current theory of this field. To
our knowledge, this is the first method that gives an analytic solution for net-
works using exponential linear units. Experimental results demonstrated that
the proposed initialization not only enable the training of very deep networks
using exponential linear units, but leads to better generalization performance. In
addition, these experiments suggested that Batch Normalization might be one of
factors that caused the degradation problem. Finally, this paper investigated the
usage of MPELU with ResNet and presented a deep MPELU residual networks
which achieved state-of-the-art accuracy on the CIFAR-10/100 datasets.
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Appendix: Implementation Details

NIN on CIFAR-10 (Sec. E1l). During training, all the models are trained
using SGD with batch size 128 for 120k iterations (around 307 epochs). The
learning rate is initially set to 0.1, and then decreased by a factor of 10 after 100k
iterations. The weight decay and momentum are 0.0001 and 0.9. The weights are
initialized from a zero-mean Gaussian distribution with 0.01 standard deviation.
« and 8 in MPELU are initialized with 0.25 or 1, and updated by SGD without
weight decay. During test, we adopt the single-view test. Following [A0/25/T6],
the data is preprocessed with global contrast normalization and ZCA whitening.
When data augmentation is used, the 28 x 28 patches are randomly cropped
from the preprocessed images, and then flipped with a probability of 50%.

The 15-layer networks on ImageNet (Sec. [4.2)). The models are trained by
SGD with mini-batch size of 64 for 750k iterations (37.5 epochs). The learning
rate is 0.01 initially, then divided by 10 at 100k and 600k iterations. The weight
decay and momentum are 0.0005 and 0.9, respectively. All of images are scaled
to 256 x 256 pixels. During training, a 224 x 224 sub image is randomly sampled
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from the original image or its flipped version. No further data augmentation is
used. During test, we adopt the single-view test.

MPELU ResNet on CIFAR-10/100 (Sec. [5.3]). The implementation de-
tails mainly follow [I1] and the fb.resnet.torch [33]. Specifically, the models are
trained by SGD with batch size of 128 for 200 epochs (no warming up). The
learning rate is initially set to 0.1, then decreased by a factor of 10 at 81 and
122 epochs. The weight decay is set to 0.0001, and the momentum is set to 0.9.
MPELU are initialized with o = 0.25 or 1 and § = 1 that are updated by SGD
with weight decay. All the MPELU models are initialized from the proposed
method (Sec. B2)). For comparison, we follow the standard data augmentation
implemented by fb.resnet.torch [33]: each image is padded with 4 pixels and then
a 32x32 patch is randomly cropped from it or its horizontal flip version. When
the aggressive training strategy t from [34] is adopted, the models are trained for
300 epochs. The batch size is 64 on two Titan X GPUs (32 each). The learning
rate is initially at 0.1, then decreased by a factor of 10 at 150 and 225 epochs.
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