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Abstract

This paper presents an artificial cognitive system tightly integrating object percep-

tion and manipulation for assistive robotics. This is necessary for assistive robots,

not only to perform manipulation tasks in a reasonable amount of time and in an

appropriate manner, but also to robustly adapt to new environments by handling

new objects. In particular, this system includes perception capabilities that allow

robots to incrementally learn object categories from the set of accumulated experi-

ences and reason about how to perform complex tasks. To achieve these goals, it is

critical to detect, track and recognize objects in the environment as well as to con-

ceptualize experiences and learn novel object categories in an open-ended manner,

based on human-robot interaction. Interaction capabilities were developed to en-

able human users to teach new object categories and instruct the robot to perform
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complex tasks. A naive Bayes learning approach with a Bag-of-Words object

representation are used to acquire and refine object category models. Perceptual

memory is used to store object experiences, feature dictionary and object cate-

gory models. Working memory is employed to support communication purposes

between the different modules of the architecture. A reactive planning approach

is used to carry out complex tasks. To examine the performance of the proposed

architecture, a quantitative evaluation and a qualitative analysis are carried out.

Experimental results show that the proposed system is able to interact with human

users, learn new object categories over time, as well as perform complex tasks.

Keywords: Assistive robots; 3D object perception; open-ended learning;

interactive learning; object manipulation.

1. Introduction

Assistive robots are extremely useful because they can help elders or people

with motor impairments to achieve independence in everyday tasks[1][2]. Elderly,

injured, and disabled people have consistently attributed a high priority to object

manipulation tasks[3]. Object manipulation tasks consist of two phases: the first is

the perception of the object and the second is the planning and execution of arm or

body motions which grasp the object and carry out the manipulation task. These

two phases are closely related: object perception provides information to update

the model of the environment, while planning uses this world model information

to generate sequences of arm movements and grasp actions for the robot. In addi-

tion, assistive robots must perform the tasks in reasonable time. It is also expected

that the competence of the robot increases over time, that is, robots must robustly

adapt to new environments by being capable of handling new objects. However,
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it is not reasonable to assume that one can pre-program all necessary object cate-

gories for assistive robots. Instead, robots should learn autonomously from novel

experiences, supported in the feedback from human teachers. In order to incre-

mentally adapt to new environments, an autonomous assistive robot must have the

ability to process visual information and conduct learning and recognition tasks in

a concurrent and interleaved fashion. Several state-of-the-art assistive robots use

traditional object category learning and recognition approaches [4][5][6]. These

classical approaches are often designed for static environments in which it is vi-

able to separate the training (off-line) and testing (on-line) phases. In these cases,

the world model is static, in the sense that the representation of the known cate-

gories does not change after the training stage. Therefore, these robots are unable

to adapt to dynamic environments [7]. This leads to several shortcomings such as

the inability to detect/recognize new or unknown categories. To cope with these

issues, several cognitive robotics groups have started to explore how robots could

learn incrementally from their own experiences as well as from interaction with

humans [8][9][10].

In this paper, a cognitive framework for assistive robots is presented which

provides a tight coupling between object perception and manipulation. The ap-

proach is designed to be used by an assistive robot working in a domestic envi-

ronment. In particular, we present an adaptive object perception system based on

environment exploration and Bayesian learning. The objective is that the robotic

system is capable of continuously learning new object categories while carrying

out manipulation tasks in the environment. This work focuses on learning, recog-

nizing and manipulating table-top objects.

The contributions proposed in this work are the following: (i) an integrated
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framework for object manipulation incorporating perception and planning capa-

bilities for manipulation tasks; (ii) unsupervised object exploration methodology

that produces a dictionary of visual words used for representing objects (Bag-of-

Words model); (iii) interactive categorization (labelling) of physical objects, in

which a human user playing the role of tutor provides category labels for objects

under shared attention; (iv) open-ended learning of object category models from

experiences. The fourth contribution follows our previous works on open-ended

learning for object recognition [11] [12] [13] [14]. These previous approaches are

instance-based, i.e. a set of features is stored for each object view. In contrast, the

present work uses a Naive Bayes learning method to compute category models

from the observed views of instances of the categories. Furthermore, manipula-

tion experiments are carried out for validating the approach.

The remainder of the paper is organized as follows: section 2 describes the

related work; an overview of the developed system is presented in section 3; sec-

tions 4, 5, 6 and 7 describe in detail the proposed methodologies. Finally, results

are presented and discussed in section 8 and conclusions are presented in section

9.

2. Related Work

Although an exhaustive survey of assistive robotics as well as object percep-

tion and manipulation techniques is beyond the scope of this paper, representative

works will be reviewed in this section.

2.1. Assistive and Service Robots

Daily tasks such as setting a table for a meal or cleaning a table are difficult

for disabled or elder people [2]. Over the past decade, several researches have
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been conducted to develop robots to assist those people in order to enable them to

maintain an active life less dependent on others [1]. In the ARMEN project, Ler-

oux et al. [4] proposed a mobile assistive robotics approach providing advanced

functions to help maintaining elderly or disabled people at home. Similar to our

system, this project involves object manipulation, knowledge representation and

object recognition. The authors also developed an interface to facilitate the com-

munication between the user and the robot. Jain et al. [3] presented an assistive

mobile manipulator named EL-E that can autonomously pick objects from a flat

surface and deliver them to the users. They used a multi-step control policy that

is not suitable to achieve real time performance. In our approach we can achieve

real-time performance through the use of ROS nodelets and multiplexing mecha-

nisms [12]. Furthermore, in [3], the user provides the location of the object to be

grasped by the robot by briefly illuminating a location with a laser pointer. In this

work, objects are detected and recognized autonomously. Therefore it is enough

for the user to specify the category of the object to be picked up.

In another work [15], a multi-robot assistive system, consisting of a Segway

mobile robot with a tray and a stationary Barrett WAM robotic arm, was devel-

oped. The Segway robot navigates through the environment and collects empty

mugs from people. Then, it delivers the mugs to a predefined position near the

Barrett arm. Afterwards, the arm detects and manipulates the mugs from the tray

and loads them into a dishwasher rack. This work is similar to ours in that it in-

tegrates perception and motion planning for pick and place operations. However

there are some differences: their vision system is designed for detecting a single

object type (mugs), while our perception system not only tracks the pose of dif-

ferent types of objects but also recognizes their categories. Furthermore, because
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there is a single object type (i. e. mug), they computed the set of grasp points

off-line. In our approach, grasping must handle a variety of objects never seen

before.

In the RACE project (Robustness by Autonomous Competence Enhancement),

a PR2 robot demonstrated effective capabilities in a restaurant scenario including

the ability to serve a coffee, set a table for a meal and clear a table [16] [17] [18].

The aim of RACE was to develop a cognitive system, embodied by a service robot,

which enabled the robot to build a high-level understanding of the world by stor-

ing and exploiting appropriate memories of its experiences. Other examples of

assistive robot platforms that have demonstrated perception and action coupling

include TUM Rosie robot [5], HERB [19] and ARMAR-III [6].

2.2. Object Manipulation

In most cases, prior works on object manipulation requires a complete geo-

metric description of the objects [20][21]. However, in real scenarios, it is not

possible to have complete knowledge of the geometric properties of all possible

objects in advance. That information has to be extracted online from the expe-

riences of the robot. In neuroscience and neurocomputing literature, it has been

demonstrated that visual processing in the ventral and dorsal pathways is based on

classifying the grasped objects into three groups: known, familiar and unknown

objects [1][22][23][24][25]. This classification has been adopted in robotics [20].

The underlying reason for this classification is that prior knowledge about

objects determines how grasp candidates are generated and ranked. For known

objects, i.e., when there is complete knowledge of the geometric properties of

objects, grasping is limited to solving the problems of recognition and pose es-

timation. In the case of familiar objects, an object comparison procedure may
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be used to compare the given object with known objects, and to define grasping

strategies based on that [26]. For unknown objects, heuristic methods are used to

extract grasps in run-time from 3D sensor data. Commonly, the heuristic methods

work based on both the overall shape of the object and its features. For more de-

tails on grasp synthesis, we refer the reader to the surveys of J. Bohg et al. [20] and

Sahbani [21]. Similar to our grasping approach, Ciocarlie et al. [1] and Stuckler

et al. [27] have considered grasps on objects either from above or from the side

based on the overall shape of the object and the global characteristics such as cen-

ter of mass and bounding box obtained from RGBD data. The intuition behind

this approach is that many domestic objects are graspable by aligning the grippers

with the (estimated) principal axes of the object. They follow a standard train

and test procedure for object recognition, while our approach can incrementally

update its knowledge based on new observations.

2.3. Object Perception and Learning

Interactive open-ended object category learning and recognition are key ca-

pabilities in assistive and service robotics. This means that a robot should be

capable of continuously learning new objects in order to perform different tasks

in domestic domains.

Aldoma et al. [28] reviewed properties, advantages and disadvantages of se-

veral state-of-the-art 3D shape descriptors available from the Point Cloud Library

(PCL) to develop 3D object recognition and pose estimation system. They also

proposed two pipelines for object recognition systems using local and global 3D

shape descriptors from PCL. Martinez et al. [29] described a fast and scalable

perception system for object recognition and pose estimation. The authors em-

ployed the RANSAC and Levenberg Marquardt algorithms to segment objects
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and represented them based on SIFT descriptors. In [30], an object classification

approach was proposed, in which the object representation was based on SIFT,

SURF and color histograms. All these features were compacted into a histogram

of visual words for optimizing the recognition process, as well as memory usage.

In this case, authors used a naive Bayes classifier in the recognition stage. Yeh et

al. [31] integrated the bag-of-words methodology to propose an efficient method

for concurrent object localization and recognition. In most of the proposed sys-

tems described above, training and testing are separate processes, i.e., they do

not occur simultaneously. However, in open-ended applications, data is continu-

ously available and the target object categories are not known in advance. In these

cases, traditional object recognition approaches are not well suited, because those

systems are limited to using off-line data for training and are therefore unable to

adapt to new environments / objects.

There are some approaches which support incremental learning of object cat-

egories. In these approaches, the set of classes is predefined and the models of

known object categories are enhanced (e.g., augmented, improved) over time,

while in open-ended approaches the set of categories is also continuously grow-

ing. Haibo et al. [10] proposed an incremental multiple-object recognition and

localization (IMORL) framework using a multilayer perceptron (MLP) structure

as the base learning model. The authors claimed that the proposed framework can

incrementally learn from accumulated experiences and use such knowledge for

object recognition. Yeh and Darrell [32] developed novel methods for efficient

incremental learning of SVM-based visual category classifiers, and showed that,

using their framework, it is possible to adapt the classifiers incrementally.

Kirstein et al. [33] proposed a lifelong learning approach for interactive lear-
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ning of multiple categories based on vector quantization and a user interface.

Collet et al. [34] proposed a graph-based approach for lifelong robotic object

discovery. Similar to our approach, they used a set of constraints to explore the

environment and to detect object candidates from raw RGB-D data streams. In

contrast, their system does not interactively acquire more data to learn and recog-

nize the object. Seabra Lopes and Chauhan [9] approached the problem of object

experience gathering and category learning with a focus on open-ended learning

and human-robot interaction. In their approach, learning is based on multiple rep-

resentations as well as combinations of classifiers. They showed a system that

starts with an empty vocabulary and can incrementally acquire object categories

through the interaction with a human user. They used RGB data whereas we used

depth data. Moreover, their object detection, learning and recognition approaches

are completely different from our approach.

3. Overall System Architecture

The overall system architecture is depicted in Fig. 1. It is a reusable frame-

work, with all modules developed in Robot Operating System (ROS)[35]. The

current architecture is an evolution of the architecture developed in previous work

for object perception and open-ended perceptual learning [36, 14]. Information

exchange is performed using standard ROS mechanisms (i.e. either publish / sub-

scribe or server/client). Therefore, any new module can be easily added to the

system. The architecture includes two memory systems, namely the Working Me-

mory and the Perceptual Memory. Both memory systems have been implemented

9
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Figure 1: Overall architecture of the proposed system.

using a lightweight NoSQL database called LevelDB1. LevelDB is a fast key-

value storage database that provides an ordered mapping from string keys to string

values. The Working Memory is used for temporarily storing information as well

as for communication among different modules. It keeps track of the evolution of

both the internal state of the robot and the events observed in the environment (i.e.

world model). The object features, dictionary of visual words, object representa-

tion data and object category models are stored into the Perceptual Memory. The

goal of Grasp Planning is to extract a grasp pose (i.e. a gripper pose relative to the

object) either from above or from the side of the object, using global characteris-

tics of the object. The Execution Manager works based on a Finite-State-Machine

(FSM) paradigm. It retrieves the task plan and the world model information from

Working Memory and computes the next action (i.e. a primitive operator) based

1LevelDB has been developed by Google: https://code.google.com/p/leveldb/
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on the current context. Then, it dispatches the action to the robot platform as well

as records success or failure information in the Working Memory.

Whenever the robot captures a scene, the first step is preprocessing which in-

cludes three filtering procedures, namely distance filtering, a filter to remove the

robot’s body from sensor data, and a downsampling filter for reducing the size of

the data. Object Detection, responsible for detecting objects in the scene, launches

a new perception pipeline for each detected object. Each pipeline includes Ob-

ject Tracking, Feature Extraction, Object Representation and Object Recognition

modules. The Object Tracking module estimates the current pose of the object

based on a particle filter, which uses shape and color data [12]. The Feature Ex-

traction module extracts features of the current object view and stores them in

the Perceptual Memory. Based on the extracted features and on a visual dictio-

nary, the Object Representation module describes objects as histograms of visual

words and stores them into the Perceptual Memory. A user can provide category

labels for these objects via the User Interaction module [37]. User Interaction

is essential for supervised experience gathering. A graphical user interface has

been developed to teach the robot new object categories or to instruct the robot to

perform a complex task.

The developed architecture, shown in Fig. 1, includes two perceptual learning

modules. One of them, the Dictionary Builder, is concerned with building a dic-

tionary of visual words for object representation. The dictionary plays a prominent

role because it is used for category learning as well as recognition. The second

learning module is the Object Conceptualizer. Whenever the instructor provides a

category label for an object, the Conceptualizer retrieves the probabilistic models

of the current object categories as well as the representation of the labeled object
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in order to improve an existing object category model or to create a new category

model. In recognition situations, a probabilistic classification rule is used to assign

a category label to the detected object. The system is run in two stages. The first

stage is dedicated to environment exploration. In this stage, unsupervised object

discovery is carried out in the environment while the robot operates. The robot

seeks to segment the world into "object" and "non-object". Afterwards, a pool

of shape features is created by computing local shape features for the extracted

objects. The pool of features is then clustered by the Dictionary Builder leading

to a set of visual words (dictionary). Only the modules directly involved in ob-

ject discovery and dictionary building are active in this stage. The second stage

corresponds to the normal operation of the robot, with object category learning,

recognition, planning and execution. In the following sections, the characteristics

of each module are explained in detail.

4. Environment Exploration and Dictionary Construction

Comparing 3D objects by their local features would be computationally ex-

pensive. To address this problem, a Bag-of-Word (BoW) approach is adopted

for object representation, i.e. objects are described by histograms of local shape

features. This approach requires a dictionary of visual words. Usually, this dictio-

nary is created off-line through clustering of a given training set. In open-ended

learning scenarios, there is no predefined set of training data available at the be-

ginning of the learning process. To cope with this limitation, we look at human

cognition, in particular at the fact that human babies explore their environment in

a playful (arbitrary) way [8]. Therefore, we propose that the robot freely explores

several scenes and collects several object experiences. Gathering object experi-

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: List of used constraints with a short description for each one.
Constraints Description Section

Ctable: “is this candidate on a table?” The target object candidate is placed on top of a table. 4

Ctrack: “is this candidate being tracked?” Storing all object views while the object is static would lead to unnecessary 4
accumulation of highly redundant data. This constraint is used to infer that
the segmented object is already being tracked or not.

Csize: “is this candidate manipulatable?” Reject large object candidate 5

Cinstructor: “is this candidate part of the instructor’s body? Reject candidates that are belong to the user’s body 4

Crobot: “is this candidate part of the robot’s body?” Reject candidates that are belong to the robot’s body 4

Cedge: “is this candidate near to the edge of the table?” Reject candidates that are near to the edge of the table 5

Ckey_view: “is this candidate a key view?” For representing an object, only object views that are marked as key-views 5
are stored in the database. An object view is selected as a key view whenever
the tracking of an object is initialized, or when it becomes static again after
being moved. In case the hands are detected near the object, storing key views
is postponed until the hands are withdrawn.

ences by exploration has the advantage of not requiring any human annotation of

individual objects. This (non goal-directed) exploration provides chances to dis-

cover new objects. In general, object exploration is a challenging task because of

the dynamic nature of the world and ill-definition of the objects [34].

Since a system of boolean equations can represent any expression or any algo-

rithm, it is particularly well suited for encoding the world and object candidates.

Similar to Collet’s work [34], we use boolean algebra2, using three logical opera-

tors, namely AND (∧), OR (∨) and NOT (¬). A set of boolean constraints, C, was

then defined based on which boolean expressions, ψ , were established to encode

object candidates for the process of constructing the dictionary of visual words

as well as for interactive object category learning and recognition. The definition

of “object” in the exploration stage is more general than in the normal operation

stage (see equations 1 and 4). In both cases, we assume that interesting objects

are on tables and the robot seeks to detect tabletop objects (i.e. Ctable). Due to

memory size concerns, a representation of an object should only contain distinc-

2http://mathworld.wolfram.com/BooleanAlgebra.html
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tive views. A view which is different from the current view may appear after the

object is moved (i.e. the pose of the object relative to the sensor changes). An

object view is selected as a key view (i.e. Ckey_view) whenever the tracking of an

object is initialized (Ctrack), or when it becomes static again after being moved.

Therefore, the Ckey_view constraint is used to optimize memory usage and compu-

tation while keeping potentially relevant and distinctive information. Moreover,

Cinstructor and Crobot are used to filter out object candidates which are part of the

instructor’s body or robot’s body. Accordingly, the resulting object candidates are

less noisy and include only data corresponding to the environment:

ψexploration =Ctable ∧ Ctrack ∧ Ckey_view ∧ ¬ (Cinstructor ∨ Crobot), (1)

In our current setup, a table is detected by finding the dominant plane in the point

cloud. This is done using the RANSAC algorithm [38]. Extraction of polyg-

onal prisms is used for collecting the points which lie directly above the table.

Afterwards, an Euclidean Cluster Extraction3 algorithm is used to segment each

scene into individual clusters. Every cluster that satisfies the exploration expres-

sion, ψexploration, is selected. The output of object exploration is a pool of object

candidates. It should be noted that to balance computational efficiency and ro-

bustness, a downsampling filter is applied to obtain a smaller set of points dis-

tributed over the surface of the object. Subsequently, to construct a pool of fea-

tures, spin-images4 are computed for the selected points extracted from the pool

of object candidates. We use a PCL function to compute spin-images5. These

3http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php
4The default spin-image parameters are the following: SL = 5mm, A = π/2 and IW = 4.
5In this work, we computed around 32000 spin-images from the point cloud of the 194 objects.
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𝑝𝑜𝑜𝑙 𝑜𝑓 𝑙𝑜𝑐𝑎𝑙 𝑠ℎ𝑎𝑝𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑎 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑤𝑖𝑡ℎ
20 𝑣𝑖𝑠𝑢𝑎𝑙 𝑤𝑜𝑟𝑑𝑠

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑘-𝑚𝑒𝑎𝑛𝑠

Figure 2: Dictionary construction: (left) the robot moves through an office to extract tabletop ob-

jects; (center) the captured scenes are processed to produce a pool of object candidates; (right) a

pool of local shape features is obtained by computing spin-images from the pool of object can-

didates; the dictionary is subsequently constructed by clustering the features using the k-means

algorithm; finally, a dictionary with 20 visual words is built.

capabilities are implemented in the Object Detection, Object Representation and

Feature Extraction modules (see fig.1). Finally, the dictionary is constructed by

clustering the features using the k-means algorithm [39]. The centers of the N

generated clusters are treated as visual words, wi (1 ≤ i ≤ N). Figure 2 shows a

dictionary containing 20 words. In the implementation, we tested different dic-

tionary sizes (see section 8.1). In the context of the RACE project [16], the Uni-

versity of Osnabruck provided us with a rosbag collected by one of their robots

while exploring an office environment. A video of this exploration is available at:
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http://youtu.be/MwX3J6aoAX0. The exploration stage was run on this rosbag.

5. Object Detection and Representation

This section presents the Object Detection, Feature Extraction and Object

Representation modules as they are used in the normal operation stage.

5.1. Object Detection and Tracking

A common way for fast processing of massive point clouds is to use some

mechanisms for removing unnecessary or irrelevant data. For this purpose, two

filters are used that discard large quantities of 3D points from the original point

cloud. The first step is to define a cubic volume in 3D (distance filtering), which

defines the region of interest. The second filter reduces the spatial resolution of

points (downsampling) using a voxelized grid approach6. Furthermore, the points

corresponding to the body of the robot are filtered out from the original point

cloud by retrieving the knowledge of the positions of the arm joints relative to the

camera pose from the working memory.

After preprocessing, the next step is to find objects in the scene using the

preprocessed point cloud. The object detection module implements the following

specification:

ψdetection =Ctable ∧ Ctrack ∧ Csize ∧ ¬ (Cinstructor ∨ Crobot ∨ Cedge), (2)

The object detection uses a size constraint, Csize, to detect objects which can be

manipulated by the robot. Moreover, a Cedge constraint is considered to filter out

the segmented point clouds that are too close to the edge of the table. The Object

6http://pointclouds.org/documentation/tutorials/voxel_grid.php
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(a) (b)

(c) (d)

Figure 3: An example of preprocessing and Object Detection: (a) experiment setup; the JACO

robotic arm performs manipulation tasks to clear the table; (b) distance filtering; (c) result of the

second preprocessing step and table detection; (d) the position of the arm joints are used to filter

out the points corresponding to robot’s body from the original point cloud. The object candidates

are shown by different bounding boxes and colors. The red, green and blue lines represent the

local reference frame of the objects.
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Detection module then assigns a new TrackID to each newly detected object and

launches an object perception pipeline for the object. Finally, the object detection

module pushes the segmented object candidate into the respective pipeline for

subsequent processing steps. An example of the proposed detection approach is

shown in Fig. 3.

The Object Tracking module is responsible for keeping track of the target ob-

ject over time while it remains visible. It receives the point cloud of the detected

object and computes an oriented bounding box aligned with the point cloud’s prin-

cipal axes. The center of the bounding box is considered as the pose of the object.

The module sends out the tracked object information to the Feature Extraction

module.

5.2. Feature Extraction and Object Representation

Object representation is critical to any object recognition system. In the present

work, we adopt an approach to object representation in which object views (in-

stances) are described by histograms of frequencies of visual words. The input is

the set of features of an object candidate, O, computed by the Feature Extraction

module. The Feature Extraction module involves keypoint extraction and com-

putation of a spin image for each keypoint. Finally, the Object Representation

module represents these features as a histogram of visual words. For keypoint

extraction, first a voxelized grid approach is used to obtain a smaller set of points.

The nearest neighbor point to each voxel center is selected as a keypoint[11]. Af-

terwards, the spin-image descriptor is used to encode the surrounding shape in

each keypoint using the original point cloud. By searching for the nearest neigh-

bor in the dictionary, each spin image is assigned to a visual word. Finally, each

object is represented as a histogram of occurrences of visual words:
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(a) (b) (c) (d)

Figure 4: Object representation for a flask: (a) keypoint extraction; (b) surface normal estimation

for the keypoints; (c) a schematic of how spin-image is computed for a keypoint p; (d) histogram

of visual words that represents the object view.

h = [h1 h2 ... hn], (3)

where the ith element of h is the count of the number of features assigned to a

visual word, wi and n is the size of the dictionary. Figure 4 illustrates the Fea-

ture Extraction and Object Representation processes for an object. The obtained

histogram is dispatched to the Object Recognition module and is recorded in Per-

ceptual Memory. To optimize the Perceptual Memory, some object views are

marked as key views and only these are recorded into the memory. Key object

views are selected by the Object Tracking module when the object is not moving

and the user’s hands are far away from the object [37]. In other words, key views

are defined as follows:

ψkey_view =Ctable ∧ Ctrack ∧ Csize ∧ Ckey_view ∧

¬ (Cinstructor ∨ Crobot ∨ Cedge),
(4)
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6. Interactive Object Category Learning and Recognition

The key idea for fast 3D object recognition is to use mechanisms for represent-

ing objects in a uniform and compact format. Estimating a robust model for each

object category is more promising than template matching. In this section, first,

a user interface for supervised experience gathering is presented. The interface

is used not only for teaching new object categories in situations where the robot

encounters with new objects but also for providing corrective feedback in the case

there is a misclassification. The Bag-of-Words representation combined with the

Naive Bayes approach are used to incrementally learn probabilistic models of ob-

ject categories.

6.1. User Interaction

Human-robot interaction is essential for supervised experience gathering i.e.

for instructing the robot how to perform different tasks. Particularly, an open-

ended object category learning and recognition system will be more flexible if it

is able to learn new categories using the feedback of a human user. The User

Interaction module provides a graphical menu to facilitate the collection of super-

vised object experiences and to instruct the robot to perform a task. In the case of

supervised object experiences, two alternative interactions with an instructor are

supported: gesture recognition or the usage of a graphical menu interface. In the

first case, the instructor points to an object and then selects the desired label from a

menu. In the second case the instructor can select the category label for an object

based on its TrackID. Further details on supervised object experience gathering

are available in [37]. An example of object labelling is depicted in Fig.5. The in-

structor puts a ‘Vase’ on the table. Tracking is initialized with TrackID 1. The gray
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(a) (b)

(c) (d)

Figure 5: A 3D visualization of an object labelling event: (a) pointing to object by the instructor;

(b) associating a label to the object that is currently being pointed; (c) labelling object categories

by associating a label to a TrackID; (d) instructing the robot to perform the clear_table task;

bounding box signals the pose of the object as estimated by the tracker. TrackID

1 is classified as ‘Unknown’ because vases are not yet known to the system; the

instructor points at TrackID 1. The system recognizes the pointing gesture and the

corresponding menu is activated. The instructor labels the object as ‘Vase’. The

Object Conceptualizer (category learning) module is activated when the instructor

provides a category label for the object. In addition, the User Interaction module
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provides a menu to request the robot to perform a task or to abort the current task.

6.2. Object Conceptualizer

Learning methods used in most of the classical object recognition systems are

not designed for open-ended domain, since those methods do not support an in-

cremental update of the internal robot’s knowledge based on new experiences. On

the contrary, open-ended learning approaches can incrementally update the ac-

quired knowledge (category models) and extend the set of categories over time,

which is suitable for real-world scenarios. For example, if the robot does not

know how a ’Mug’ looks like, it may ask the user to show one. Such situation

provides an opportunity to collect training instances from actual experiences of

the robot and the system can incrementally update it’s knowledge rather than re-

training from scratch when a new instance is added or a new category is defined.

In this section, we propose an open-ended 3D object category learning approach,

which considers category learning as a process of updating a probabilistic model

for each object category using the Naive Bayes approach. There are two reasons

why Bayesian learning is useful for open-ended learning. One of them is the

computational efficiency of the Naive Bayes approach. In fact, this model can

be easily updated when new information is available, rather than retrained from

scratch. Second, instance-based open-ended systems have continuously growing

memory since they are constantly storing new object view representations (in-

stances). Therefore, these systems must resort to experience management method-

ologies to discard some instances and thus prevent the accumulation of a too large

set of experiences. In Bayesian learning, new experiences are used to update ca-

tegory models and then the experiences are forgotten immediately. The category

model encodes the information collected so far. Therefore, this approach con-
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sumes a much smaller amount of memory when compared to any instance-based

approach. The probabilistic category model requires calculating the likelihoods

of the object given the category k, P(O|Ck), and it is also parametrized by the

prior probabilities P(Ck). It should be noted that the parameters of the likelihood

are the probabilities of each visual word given the object category P(wt |C). In

this work, we consider the probability of each visual word occurring in the object

independently, regardless of any possible correlations with the other visual words

(Naive Bayes approach). The P(Ck)P(O|Ck) is equivalent to the joint probabil-

ity model P(Ck,w1, . . . ,wn) = P(Ck) P(w1, . . . ,wn|Ck). The joint model can be

rewritten using conditional independence assumptions:

P(Ck|w1, . . . ,wn) ∝ P(Ck,w1, . . . ,wn)

∝ p(Ck) P(w1|Ck) P(w2|Ck) · · · P(wn|Ck)

∝ P(Ck)
n

∏
i=1

P(wi|Ck),

(5)

where n is the size of the dictionary and P(wi|Ck) is the probability of the visual

word wi occurring in an object of category k.

P(wi|Ck) =
sik +1

n
∑
j=1

(s jk +1)
, (6)

where sik is the number of times that word wi was seen in objects from category

Ck. Note, the probabilities are estimated with Laplace smoothing, by adding one

to every counter, in order to prevent P(wi|Ck) = 0. On each newly seen object of

this category with xi features of type wi, the following update is carried out:

sik← sik + xi, (7)
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The prior probability of category Ck is estimated as follows:

P(Ck) =
Nk

N
, (8)

where N is the total number of seen objects of all categories and Nk is the number

of seen objects from category k.

6.3. Object Category Recognition

The last step in object perception is object category recognition. To classify an

object O, which is represented as a histogram of occurrences of visual words h =

[h1 h2 ... hn], the posterior probability for each object category is approximated

using the Bayes theorem as:

P(Ck|O) = P(Ck|h) =
P(h|Ck)P(Ck)

P(h)
≈ P(h|Ck)P(Ck), (9)

Because the denominator does not depend on Ck, and the values of the features

are given as a histogram of occurrences of visual words, the denominator is con-

stant. Equation 9 is re-expressed based on equation 5 and multinomial distribution

assumption:

P(h|Ck)P(Ck)≈ P(Ck)
n

∏
i=1

P(wi|Ck)
hi, (10)

In addition, to avoid underflow problems, the logarithm of the likelihood is com-

puted:

≈ logP(Ck)+
n

∑
i=1

hi logP(wi|Ck), (11)

The category of the target object O is the one with highest likelihood:

Category(O) = argmax
Ck∈ C

P(Ck|O). (12)
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7. Planning and Execution

Figure 6 shows a schematic representation of the planning and execution frame-

work. In this framework, task planning is triggered when a user instructs the robot

to achieve a task (e.x. clear_table). This is handled by the User Interaction mod-

ule. The current state of the system, including world model information, global

characteristics of the object of interest (i.e. overall shape, main axis, center of

bounding box) and robot pose is retrieved from the working memory. Then, a

task plan would be generated. A plan is a sequence of primitive operators to be

performed to achieve the given goal. It should be noted that Task Planning is not

in the scope of this paper. Previously, we showed how to conceptualize success-

fully executed task plans and how to use these conceptualized experiences for task

planning [18]. In the present work, a predefined task plan is used. In order to be

executed, a task plan must be complemented with end-effector poses. A pose is

represented as a tuple G = (x , y , z , roll , pitch , yaw), specified relative to the

base reference frame of the robot.
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Figure 6: Schematic representation of task planning, grasp planning and execution manager.
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The Grasp Planning module receives the task plan and chooses a grasp point

either from above or from the side as well as a pre-grasp pose using the world

model information and global characteristics of the object. In the current setup,

the pre-grasp pose is placed at a fixed distance (dpre−grasp = 0.15 m) behind or

above the center of bounding box of the object. The intuition behind this as-

sumption is that many domestic objects are graspable by aligning grippers with

the principal axes of the object [1][27]. In another work, we proposed an ad-

vanced grasping approach to learn how to grasp familiar objects using interactive

object view labeling and kinesthetic grasp teaching [26]. Afterwards, the Execu-

tion Manager retrieves the plan and grasp information from the Working Memory.

The Execution Manager uses a Fine State Machine to reactively execute the plan.

The actions are dispatched to the Robot Capabilities module. Inverse kinematics

and safe controller, integrated from the JACO arm driver7, are used to transform a

given end-effector pose goal into joint-space goals.

Whenever the object is grasped, the height of the robot’s end-effector relative

to the robot’s base is recorded into Working Memory and it is used as the desired

height for placing the grasped object. The Execution Manager computes a new

trajectory to navigate the robot’s end-effector to the placing area and sends out the

action. After executing each action, the current state of the robot is updated in the

Working Memory. Since world model information is updated by different modules

(i.e. Object Detection, Execution Manager and etc.), the Execution Manager can

abort execution when an unpredictable situation happens along expected execu-

tion path such as new obstacles move into the planned path of the robot arm. It

7http://wiki.ros.org/JACO.
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(a) (b) (c)

(d) (e) (f )

Figure 7: Sequence of snapshots showing the JACO robotic arm performing a constrained pick

and place task to clean the table; In this task, the orientation of the grasped object must be kept

consistent throughout the plan; (a) the JACO robotic arm goes to the initial pose and extracts object

(i.e. ’PlasticCup’) pose and shape properties; (b) a side grasp is selected and the robot goes to pre-

grasp position; (c) the robot approaches and grasps the PlasticCup; (d) picking up the PlasticCup

and moving it to the side; (e) placing the object and (f ) going back to the initial position.

should be noted that an orientation constraint on the end-effector is used to grasp

and move an object parallel to the support plane. In addition, objects outside of the

arm’s workspace are not considered. Figure 7 illustrates the result of a constrained

pick and place plan executed on the robot.
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Table 2: Average object recognition performance for different parameters

Parameters VS DS IW SL

Values 0.01 0.02 0.03 50 60 70 80 90 4 8 0.02 0.03 0.04 0.05

Average Accuracy 0.76 0.74 0.71 0.72 0.73 0.74 0.74 0.75 0.75 0.72 0.63 0.74 0.78 0.79

8. Experimental Results

Three types of experiments were performed to evaluate the proposed approach.

First, an off-line quantitative evaluation for the object recognition system is pre-

sented (section 8.1). Second, in section 8.2, a “simulated teacher” was developed

to assess the performance and scalability of the proposed object perception sys-

tem. Finally, a qualitative analysis of the complete interactive open-ended object

recognition system is shown in the context of a real-life use case (section 8.3). In

this case, a seven-minute demonstration session is described, where a user inter-

acts with the system by teaching several objects to the robot and instructing the

robot to perform a “clear_table” task.

8.1. Off-Line Evaluation of the Perceptual Learning Approach

An object dataset has been acquired for off-line evaluations, which contains 339

views of 10 categories of objects [11]. The system has four different parameters

that must be tunned to provide a good balance between recognition performance,

memory usage and computation time. To examine the accuracy of different con-

figurations of the proposed approach, 10-fold cross validation was carried out. A

total of 120 experiments were performed for different values of the four system

parameters namely the voxel size (VS), which is related to number of keypoints

extracted from each object view, the dictionary size (DS), the image width (IW)
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and support length (SL) of spin images. Results are presented in Table 2. The ob-

ject recognition performance for each system configuration is depicted in figure 8

where the system parameters are represented as a tuple (VS, DS, IW, SL).

The parameters that obtained the best average accuracy were selected as the

default system parameters. They are the following: VS = 0.01, DS = 90, IW =

4 and SL = 0.05. The accuracy of the system with the default parameters was

79 percent. Results show that the overall performance of the recognition system

is promising. Spin images are capable of collecting distinctive traits of the local
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Figure 8: Object recognition performance for different values of four parameters of the system;

the system parameters are represented as a tuple (VS, DS, IW, SL).
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surface patches of each object. The results presented in sections 8.3 and 8.2 are

computed using this configuration.

8.2. Open-Ended Evaluation

The off-line evaluation methodologies are not well suited to evaluate open-

ended learning systems, because they do not abide to the simultaneous nature

of learning and recognition and also those methodologies imply that the set of

categories must be predefined. Therefore, an open-ended teaching protocol [9]

[40] [11] is adopted in this evaluation. A simulated teacher was developed to

assess the performance and scalability of the proposed object perception system

by following the teaching protocol.

The simulated teacher autonomously interacts with the learning system using

teach, ask and correct actions. For each newly taught category, the simulated

teacher repeatedly picks unseen object views of the currently known categories

from a dataset and presents them to the system for checking whether the sys-

tem can recognize them. The simulated teacher also provides corrective feedback

in case of misclassification. Experiments were run on the largest publicly avail-

able 3D object dataset namely Washington RGB-D Object Dataset consisting of

250,000 views of 300 common household objects [41]. In the experiments that

will be presented, the system begins with zero knowledge and the training in-

stances become gradually available according to the teaching protocol. Therefore,

the system learns new object categories as well as incrementally updates the exist-

ing object category models. Average Protocol Accuracy (APA) is computed using

a sliding window of size 3n, where n is the number of categories that have already

been introduced. If the number of iterations k, since the last time a new category

was introduced, is less than 3n, all results are used. APA is used to determine if
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a new category can be taught. According to the protocol, the system is ready to

learn a new object category when APA is higher than a certain threshold (marked

by the horizontal line in fig 9), and at least one instance of every known category

has been tested (k≥ n). When an experiment is carried out, learning performance

is evaluated using several measures, including:

• The number of learned categories at the end of an experiment (LC), an in-

dicator of How much does it learn?;

• The number of question / correction iterations (QCI) required to learn those

categories and the average number of stored instances per category (AIC),

indicators of time and memory resources required for learning; i.e. How

fast does it learn?

• Global classification accuracy (GCA), computed using all predictions in a

complete experiment, and the Average Protocol Accuracy (APA), indicators

of How well does it learn?.

Since the order of introduction of new categories may have an effect on the

performance of the system, ten experiments were carried out in which categories

were introduced in random sequences. Figure 9 (top) shows the performance of

the system in the initial 200 iterations of the first experiment. The introduced

categories are signaled by vertical red lines and category labels in the plot.

In the additional nine experiments, these categories were used again with dif-

ferent introduction sequences, the results of which are reported in Table 3. By

comparing all experiments, it is visible that in the third experiment, the system

learned all categories faster than other experiments. In the case of experiment 9,

the number of iterations required to learn 49 object categories was greater than
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Figure 9: (top) Evolution of teaching protocol accuracy versus number of question/correction iter-

ations in the first 200 iterations of the simulated teacher experiment 1 with the protocol accuracy

threshold set to 0.67; (bottom) protocol accuracy versus the number of learned categories, for the

same experiment.

other experiments. The underlying reason for different performances of these ex-

periments is that categories were introduced to the system in a different order,

which has a significant influence on the evolution of the learning performance.

Figure 9 (top) and Fig. 10 show the evolution of the teaching protocol accuracy

in experiments 1, 3, 5, 7 and 9. Figure 9 (bottom) shows the protocol accuracy

as a function of the number of learned categories. Figure 11 (left) shows the

global classification accuracy (i.e. the accuracy since the beginning of the experi-

ment) as a function of the number of learned categories. In this figure we can see

that the global classification accuracy decreases as more categories are learned.

This is expected since the number of categories known by the system makes the
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Figure 10: Evolution of teaching protocol accuracy versus number of question/correction itera-

tions in simulated teacher experiments #3, 5, 7 and 9 with the protocol accuracy threshold set to

0.67.
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Figure 11: System performance during simulated user experiments: (left) global accuracy versus

number of learned categories, a measure of how well the system learns; (right) number of learned

categories versus number of question/correction iterations, represents how fast the system learned

object categories.

classification task more difficult. To cope with this issue, memory management

mechanisms [42], including salience and forgetting, can be considered. Finally,

Fig. 11 (right) shows the number of learned categories as a function of the proto-

col iterations. This gives a measure of how fast the learning occurred in each of

the experiments.

8.3. A Real Life Use-Case: Clear Table

In this section, we present and discuss a “Clear Table” use-case to show all

the functionalities of the system. In this use-case, the system works in a scenario

where a table is in front of the robot, and a user interacts with the system. In this

task, the robot must be able to detect and recognize different objects and transport

all objects except decorative table-top objects (e.g., Vase) to predefined areas.

The experimental setup is shown in Fig. 12. It consists of a computer for
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Table 3: Summary of experiments(1).

EXP# #QCI #LC #AIC GCA (%) APA (%)

1 1257 49 8.16 79 83

2 1228 49 7.83 80 84

3 1227 49 7.65 81 84

4 1240 49 9.08 75 78

5 1236 49 7.95 80 83

6 1346 49 9.46 76 79

7 1293 49 9.02 77 81

8 1330 49 9.79 74 79

9 1336 49 9.55 75 78

10 1225 49 8.30 78 82

(1) EXP#: experiment number; QCI: Question/Correction Iterations;

LC: Learned Categories; AIC: Average Instances per Category; GCA:

Global Classification Accuracy; APA: Average Protocol Accuracy.

Visual 
Interaction

Action Device
(JACO robotic arm)

Perception Device
(Kinect)

Figure 12: Our experimental setup consists of a computer for human-robot interaction purposes, a

Kinect sensor and a JACO robotic-arm as the primary sensory-motor embodiments for perceiving

and acting upon its environment.
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Figure 13: System performance during the clear_table use-case; (left): Initially, the system starts

with no knowledge of any object. The position of the arm joints are retrieved from Working

Memory and visualized by grey spheres and black lines. The table is then detected as shown by

the green rectangle. Afterwards, the object candidates are detected and highlighted by different

colors. The grey bounding boxes and the local reference frames represent the pose of the objects

as estimated by object tracking module. (center): A user then teaches all the active objects to the

system and all objects are correctly recognized, i.e., the output of object recognition is shown in

blue on top of each object. (right): When grasping and manipulating an object, the shape of the

object is partially changed and, as a consequence, a misclassification might happen.

human-robot interactions, a Kinect sensor for perceiving users and environment

and a JACO robotic arm. The JACO arm has six degrees of freedom and a three

fingers gripper. Since the JACO arm can carry up to 1.5kg8, it is ideal for manipu-

lating everyday objects. Moreover, infinite rotation around the wrist joints allows

for flexible and effective interaction in a domestic environment.

At the beginning of the session, there is a Vase object on top of the table. Later,

a user places three more objects including Bottle, CoffeeJug and PlasticCup on

8http://www.kinovarobotics.com
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the table. Note that, at the start of the experiment, the set of categories known to

the system is empty and therefore, the system recognizes all table-top objects as

Unknown (see Fig.13 left). Afterwards, the user labels TrackID1 as a Vase. The

system conceptualizes the Vase category and the category of TrackID1 is correctly

recognized. Similarly, the user teaches all the other objects to the robot by pro-

Figure 14: The sequence of snapshots showing the JACO robotic arm performing a clear_table

task; (First row): PlasticCup is the closest object to the arm’s base. Therefore, the robot picks it

up first from the table, transports it into the first predefined area and then, places the PlasticCup

down. (Second row): CoffeeJug is selected as the second closest object. The robot goes to the

pre-grasp area and then grasps the CoffeeJug. The robot moves the object into the second placing

area and places it down. (Third row): Similarly, Bottle object is picked-up, moved and placed.
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viding the respective category labels. As depicted in Fig.13 (center), the system

could recognize all objects properly. Afterwards, the user instructs the robot to

perform a clear_table task (i.e. puts the table back into a clear state). While there

are active objects on the table, the robot retrieves the world model information

from the Working Memory, including label and position of all active objects. The

robot then selects the object closer to the arm’s base and clears it from the table

(see figure 14). As it is shown in the Fig.13 (right), whenever the robot grasps an

object, the shape of the object is partially changed and therefore a misclassification

might happen. This real life use-case shows that the developed system is capable

of detecting new objects, tracking and recognizing them, as well as manipulating

objects in various positions. In other words, it shows the important role of robust

object recognition and manipulation in performing tasks in human environments.

Moreover, it shows how human-robot interaction is currently supported. A video

of this session is available online at: https://youtu.be/cTK10iNyYXg.

9. Conclusions

In this paper, we have presented a cognitive architecture designed to support

a tight coupling between perception and manipulation for assistive robots. In

particular, an interactive open-ended learning approach for grounding 3D object

categories has been presented, which enables robots to adapt to different environ-

ments and reason out how to behave in response to the request of a complex task

such as clear_table.

Unsupervised object exploration is used to construct a feature dictionary based

on which objects are represented and object categories are learned. A Bayesian

approach to category learning is proposed. We have assumed that the set of object
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categories to be learned is not known in advance and the training instances are

extracted from actual experiences of a robot rather than being available at the

beginning of the learning process.

The proposed approach starts with the construction of a local 3D shape dictio-

nary (visual words); each object is represented as a histogram of visual words and

then the system creates or updates the probabilistic object category models based

on Bayesian learning. For recognition, a probabilistic classification rule was used

to assign a category label to the detected object. Results showed that the system

can incrementally learn new object categories and perform manipulation tasks in

reasonable time and appropriate manner. We have also tried to make the proposed

architecture easy to integrate on other robotic systems. Our approach to object

perception has been successfully tested on a JACO arm, showing the importance

of having a tight coupling between perception and manipulation. In the continu-

ation of this work, we are investigating the possibility of improving performance

by topic modelling based on Latent Dirichlet Allocation (LDA) and also using

other 3D shape descriptors (e.g. GOOD [43] and VFH [44]). Some results ob-

tained with LDA have already been published [45]. Moreover, we would like to

integrate compliance into the arm to provide comfortable interaction with the arm.
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