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Abstract

In the domain of sequence modelling, Recurrent Neural Networks (RNN) have
been capable of achieving impressive results in a variety of application areas in-
cluding visual question answering, part-of-speech tagging and machine transla-
tion. However this success in modelling short term dependencies has not success-
fully transitioned to application areas such as trajectory prediction, which require
capturing both short term and long term relationships. In this paper, we propose
a Tree Memory Network (TMN) for jointly modelling both long term relation-
ships between multiple sequences and short term relationships within a sequence,
in sequence-to-sequence mapping problems. The proposed network architecture
is composed of an input module, controller and a memory module. In contrast
to related literature which models the memory as a sequence of historical states,
we model the memory as a recursive tree structure. This structure more effec-
tively captures temporal dependencies across both short and long term time peri-
ods through its hierarchical structure. We demonstrate the effectiveness and flex-
ibility of the proposed TMN in two practical problems: aircraft trajectory mod-
elling and pedestrian trajectory modelling in a surveillance setting. In both cases
the proposed approach outperforms the current state-of-the-art. Furthermore, we
perform an in depth analysis on the evolution of the memory module content over
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time and provide visual evidence on how the proposed TMN is able to map both
short and long term relationships efficiently via a hierarchical structure.

Keywords: Memory Networks, Trajectory Prediction, Recurrent Networks

1. Introduction

Sequence-to-sequence modelling is a vital element in machine learning and
knowledge representation, with multiple application areas including machine trans-
lation [1], trajectory prediction [2], and part-of-speech tagging [3]. This problem
can be represented as predicting an output sequence, Y = [y1, . . . ,yT], given an
input sequenceX = [x1, . . . ,xT]. Predicting a future element, yt, of the sequence
at time instance t, utilising the current input to the model, xt, and the content of
the memory from the previous time step, Mt−1, can be represented as,

yt = f(xt,Mt−1). (1)

Modelling long term relationships in between sequences can be considered
one of the most challenging problems within the machine learning community
[4, 5]. Although many memory architectures proposed for sequence-to-sequence
modelling are capable of mapping short term relationships, they are less successful
when handling long term dependencies [6].

Long term relationships within the data are extremely useful and can signif-
icantly influence the accuracy of the predictions when considering the repetitive
nature of many processes. For instance consider an air traffic modelling problem.
Even though short term dependencies such as current weather and neighbouring
traffic are the most influential factors, the repetitive nature of the aircraft trajec-
tories and the flight schedules suggests that one can easily deduce a coherence
among trajectories over a period of days and/or seasons. For example, at a point
in time a certain runway may be in use, so similar trajectories should be observed
over the short term, but a sudden change of runway (due to weather) means “new”
trajectories will be seen. Having a long term memory means that these are not
actually “new” trajectories, but can instead be recalled from an earlier, similar
weather event or operational configuration.

A similar logic can be applied when modelling pedestrian behaviour in a
surveillance scenario, such as in the example shown in Fig. 1. While the cur-
rent location of neighbouring pedestrians is most influential, one cannot discard
the influence of historical behaviour under similar contexts and events. Pedestri-
ans may be wandering in a free area, and as new trains arrive a new “flow” of
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Figure 1: Pedestrian flow at different times in the Grand central dataset [7]. A high pedestrian
flow in the highlighted area is observed at the 07:08 time stamp with the arrival of a train before
the flow decreases at the 10:32 time stamp. A similar flow to subfigure (a) is observed at the 21:29
time stamp confirming our hypothesis that future pedestrian flow can be anticipated with the aid
of historical data.

pedestrian movement appears in response to the congestion. But as we posses
historical data from similar contexts, one should be able to accurately anticipate
such pedestrian motion.

In this paper we are interested in efficiently aggregating such long term depen-
dencies among input data. In the sample scenario from the Grand Central dataset
[7] presented in Fig. 1, a high pedestrian flow in the highlighted area is observed
at the 07:08 time stamp with the arrival of a train before the flow decreases at
the 10:32 time stamp. A similar flow to Fig. 1 (a) is observed at the 21:29 time
stamp in Fig. 1 (c), confirming our hypothesis that future pedestrian flow can be
anticipated with the aid of historical data.

As such, we propose an augmented memory architecture which can be gener-
alised to any sequence to sequence modelling problem. The contributions of this
work can be summarised as follows:

1. A new recursive memory network architecture capable of modelling long
term temporal dependencies, using an efficient tree structure.

2. Application of the proposed memory architecture to two practical prob-
lems: aircraft trajectory modelling and pedestrian trajectory modelling in
a surveillance setting, where in both cases we are able to achieve state-of-
the-art results.

3. An in depth analysis on the evolution of the memory module content, where
we study the changes in hidden state representations over time and discuss
interpretable patterns.

The two applications we demonstrate the proposed approach on, aircraft tra-
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jectory prediction and pedestrian trajectory prediction, are both related sequence-
to-sequence modelling tasks, however they have distinct characteristics that illus-
trate the adaptability of the proposed approach. Aircraft trajectories are primarily
a function of the flight schedule, which is typically fixed over a week, but still
varies according to changes such as weather and off schedule arrivals/departures.
Pedestrian trajectories however are less dependent on a schedule and are more
influenced by the behaviour of other nearby pedestrians.

We would like to emphasise the fact that even though we are demonstrating
our approach on two different application scenarios from the trajectory predic-
tion domain, the varied nature of these problems demonstrates how the proposed
model can be directly applied to any sequence-to-sequence prediction problem
where modelling long term relationships is necessary. Possible application areas
include diver behaviour modelling for autonomous driving [8, 9, 10], text and
video synthesis [11], and context aware machine translation [12].

2. Related works

Related work within the scope of this paper can be categorised into memory
architectures (Section 2.1), aircraft trajectory prediction approaches (Section 2.2)
and pedestrian trajectory prediction approaches (Section 2.3).

2.1. Memory architectures
Deep learning models such as Recurrent Neural Networks (RNN) have been

applied extensively for many sequence-to-sequence modelling problems and have
been capable of producing state-of-the-art results. A number of approaches [13,
14, 15, 16, 17, 10, 18] have also utilised what are termed “memory modules”,
to aid prediction. The memory stores important facts from historical inputs and
then generates the future predictions based on the stored knowledge. A sample
architecture with an input module, controller and an external memory is shown
in Fig. 2. Firstly the input module generates a vector representation, ct, for the
input, xt, at time instance t. The controller then triggers a memory read operation.
The memory module, with an attention process, searches the history and outputs
relevant facts. The final output is generated by merging ct with the memory output.
Finally, the controller triggers a memory update operation where the memory,
Mt−1, is updated with ct.

The authors in [13] have utilised a memory module to improve performance
for natural language processing tasks. Their proposed memory architecture is not
fully extendible given the use of an offline feature engineering process using a
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Figure 2: Neural Network architecture with an external memory. The memory is used to store
important historical facts which can be utilised for future predictions. The controller is responsible
for issuing read and write commands in order to take out and write back to the memory. An input
module is used to encode and generate a vector representation from the input

bag-of-words approach. In similar works, such as [16] and [19] for image cap-
tion generation, and [15] and [20] for visual question answering, the authors have
extensively applied the notion of external memory. The memory architecture,
“episodic memory”, proposed in [14] has been shown to be capable of outper-
forming the other external memory architectures noted above [13, 15, 16, 19, 20]
in terms of accuracy.

Fig. 3 (a) depicts the episodic memory model proposed in [14]. The au-
thors model the “episodic memory” as a hierarchical recurrent sequence model
utilising the sequential nature of the memory. The authors propose a generalised
neural sequential module with recurrent LSTM memory cells for sequence en-
coding, memory mechanism and response generation. The above work is further
extended in [21] through incorporating a shared memory architecture. Even with
the exemplary results for short term dependency modelling problems, none of the
above stated architectures are capable of handling sequences with long term rela-
tionships.

In approaches such as [14, 21, 22] the memory is a composed of a single layer
of memory units. The memory update mechanism in [14, 21] can be written as,

Mt = fLSTM(mt,Mt−1), (2)

where mt is a score value that quantifies the relevance of the content of the mem-
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(a) Episodic memory model proposed in [14] with LSTM mem-
ory cells

ct
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Mt = fS�LSTM (mt, Mt�1)

ct = fLSTM (Xt, ct�1)

(b) Proposed TMN model with S-LSTM memory cells.

Figure 3: Comparison of the memory model proposed in [14] (a) with the proposed memory model
(b). In both approaches at time instance t, the input module generates representation ct for the
input xt. Then the controller triggers a memory read operation. The memory module, with the
attention process, outputs relevant facts. The final output is given by merging ct with the memory
output. Finally the memory update operation updates the memory, Mt−1, with ct.

ory module (Mt−1) at time t− 1 to the current context, ct (see 3 (a)); where as in
[22] the authors completely update the content of the memory locations based on
mt.

The main drawback of using approaches such as [14, 21, 22] with long term
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dependency modelling and big data sets is that, in most cases, the attention mech-
anism will generate small scores for all the examples as they are all dissimilar
to the input. Therefore with those approaches we are required to maintain an
extremely large memory sequence as similar inputs only occur after long time in-
tervals. Furthermore, in recurrent models such as in LSTMs, when the sequence
becomes too long the output becomes biased towards recent observations [23],
rather than considering the entire set of prior observations equally.

The work of Liang et. al [24, 25] on semantic object parsing has also pro-
vided an in-depth analysis on the limitations of sequentially structured LSTMs
and how it affects the information flow when modelling data with complex, mul-
tilevel correlations. In [24] they propose a graph structured LSTM network where
they model the contextual dependencies within an image at the super pixel level
at the lowest level of the graph. This idea of hierarchical modelling is extended
in [25] in order to have a dynamically evolving multi-level graph structure instead
of a static hierarchy as in [24]. They achieve state-of-the-art results for seman-
tic segmentation via this hierarchical representation learning approach. However,
in contrast to their work, which focuses on learning semantic correspondences
within a particular example, we are interested in learning long range temporal
dependencies in between examples.

Hypothetically, if the memory module has enough non-linearity and if we have
a sufficiently large database, any output should be capable of being produced from
the contents of the memory. Furthermore the model should be capable of learning
and modelling both short and long term contextual effects from the memory con-
tents. This can be seen as a dictionary learning process where the memory is the
dictionary being learnt. The memory module should learn to produce an accurate
prediction for different combinations of inputs and historical trajectories.

Recently the recursive LSTM (S-LSTM) [26] was proposed where the authors
extend the sequential LSTM to tree structures, in which a memory cell can reflect
the historical memories of multiple child cells or multiple descendant cells in a
recursive process. The authors in [23] have performed an in depth analysis of
the strengths and weaknesses of sequential and recursive structures for a neural
language modelling task; and found syntactical relationships, such as structure
and logic in the input data are best captured via a recursive LSTM (i.e. S-LSTM).
In contrast when encoding the semantics of sentences, sequential LSTM models
provide state-of-the-art results.

The proposed model is illustrated in Fig 3 (b). Motivated by the positive
characteristics that the S-LSTM architecture exhibits such as feature compression
power and the preservation of semantic relationships among data, our approach
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eschews a sequence representation in favour of a tree-based approach. A detailed
analysis of the architecture in comparison to state-of-the-art methods is presented
in Section 3.3.

2.2. Aircraft trajectory prediction approaches
Approaches such as [27, 28] utilise probability models for aircraft dynamics to

generate predictions of future aircraft motion. They rely solely on the assumptions
made regarding the dynamics of the aircraft. Importantly, they ignore all historic
information, constituting a major drawback.

In [29, 30, 31] researchers treated aircraft trajectory prediction as a machine
learning problem, in which they train the model using historical trajectory data
together with weather observations. Most recently the authors in [32] proposed
an approach that considered trajectories as a set of 4 dimensional data cubes, to-
gether with weather parameters. Initially they performed time series clustering on
data for segmentation and then learnt a HMM for each cluster. However due to
the uncertainty with weather observations, these trajectory prediction approaches
become inefficient.

Several efforts have been made to improve the trajectory prediction by better
wind estimation [33, 34, 35, 36, 37], yet these approaches have failed to achieve
significant improvement in the task of trajectory prediction. Furthermore we
would like to emphasise the fact that all of the above stated approaches consider
aircrafts individually, without considering the air traffic within the neighbourhood,
completely discarding important factors such as the volume and the proximity of
nearby air traffic. Even though weather is a vital factor for future predictions it is
implicit in the behaviour of neighbouring traffic. Therefore, inferring a notion of
weather through neighbouring traffic is computationally inexpensive compared to
tedious interpolations that ground based weather observations require [32].

2.3. Pedestrian trajectory prediction approaches
When considering the literature for human behaviour prediction the social

force model [38, 39, 40, 41, 42] and its variants can be considered to be well-
established. Such approaches generate attractive and repulsive forces between
pedestrians, and thus define the optimal path under different contexts with respect
to the neighbourhood.

Despite the prevalence of social force models, a number of probabilistic ap-
proaches have also been proposed. Zhou et al. [43] proposed a a mixture model
approach, but this technique ignored the interactions among pedestrians. Wang
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et al. [44] proposed a “topic model” which was extended to incorporate spatio-
temporal dependencies in [45] and [46]. All of the above stated approaches use
hand-engineered features as the input to the prediction module, which can be con-
sidered their main drawback as they fail to account for the semantics of the scene.
Depending on the domain knowledge of the feature engineer, hand-crafted fea-
tures may only capture abstract semantics of the environment.

Alahi et al. [47] removed the need for hand-crafted features via an unsu-
pervised feature learning approach. The authors encode the trajectory of each
pedestrian in the scene at that particular time using LSTMs. The hidden states
of the neighbouring pedestrians at the immediately preceding time step are used
in generating their position at the current time step. As pointed out in [48], this
approach is only able to generate reactive behaviours such as collision avoidance,
and fails to generate smooth trajectories for long term trajectory planning. Fer-
nando et al. [48] have extended the idea of [47] to incorporate the entire trajectory
of the pedestrian of interest as well as the neighbouring pedestrians. To the best
of our knowledge none of the literature addressing human behaviour prediction
has considered the long-term relationships among human behavioural patterns.
Motivated by this limitation, we intend to explore the utility of temporal data for
trajectory prediction via a tree memory network.

3. Tree Memory Network (TMN) Model

In this work, we are motivated by the exemplary results that were achieved
from a tree structure for the task of discriminative dictionary learning from trajec-
tories in [49]. In contrast to mapping all the historic data with a shallow layer of
recurrent memory cells, we hierarchically map the memory with a bottom up tree
structure where all historic states are represented in the bottom layer of the tree,
and as we progress up the hierarchy we concatenate the most significant features
in order to generate the output at a particular time step.

Furthermore, rather than stacking individual recurrent layers such as in [50,
51, 52], we utilise a Tree-LSTM structure as it focusses only on the historical
information from its two neighbours. Therefore it can be seen as propagating
significant features from two temporally adjacent neighbours to the upper layer.

3.1. Input Module
Let X i = [xi

1,x
i
2, . . . ,x

i
T] be the ith input sequence where T represents the

number of time steps. The input module computes a vector representation ct for
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the input sequence via a LSTM layer,

ct = fLSTM(xt, ct−1), (3)

where ct ∈ Rk, and k is the embedding dimension of the LSTM.

3.2. Memory Module
Consider N ∈ Rp×k as the sequence of historical LSTM embeddings, with

length p and embedding dimension k, that we would like to model as the memory.
It can be seen as a queue structure with length p and each data element within the
queue has a dimension of k. We adapt the S-LSTM model to represent the memory
module of the proposed framework. It extends the general sequential structure in
LSTMs to a bottom up tree structure composed of a compressed representation
of children nodes to a parent node. This provides us with a principled way of
considering long-distance interactions between memory inputs, and avoids the
current drawbacks of LSTM models when handling lengthy sequences [23]. For
simplicity, we represent the recursive-LSTM structure as a binary tree, where each
parent node has two child nodes; however the extension of this model to any tree
structure is straightforward.

3.2.1. Memory Read
When computing an output at time instance twe extract out the tree configura-

tion at time instance t− 1. Let Mt−1 ∈ Rk×(2l−1) be the memory matrix resultant
from concatenating nodes from the tree from the top to l = [1, . . .] depth. This
allows us to capture different levels of abstraction that exist in our memory net-
work. Let f score be an attention scoring function which can be implemented as a
multi-layer perceptron [53],

mt = f score(Mt−1, ct), (4)

α = softmax(mt). (5)

Eq. 4 and Eq. 5 provide an attention mechanism that finds the most relevant
memory items given the current input,

zt = Mt−1α
T . (6)

Then the final output can be represented as,

yt = ReLU(Woutzt + (1−Wout)ct), (7)

where Wout are the output weights.
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3.2.2. Memory update
In the proposed memory architecture each memory cell contains one input

gate, it, one output gate, ot, and two forget gates, fL
t and fR

t . At time instance t
each node in the memory network is updated in the following manner,

it = σ(WL
hih

L
t−1 +WR

hih
R
t−1 +WL

cic
L
t−1 +WR

ci c
R
t−1), (8)

fL
t = σ(WL

hfl
hLt−1 +WR

hfl
hRt−1 +WL

cfl
cLt−1 +WR

cfl
cRt−1), (9)

fR
t = σ(WL

hfrh
L
t−1 +WR

hfrh
R
t−1 +WL

cfrc
L
t−1 +WR

cfrc
R
t−1), (10)

β = WL
hch

L
t−1 +WR

hch
R
t−1, (11)

cPt = fL
t × cLt−1 + fR

t × cRt−1 + it × tanh(β), (12)

ot = σ(WL
hoh

L
t−1 +WR

hoh
R
t−1 +W P

coc
P
t ), (13)

hPt = ot × tanh(cPt ), (14)

where hLt−1, hRt−1, c
L
t−1 and cRt−1 are the hidden vector representations and cell

states of the left and right children respectively. The relevant weight vectors,
W , are represented with appropriate super and subscripts where the superscript
represents the relevant child node, and the subscript represents the relevant gate
and the vector the weight is attached to. The process is illustrated in Fig 4.

3.3. Relation to current state of the art
The major difference between the proposed approach and current state of the

art methods such as [14, 21, 22] is the representation of the memory. In those
approaches the memory is a composed of a single layer of memory units. The
memory update mechanism in [14] and [21] can be written as,

Mt = LSTM(mt,Mt−1), (15)

where mt can be obtained using Eq. 4. In [22] the authors completely update the
contents of the memory locations with respect to the output of Eq. 6. This process
can be written as,

Mt = Mt−1(1− (zt ⊗ ek)T ) + (ht ⊗ ep)(zt ⊗ ek)T , (16)

where 1 is a matrix of ones and ek and ep are vectors of ones. ⊗ denotes the outer
product which duplicates its left vector p or k times to form a matrix. In contrast
we model our memory using a binary tree structure where it is updated in a bottom
up fashion utilising Eq. 8 to 14.
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Figure 4: Tree memory cell architecture. fL
t , f

R
t , ot, it represents the left forget gate, right forget

gate, output gate and input gate respectively. × represents multiplication

The main drawback of using approaches such as [14, 21, 22] with long term
dependency modelling and big data sets is that, in most cases, the attention mech-
anism will generate small score values for all the examples as they are dissimilar
to the input. Therefore with those approaches we are required to maintain an
extremely large memory sequence as similar inputs only occur after long time
intervals. However in recurrent models such as in LSTMs, when the sequence
becomes too long the output becomes biased towards recent historic states [23],
rather than considering the entire set of historic states equally. In contrast, we rep-
resent memory with a tree structure where we learn the logical coherence among
neighbouring memory cells with different levels of abstraction.

4. Experimental results

We present the experimental results on two trajectory datasets: an aircraft tra-
jectory database from the south east Queensland (SEQ) region of Australia; and
a widely utilised pedestrian trajectory database. These datasets are specifically
chosen to demonstrate the capability of the proposed model to handle varying di-
mensionalities and temporal relationships and present its real world applicability.
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4.1. Experiment 1: Terminal Area Air Traffic Prediction
We obtain air traffic data from the south east Queensland (SEQ) region in Aus-

tralia from 30-11-2014 to 30-11-2015. We use the real position reports recorded
by the Australian Advanced Air Traffic System (TAAATS) used for air traffic
management in Australia [54]. As a pre-processing step, the data is transformed
into trajectories utilising the aircraft identification tags and the reported timing.
Trajectories with less than 3 position reports are removed as they are too short for
the trajectory modelling task. Finally, each trajectory is re-sampled to a length of
50 data points. When resampling, we interpolate the data points such that they
have equal distance in the time domain. This is done to ensure sufficient data
for training by up-sampling small trajectories. This gives us 260,735 trajectories.
The aircraft trajectories are represented as 3 dimensional data streams where each
point xi

t of the input sequence X i = [xi
1,x

i
2, . . . ,x

i
T] can be represented as,

xi
t =

 xit
yit
zit

 , (17)

where T is the number of time steps in the ith input sequence. In this experi-
ment we observed the first 25 frames of the aircraft trajectory, and predicted the
next 25 frames. For training we selected the first 182,515 (i.e 70%) trajectories
chronologically. The remaining 78,220 trajectories were used for testing.

Based on the recommendations provided in [32, 55, 56], we measure the fol-
lowing three error metrics for the aircraft trajectory prediction experiment. The
trajectory prediction errors are calculated for each observed radar track point in
each input trajectory segment. Let n be the number of trajectories in the testing
set, and we seek to predict the trajectory for the time period t = T obs + 1 to T pred,
having observed the trajectory of the same aircraft from t = 1 to T obs. Let the
predicted course from North for the trajectory i at tth time instance be denoted by
θ̂it. Then,

∆xit = x̂it − xit, (18)

and,
∆yit = ŷit − yit. (19)

Now we can define,
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(a) Average altitude error vs
length of memory module, p

(b) Average altitude error vs
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Figure 5: Parameter evaluation for length of memory module, p, embedding dimension, k, and the
number of levels, from the top of the memory tree, in the memory read, l

1. Average along track error (AE):

AE =

n∑
i=1

T pred∑
t=T obs+1

(∆xitsin(θ̂it) + ∆yitcos(θ̂
i
t))

n(T pred − (T obs + 1))
(20)

2. Average cross track error (CE):

CE =

n∑
i=1

T pred∑
t=T obs+1

(∆xitcos(θ̂
i
t)−∆yitsin(θ̂it))

n(T pred − (T obs + 1))
(21)

3. Average altitude error (ALE):

ALE =

n∑
i=1

√
T pred∑

t=T obs+1

(ẑit − zit)2

n(T pred − (T obs + 1))
(22)

As baseline models we implement the HMM approach (HMM) proposed in
[32] and the Dynamic Memory Networks approach (DMN) given in [14]. For
the HMM the required weather data is obtained from the Australian Bureau of
Meteorology [57]. We observed wind speed and direction and temperature at one
minute frequency. The data interpolation and parameter quantisation is performed
in the same way as in [32].
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4.1.1. Prediction under normal conditions
Hyper parameters, the length of the memory module, p, and the embedding

dimension, k, of the proposed memory module (TMN) and DMN are evaluated
experimentally. Fig. 5 (a) shows the variation in average altitude error against p
for the TMN and for DMN modules in solid red and dashed green lines respec-
tively. For the proposed TMN, as the error converges around p = 500, we set the
value of p as 512. For DMN the plot shows that error decreases at first and it starts
increasing again when the length of the memory exceeds 200 hidden units. This
verifies our assertion that naive memory models with sequential LSTM architec-
tures fail to model long term dependencies. As p = 180 gives the lowest altitude
error, for the DMN model we p to 180. We evaluate the optimal embedding di-
mension, k, in a similar manner. Fig. 5 (b) shows the variation of average altitude
error against k for the TMN and for DMN modules. For both modules k = 300
produces the smallest altitude error, and as such we set the embedding dimension
to 300 units.

Finally, we evaluate the number of levels from the top of the memory tree
in the memory read, l, of the proposed memory module (TMN). The evaluation
results, shown in Fig. 5 (c), suggest that l = 4 produces optimal results. It is
observed that the error is reduced until l = 4 before increasing again when the
number of levels in the memory read operation exceeds 6 levels. This is due to
the density of the extracted memory activation. Using the tree structure of the
memory we capture the information in a hierarchical manner, where only vital
information from the bottom layers is passed to the top layer. Therefore when
the extracted matrix becomes too dense, the decoding function fails to extract
pertinent information, and the performance degrades.

We train the TMN model using stochastic gradient descent (SGD) with mo-
mentum. Evaluation results are presented in Table 1.

Metric HMM DMN TMN
AE 1.103 1.039 1.020
CE 1.042 1.056 1.011

ALE 147.801 92.039 87.001

Table 1: Quantitative results for aircraft trajectory prediction. In all the methods the forecast
trajectories are of length 25 frames. The first row reports the along track error (AE), the second
row shows cross track error (CE) and the final row shows the altitude error (ALE).

The results in Table 1 illustrate the ability of the proposed model to infer
different modes of air traffic behaviour. We note that without explicitly mod-
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elling the weather or neighbourhood, the proposed architecture is able to learn the
salient aspects and long term dependencies which are necessary for modelling air-
craft trajectories. The accuracy improvement from the DMN to the TMN model,
demonstrates that flat memory architectures such as [14] fail to capture long term
dependencies; where as our proposed hierarchical memory architecture is able to
successfully learn those long term relationships. In Section 5.3 we perform an
in depth analysis on the hidden state activations of the memory module which
illustrates how the proposed multi-layer architecture generates future trajectories
while encoding the necessary information from the history.

In Fig. 6 we show prediction results of the HMM, DMN and our approach
(TMN) on the aircraft trajectory dataset. We show the trajectories on normalised
scales for visual clarity as it better demonstrates the dispersion of the predictions
from the ground truth. It should be noted that our model generates more accurate
predictions across the highly varied scenarios depicted in the database (i.e take
off, landing, cruising, etc). For instance in the 1st and 2nd rows we show how the
same model adapts to takeoff and landing scenarios. In the last row of Fig. 6 we
show some failure cases. The reason for such deviations from the ground truth
were mostly due to sudden turns and movements. Even though these trajectories
do not match the ground truth, the proposed method still outperforms the current
state-of-the-art methods, and generates more realistic trajectories.

Considering the results presented in Tab. 1 and the visualisation in Fig. Fig. 6,
we observe that the HMM approach performs poorly in the ALE metric compared
to the CE and AE metrics. Our database contains variety of aircraft manoeuvres
including take off, landing and cruising; and the landing and takeoff manoeuvres
involve sudden changes in the aircraft motion which is hard to capture with the
limited capacity of the HMM. This is reflected in higher error values for ALE
metric to CE and AE, which only consider the dispersions along the latitude and
longitude directions.

The DMN module improves upon the HMM’s performance using a sequen-
tial memory, which acts as a short term memory of the aircraft motion patterns.
This captures the dynamics within a particular trajectory but cannot match depen-
dencies across long time spans, such as how different flight schedules affect the
trajectory patterns, and attend to them systematically to extract important infor-
mation. This results in the TMN module achieving the best performance in all
considered metrics.
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Figure 6: Qualitative results under nominal conditions: Each row represents a particular example.
Given (in green), Ground Truth (in Blue) and Predicted trajectories from the TMN model (in red),
from the DMN model (in yellow), from the HMM model (in brown).
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4.1.2. Handling different weather conditions
In order to verify the capability of the proposed model to understand and cap-

ture the effect of weather on aircraft trajectory prediction via historical trajectories
alone, we conducted a separate experiment where the model is used to predict the
air traffic on a stormy day. Severe storms affected South East Queensland on 28th
of November 2015. We tested the model with the trajectories from 27th November
to 29th November (1916 trajectories) as it allows a sufficient number of examples
to initialise the memory module. These examples are not used for training the
model. We compare the proposed model against the HMM [32], which explicitly
incorporates weather information.

Metric HMM TMN
AE 1.689 1.146
CE 1.967 1.513

ALE 203.754 88.397

Table 2: Quantitative results for aircraft trajectory prediction under stormy conditions. For both
methods the forecast trajectories are of length 25 frames. The first row reports the along track
error (AE), the second row shows cross track error (CE) and the final row shows the altitude error
(ALE).

Comparing Table. 2 with Table. 1, the accuracy of the TMN predictions
are slightly reduced, but are still more accurate than [32], in which the error has
increased dramatically indicating that the baseline model has not adapted well to
the changed weather conditions.

Referring to the results presented in Fig. 7, it is evident that the non uniform
nature of the air traffic in the stormy weather conditions is effectively modelled
by the proposed approach. Even with the weather information, the HMM fails to
effectively exploit this data and generates erroneous trajectories. The TMN model
anticipates the uneven nature by looking at the recent history, while also mapping
how correlated trajectories have behaved over the long term history.

Finally, we would like to emphasise that for the TMN model, even in storm
conditions, the altitude error is within the +-100ft altimeter tolerances provided to
private pilots [58].

4.2. Experiment 2: Pedestrian trajectory prediction
In this experiment we considered 3 months worth of trajectories from the Edin-

burgh Informatics Forum database [59]. We train our model on 60,000 trajectories
and test on 12,000 trajectories. For all the models we observed the trajectory for
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Figure 7: Qualitative results under storm conditions: Each row represents a particular example.
Given (in green), Ground Truth (in Blue) and Predicted trajectories from TMN model (in red),
from HMM model (in brown).
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30 frames and predicted the trajectory for the next 30 frames. In this experiment
the trajectories are represented as 2 dimensional data where each point xi

t of the
input sequence X i = [xi

1,x
i
2, . . . ,x

i
T] is represented as,

xi
t =

(
xit
yit

)
. (23)

For comparison we implemented Soft+hard wired attention (SH-Atn) model
from [48], the Social LSTM (So-LSTM) model given in [47] and Dynamic Mem-
ory Networks (DMN) given in [14]. For the So-LSTM model, a local neigh-
bourhood of size 32px was considered and the embedding dimension of all the
LSTMs are set to 180 as recommended in [47]. For [48] we considered a neigh-
bourhood size of 10 in the left, right and front directions and an embedding size
of 300 hidden units. For DMN and TMN models we use the same experimental
settings given the in previous experiment. Similar to [48, 47] we report prediction
accuracy with the following 3 error metrics. We are predicting a trajectory for
the period from t = T obs + 1 to T pred while observing the same trajectory from
t = 1 to T obs + 1. Let n be the number of trajectories in the testing set, X̂ i

t be
the predicted position for the trajectory i at the tth time instance, and X i

t be the
respective observed positions then:

1. Average displacement error (ADE):

ADE =

n∑
i=1

T pred∑
t=T obs+1

(X̂ i
t −X i

t)
2

n(T pred − (T obs + 1))
. (24)

2. Final displacement error (FDE) :

FDE =

n∑
i=1

√
(X̂ i

T pred −X i
T pred)2

n
. (25)

3. Average non-linear displacement error (n-ADE): The average displacement
error for the non-linear regions of the trajectory.

n− ADE =

n∑
i=1

T pred∑
t=T obs+1

I(X̂ i
t)(X̂

i
t −X i

t)
2

n∑
i=1

T pred∑
t=T obs+1

I(X̂ i
t)

, (26)
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where,

I(X̂ i
t) =

1 if
d2yit
d(xit)

2
6= 0.

0 o.w

(27)

Metric SH-Atn So-LSTM DMN TMN
ADE 1.066 1.843 1.798 1.051
FDE 1.551 2.421 2.276 1.398

n-ADE 1.021 1.988 1.456 0.987

Table 3: Quantitative results for pedestrian trajectory prediction. In all the methods the forecast
trajectories are of length 30 frames. The first row represents the average displacement error (ADE),
the second row shows the final displacement error (FDE) and the third row shows the average non-
linear displacement error (n-ADE).

As shown in Table 3, the proposed model outperforms the SH-Atn model,
So-LSTM model and DMN in all three error metrics. The dataset is considered
quite challenging as there are multiple source and sink locations, different crowd
motion patterns are present, and motion paths are heavily crowded.

The So-LSTM model has the lowest accuracy, as its attention mechanism
is limited to the immediately preceding state of the neighbourhood. The DMN
model considers the short term history of the entire trajectory, leading to improved
performance compared to So-LSTM. By incorporating local neighbourhood his-
tory, SH-Atn is able to further improve on performance. However, despite not
explicitly modelling the neighbourhood as done by the SH-Atn and So-LSTM
models, the proposed approach is able to outperform these state-of-the-art tech-
niques. The TMN approach extends the notion of neighbourhood history to con-
sider longer temporal dependencies. It not only considers the short term envi-
ronment context, where temporally adjacent trajectories are, but also considers
how similar trajectories have behaved over the long term history. This is further
demonstrated by the results presented in Fig. 8.

Fig. 8 shows prediction results for the SH-Atn model, DMN model and our
model TMN on the EIF trajectory dataset. From the examples shown it is evident
how different modes of human motion are captured and represented through the
proposed memory module. For example in Fig. 8 (g) and Fig. 8 (k) the pedestrians
exhibit a sudden change in motion which all baseline models fail to capture. But
the proposed model has successfully anticipated that motion through recalling
similar historic behaviour.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: Qualitative results: Given (in green), Ground Truth (in Blue) and Predicted trajectories
from TMN model (in red), from DMN model (in yellow), from SH-Atn model (in purple).

Fig. 9 shows the distribution of activations from the first layer of the proposed
TMN module, for the first data point of the pedestrian trajectory given in Fig. 8
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Figure 9: Distribution of memory activations from the first layer of the TMN module for the first
data point of Fig. 8 (k). This layer contains 512 memory which are denoted t to t− 512 indicating
the history that has been observed. For different peaks and valleys of the memory activations we
also show what the memory has seen at those particular time steps. The model generates higher
activations for trajectories that change the heading direction and perform a turn as in Fig. 8 (k),
and activations closer to zero for cases where the pedestrian in demonstrating different behaviour.
We effectively propagate this information from the first layer of the memory to the top most layer
via combining the salient information in a hierarchical manner.

(k). As p = 512, there exist 512 memory slots in this layer. We denote the current
time as t, hence the memory slots range from t to t − 512 in the history. For
different peaks and valleys in the memory activations, we show what the model
has seen at that particular time step.

The TMN provides higher responses for recent events as well as for similar
trajectory patterns in the long term history. Considering both spatial locations as
well as the velocity encoded by the spatial dispersion between the consecutive
points, the model is able to anticipate that the pedestrian is more likely to change
their heading, indicated by higher activations to similar trajectories that reside
within the entire history captured by the memory module (see the activation peeks
between t− 100 to t− 200 and t− 300 to t− 500).

The flat memory structure of the DMN doesn’t have the ability to capture such
long term dependencies due to the short term history dominance issues inherent
with sequential LSTM architectures, which we further discuss and demonstrate in
Sec. 5.3. With p = 180, the memory of the DMN has seen similar pedestrian
behaviour to that in Figure 9 (k), but cannot identify the importance of those
examples as the short term history dominates the output. This clearly verifies the
importance of efficiently modelling dependencies with a hierarchical structure. It
is not sufficient to just have a large (i.e. long history) memory module, the module
also needs to effectively propagate relevant historic examples to the output module
to generate better predictions.
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5. Discussion

5.1. Flexibility of the TMN framework
We selected the two problem domains, aircraft trajectories (see Section 4.1)

and pedestrian trajectories (see Section 4.2), to highlight the flexibility of the
TMN model. Even though both domains consist of trajectories, the structure and
dynamics of the domains show vast differences.

Aircraft trajectories capture 3 dimensional motion patterns, with rigid struc-
ture, following a particular flight schedule throughout the year. We do not offer
any information to the model on to the specifics of the flight dynamics or manoeu-
vres. The model has to learn those characteristics directly from data by comparing
and contrasting the temporal evolution of the large number of trajectories. Fur-
thermore, there exist different trajectory patterns in take off, landing and cruising
of flights; and between different aircraft types including commercial airliners, he-
licopters, surveillance flights, etc. We do not filter any of those categories from
the data, and feed them all together to the model. The TMN model successfully
understands these specifics through querying from the long term history.

In contrast to the structured pattern of the aircraft trajectories, pedestrian tra-
jectories are highly unstructured. The model has to identify that pedestrians vary
their velocity and heading directions more frequently and rapidly, often in re-
sponse to other very recent observations, compared to the aircraft trajectories.

We do not provide any supervision to our model or change the structure of
the network between the two experiments. Based on the experimental results in
Tab. 1 and Tab. 3 the proposed model successfully identifies those differences and
demonstrates flexibility in adaptation to the different conditions.

To further demonstrate the flexibility of the proposed model we use different
trajectory lengths for the two experiments.

In the case of aircraft trajectories, the TAAATS samples aircraft position at a
rate of 1 Hz. As we are using data only from the SEQ region of Australia, this
gives us relatively short trajectory lengths, but with higher variability between
the data points. In contrast pedestrian trajectories are sampled at 25 fps giving us
more lengthy trajectories and less variability between the data points. Due to these
differences in capture rate and the typical length of trajectories in each dataset, we
use different length trajectories when predicting future behaviour: using 25 frames
of data to predict the next 25 frames for aircraft trajectories, and using 30 frames
to predict the next 30 for pedestrian motion prediction.

Results presented in Sections 4.1 and 4.2 show how the proposed TMN model
is able to adapt to these changes without explicit supervision.
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5.2. Hardware and Implementation Details
The TMN module doesn’t require any special hardware such as GPUs to run

and has 8.1M trainable parameters. We ran the test set of experiment 1 on a single
core of an Intel Xeon E5-2680 2.50GHz CPU and the TMN algorithm was able
to generate 1000 predicted trajectories with 50, 3 dimensional data points in each
trajectory (i.e. using 25 observations to predict the next 25 data points) in 12.20
seconds.

In addition, we measured the time required to generate 1000 predicted trajecto-
ries for different lengths of the memory module, p, and different sequence lengths
T. Results are presented in Fig. 10 along with the respective evaluations for DMN
module. The runtime grows approximately logarithmically against the memory
size, as multiple S-LSTM layers are added to accommodate the increasing size of
the memory component. There is an additional cost for using the proposed TMN
over the DMN for a given memory size, however this cost is roughly consistent
and does not vary greatly with the size of the memory. The time efficiency against
sequence length exhibits a linear relationship, as sequence length only affects the
encoding and decoding of the trajectories. We held the memory length p=512 con-
stant for both modules in this experiment. The DMN module exhibits a similar
distribution of runtimes and is slightly more time efficient. The efficiency gains
are largely due to the update mechanism, as the sequential update is much simpler
than the hierarchical update.

(a) Memory Length vs Runtime (b) Sequence Length vs Runtime

Figure 10: Evaluation of run times for different memory sizes and sequence lengths

The implementation of the TMN module presented in this paper is completed
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using Keras [60] with the Theano [61] backend, and only accepts equal length
trajectory proportions for observation and prediction. Yet this is only a limitation
in our implementation of the TMN, and the proposed algorithm is flexible and
able to handle variable proportions in observed and predicted trajectories.

5.3. Analysis of Memory Activations
In this section we analyse the memory activations of the TMN and DMN [14]

models for various examples of the test set from Experiment 2 (see Section 4.2,
Table 3 and Figure 8) in order to demonstrate that the sequential LSTM structure
is biased towards recent history, and illustrate how the proposed model overcomes
this via the hierarchical structure of the memory module.

In particular, we aim to show that the DMN model and the first layer of the
proposed TMN approach have activations based heavily on the recent inputs to the
model; while the last layer of the proposed approach has activations that are driven
by the input itself rather than the recent history, due to it’s ability to better capture
the long term dependencies. We conduct this investigation with the pedestrian
dataset as it is simpler to visualise.

5.3.1. Correlated activations from the first layer
We randomly select a memory cell from the first layer of the memory, and

analysed the activations of the hidden states of that particular cell. Fig. 11 shows
the results of our analysis. We searched our test set for common activation pat-
terns. The first column of Fig. 11 shows the memory activations, with the most
highly correlated memory patterns shown in red, green and blue; and the remain-
der of the activations shown in grey. The second column shows the input to the
model (in green) and the predicted sequence (in blue). The previous 10 trajecto-
ries that are fed to the memory are shown in the third column. From black to white
we have colour coded the most recent trajectory to the oldest trajectory. We expect
the first layer of the memory module to generate similar activation patterns when
there exists a similar set of historical trajectories, and if there exists a similarity
between those historical trajectories and the input.

5.3.2. Correlated activations from the last layer
Fig. 12 illustrates the activations of the final memory cell (i.e last layer). Col-

umn descriptions are identical to the that of Fig. 11. The second and third columns
of Fig. 12 provide visual evidence that the proposed memory module has suc-
cessfully learnt relationships among input trajectories. If our memory module
has enough capacity and if it is capturing long term dependencies, the final layer
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should generate similar activations for similar input trajectory patterns, rather than
being completely reliant on the current short term context. That is evident with
the similarity shown in Fig. 12 where we observe similar activations (i.e column
1) for similar inputs patterns (i.e column 2). Importantly, we note that despite the
similar activations, the recent history (i.e. column 3) differs significantly between
cases; unlike in Fig. 11.

5.3.3. Activations from the DMN [14] memory module
In Fig. 13 we visualise the correlated activations from the DMN memory

model shown in Fig. 3 (a). The column labels are identical to that of Fig. 11.
We compare the activations in Fig. 12 to those in Fig. 13. When observing Fig
13 column 3 it is evident that hidden state activations are dominated by the most
recent inputs to the memory, and the long term dependencies are of little impor-
tance. This is noted to be an inherent problem with sequential LSTM architectures
[23]. Therefore regardless of the input to the model (shown in Fig 13 column 2)
the memory module is generating similar activations and is only considering the
short term context. Hence the prediction error is high. Furthermore we would
like to highlight the similarity between Fig 13 and the first layer of the proposed
memory module (shown in Fig. 11 ).

To further illustrate the limitations of the DMN model, we cluster the input tra-
jectories and from one particular cluster we extract out the input trajectories with
the highest correlation (shown in Fig. 14) within that cluster. Given that we have
very similar inputs, we expect the DMN module to generate similar activations,
however we observe that the DMN generates vastly different activations. In order
to highlight the differences among memory activations we randomly selected 3
hidden units within the memory and illustrate their temporal evolutions (see the
coloured lines in Fig. 14 column 1). From Fig. 14, we can see that the short term
history across the examples is varied (see Fig. 14 column 3), and the memory
module generates vastly different activations for each, ignoring the given input.

Considering Fig. 13 and Fig. 14 together, we can see that the activations are
driven by the short term history. Similar short term histories with different inputs
lead to similar activations (shown in Fig. 13 column 1); and different short term
histories with similar inputs result in vastly different activations (shown in Fig. 14
column 1). This is in contrast to the proposed approach, where as shown in Fig.
12, at higher levels of the hierarchy memory activations are driven by the input.
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6. Conclusion

The proposed tree memory network (TMN) model is a generalised architec-
ture for modelling long term and short term relationships, which can be applied di-
rectly for any sequence-to-sequence mapping task. Through the evaluation results
we demonstrated that our proposed memory architecture is able to outperform all
considered baselines, and we provide visual evidence on the power of TMN which
is able to capture both long term and short term relationships via an efficient tree
structure. We have demonstrated our approach on two different trajectory pre-
diction applications. The varied nature of these problems demonstrates how the
proposed TMN model can be directly applied to any sequence-to-sequence pre-
diction problem where modelling long term relationships is necessary. In future
work we will be exploring the applications of TMN as an encoding mechanism for
large scale multi-modal inputs such as videos (i.e. a sequence of images), where
the encoded vector representation of the memory can be utilised to generate a
sparse representation of the entire video sequence with its temporal relationships.
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Figure 11: Pedestrian trajectories: Correlated activations from the first layer of the memory. First
column: Highest correlated Memory activations for the pattern selected (in colours) and the rest of
the activations (in grey) over time. Second column: The input (observed (in green) and predicted
(in blue)) to the model at that time step. Third column: Previous 10 trajectories that reside in the
memory. Black to white represents most recent to oldest.
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Figure 12: Pedestrian trajectories: Correlated activations from the last layer of the memory. First
column: Highest correlated Memory activations for the pattern selected (in colours) and the rest of
the activations (in grey) over time. Second column: The input (observed (in green) and predicted
(in blue)) to the model at that time step. Third column: Previous 10 trajectories that reside in the
memory. Black to white represents most recent to oldest.
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Figure 13: Pedestrian trajectories: Correlated activations from baseline memory model. First
column: Highest correlated Memory activations for the pattern selected (in colours) and the rest of
the activations (in grey) over time. Second column: The input (observed (in green) and predicted
(in blue)) to the model at that time step. Third column: Previous 10 trajectories that reside in the
memory. Black to white represents most recent to oldest.
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Figure 14: Pedestrian trajectories: Memory activations from DMN memory model for correlated
inputs. First column: Memory activations over time, the pattern we are considering (in colours)
and the rest of the activations (in grey). Second column: The correlated inputs (observed (in green)
and predicted (in blue)). Third column: For the input selected in the second column, previous 10
trajectories that reside in the memory. Black to white represents most recent to oldest.
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