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1 Introduction

The goal of affine matrix rank minimization (AMRM) problem is to recon-
struct a low-rank or approximately low-rank matrix that satisfies a given sys-
tem of linear equality constraints. In mathematics, it can be described as the
following minimization problem

(AMRM) min
X∈Rm×n

rank(X) s.t. A(X) = b (1)

where A : Rm×n 7→ R
d is the linear map and the vector b ∈ R

d. Without loss
of generality, we assume m ≤ n. Many applications arising in various areas
can be captured by solving the problem (AMRM), for instance, the network
localization [1], the minimum order system and low-dimensional Euclidean
embedding in control theory [2,3], the collaborative filtering in recommender
systems [4,5], and so on. One important special case of the problem (AMRM)
is the matrix completion (MC) problem [4]

(MC) min
X∈Rm×n

rank(X) s.t. Xi,j = Mi,j , (i, j) ∈ Ω. (2)

This completion problem has been applied in the famous Netflix problem [6],
image inpainting problem [7] and machine learning [8,9]. In general, however,
the problem (AMRM) is a challenging non-convex optimization problem and is
known as NP-hard [10] due to the combinational nature of the rank function.

Among the numerous substitution models, the nuclear-norm affine matrix
rank minimization (NAMRM) problem has been considered as the most pop-
ular alternative [3,4,11,12,13]:

(NAMRM) min
X∈Rm×n

‖X‖∗ s.t. A(X) = b. (3)

where ‖X‖∗ =
∑m

i=1 σi(X) is the nuclear-norm of the matrix X ∈ R
m×n.

Recht et al. in [10] have show that if a certain restricted isometry property
(RIP) holds for the linear transformation defining the constraints, the mini-
mum rank solution of problem (AMRM) can be recovered by solving the prob-
lem (NAMRM). In addition, some popular methods, including singular value
thresholding algorithm [14], proximal gradient algorithm [15] and accelerated
proximal gradient algorithm [16], are proposed to solve its regularization (or
Lagrangian) version:

(RNAMRM) min
X∈Rm×n

{

‖A(X)− b‖22 + λ‖X‖∗
}

(4)

where λ > 0 is the regularization parameter can be selected to guarantee that
solutions of the problem (NAMRM) and (RNAMRM) are same [17]. However,
these algorithms tend to have biased estimation by shrinking all the singular
values toward zero simultaneously, and sometimes results in over-penalization
in the regularization problem (RNAMRM) as the ℓ1-norm in compressive sens-
ing. Moreover, with the recent development of non-convex relaxation approach
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in sparse signal recovery problems, many researchers have shown that using a
non-convex surrogate function to approximate the ℓ0-norm is a better choice
than using the ℓ1-norm. This brings our attention back to the non-convex
surrogate functions of the rank function.

In this paper, a continuous promoting low-rank non-convex function

Pa(X) =

m
∑

i=1

ρa(σi(X)) =

m
∑

i=1

aσi(X)

aσi(X) + 1
(5)

in terms of the singular values of matrix X is considered to substitute the rank
function rank(X) in the problem (AMRM), where the non-convex function

ρa(t) =
a|t|

a|t|+ 1
(a > 0) (6)

is the fraction function. It is to see clearly that, with the change of parameter
a > 0, the non-convex function Pa(X) approximates the rank of matrix X :

lim
a→+∞

Pa(X) = lim
a→+∞

m
∑

i=1

aσi(X)

aσi(X) + 1
≈

{

0, if σi(X) = 0;
rank(X), if σi(X) > 0.

(7)

By this transformation, the NP-hard problem (AMRM) could be relaxed into
the following matrix rank minimization problem with a continuous non-convex
penalty, namely, transformed affine matrix rank minimization (TrAMRM)
problem:

(TrAMRM) min
X∈Rm×n

Pa(X) s.t. A(X) = b (8)

where the non-convex surrogate function Pa(X) in terms of the singular values
of matrix X is defined in (5). Unfortunately, although we relax the NP-hard
problem (AMRM) into a continuous problem (TrAMRM), this relax problem
is still computationally harder to solve due to the non-convex nature of the
function Pa(X), in fact it is also NP-hard. Frequently, we consider its regular-
ization version:

(RTrAMRM) min
X∈Rm×n

{

‖A(X)− b‖22 + λPa(X)
}

(9)

where λ > 0 is the regularization parameter. Unlike the convex optimal the-
ory, there are no parameters λ > 0 such that the solution to the regularization
problem (RTrAMRM) also solves the constrained problem (TrAMRM). How-
ever, as the unconstrained form, the problem (RNuAMRM) may possess much
more algorithmic advantages. Moreover, we also proved that the optimal so-
lution to the problem (TrAMRM) can be approximately obtained by solving
the problem (RTrAMRM) for some proper smaller λ > 0.

The rest of this paper is organized as follows. Some notions and prelim-
inary results that are used in this paper are given in Section 2. In Section
3, the equivalence of the problem (TrAMRM) and (AMRM) is established.
Moreover, we proved that the optimal solution to the problem (TrAMRM)
can be approximately obtained by solving the problem (RTrAMRM) for some
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proper smaller λ > 0. In Section 4, the DC algorithm is utilized to solve the
problem (RTrAMRM) and the numerical results of the numerical experiments
on image inpainting problems are demonstrated in Section 5. Finally, we give
some concluding remarks in Section 6.

2 Preliminaries

In this section, we give some notions and preliminary results that are used in
this paper.

2.1 Some notions

The linear map A : Rm×n 7→ R
d determined by d matrices A1, A2, · · · , Ad ∈

R
m×n can be expressed as A(X) = (〈A1, X〉, 〈A2, X〉, · · · , 〈Ad, X〉)⊤ ∈ R

d.
Let A = (vec(A1), vec(A2), · · · , vec(Ad))

⊤ ∈ R
d×mn and x = vec(X) ∈ R

mn.
Then we can get thatA(X) = Ax. The standard inner product of matricesX ∈
R

m×n and Y ∈ R
m×n is denoted by 〈X,Y 〉, and 〈X,Y 〉 = tr(Y ⊤X). The A∗

denotes the adjoint of A, and for any y ∈ R
d, A∗(y) =

∑d

i=1 yiAi. The singular
value decomposition (SVD) of matrix X is X = UΣV ⊤, where U is an m×m
unitary matrix, V is an n×n unitary matrix and Σ = Diag(σ(X)) ∈ R

m×n is a
diagonal matrix. The vector σ(X) : σ1(X) ≥ σ2(X) ≥ · · · ≥ σm(X) arranged
in descending order represents the singular values vector of matrix X , and
σi(X) denotes the i-th largest singular value of matrix X for i = 1, 2, · · · ,m.

2.2 Some useful results

Lemma 1 (see [10]) Let M and N be matrices of the same dimensions. Then
there exist matrices N1 and N2 such that
(1) N = N1 +N2;
(2) rank(N1) ≤ 2rank(M);
(3) MN⊤

2 = 0 and M⊤N2 = 0;
(4) 〈N11, N2〉 = 0.

By Lemma 1, we can derive the following important corollary.

Corollary 1 Let X∗ and X0 be the optimal solutions to the problem (TrAMRM)
and (AMRM), respectively. If we set R = X∗ −X0, then there exist matrices
R0 and Rc such that
(1) R = R0 +Rc;
(2) rank(R0) ≤ 2rank(X0);
(3) X0R

⊤
c = 0, X⊤

0 Rc = 0 and 〈R0, Rc〉 = 0.

Lemma 2 Let M and N be matrices of the same dimensions. If MN⊤ = 0
and M⊤N = 0, then Pa(M +N) = Pa(M) + Pa(N).
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proof. Consider the SVDs of the matrices M and N :

M = UM

[

ΣM 0
0 0

]

V ⊤
M , N = UN

[

ΣN 0
0 0

]

V ⊤
N . (10)

Since UM and UN are left-invertible, the condition MN⊤ = 0 implies that
V ⊤
MVN = 0. Similarly, M⊤N = 0 implies that U⊤

MUN = 0. Thus, the following
is a valid SVD for M +N ,

M +N =
[

UM UN

]









ΣM 0 0 0
0 0 0 0
0 0 ΣN 0
0 0 0 0









[

VM VN

]⊤
. (11)

This shows that the singular values of M + N are equal to the union (with
repetition) of the singular values of M and N . Hence, Pa(M +N) = Pa(M)+
Pa(N). This completes the proof. �

Combing Corollary 1 and Lemma 2, we can get the following corollary.

Corollary 2 Let X∗ and X0 be the optimal solutions to the problem (TrAMRM)
and (AMRM), respectively. If we set R = X∗ −X0, then, there exist matrices
R0 and Rc such that R = R0 +Rc and

Pa(Rc) ≤ Pa(R0). (12)

proof. By optimality of X∗, we have Pa(X0) ≥ Pa(X
∗). Let R = X∗ −X0.

Applying Corollary 1 to the matrices X0 and R, there exist matrices R0 and
Rc such that R = R0 + Rc, rank(R0) ≤ 2rank(X0), X0R

⊤
c = 0, X⊤

0 Rc = 0.
Then

Pa(X0) ≥ Pa(X
∗)

= Pa(X0 +R)
≥ Pa(X0 +Rc)− Pa(R0)
= Pa(X0) + Pa(Rc)− Pa(R0)

(13)

where the third assertion follows the triangle inequality and the last one follows
Lemma 2. Rearranging (13), we can conclude that

Pa(Rc) ≤ Pa(R0).

This completes the proof. �

Definition 1 Let R = UDiag(σi(R))V ⊤ be the SVD of the matrix R defined
in Corollary 1, we define the matrices R0 and Rc as:

R0 = [U2T 0]m×m

[

Σ1 0
0 0

]

m×n

[V2T 0]⊤n×n (14)

and

Rc = [0 Um−2T ]m×m

[

0 0
Σ2 0

]

m×n

[0 Vn−2T ]
⊤
n×n, (15)
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where

Σ1 =







σ1(R)
. . .

σ2T (R)






, Σ2 =







σ2T+1(R)
. . .

σm(R)







and
U = [U2T , Um−2T ], V = [V2T , Vm−2T ].

Definition 2 For each positive integer i ≥ 1, we define the index set Ii =
{K(i − 1) + 2T + 1, · · · ,Ki + 2T } and partition matrix Rc into a sum of
matrices R1, R2, · · ·, i.e.,

Rc =
∑

i

Ri,

where

Ri = [0 UIi 0]m×m

























0 0
. . .

...
0 0
σIi 0

0 0
. . .

...
0 0

























m×n

[0 VIi 0]⊤n×n.

It is clear that R⊤
i Rh = 0, RiR

⊤
h = 0 for any i 6= h, and rank(Ri) ≤ K.

By the above lemmas and definitions, we shall derive some important re-
sults in this paper.

Theorem 1 The matrices R0 ∈ R
m×n and R1 ∈ R

m×n defined in Definition
1 and Definition 2 satisfy

‖R0 +R1‖F ≥ Pa(R0)

a
√
2T

. (16)

proof. Since

ρa(t) =
a|t|

a|t|+ 1
≤ a|t|,

we have

Pa(R0) =
∑

i

aσi(R0)

aσi(R0) + 1

≤ a‖σ(R0)‖1
≤ a

√
2T‖R0‖F

≤ a
√
2T‖R0 +R1‖F .

This completes the proof. �
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Theorem 2 For any γ >
a(arc − a+ 1)σ1(Rc)

a− 1
, the matrices Ris defined in

Definition 2 satisfy

∑

i≥2

‖γ−1Ri‖F ≤
∑

i≥2

Pa(γ
−1Ri−1)√
K

≤ Pa(γ
−1R0)√
K

(17)

where rc = rank(Rc).

We will need the following technical lemma that shows for any matrix X ∈
R

m×n there corresponds a positive number β1 such that Pa(β
−1X) ≤ 1 − 1

a

(a > 1) whenever β > β1. This will be the key operation for proving Theorem
2.

Lemma 3 Let X = UDiag(σ(X))V ⊤ be the SVD of matrix X, and rank(X) =
r. Then there exists

β1 =
a(ar − a+ 1)σ1(X)

a− 1
(a > 1) (18)

such that, for any β ≥ β1,

Pa(β
−1X) ≤ 1− 1

a
(a > 1). (19)

proof. Since the non-convex fraction function ρa(t) is increasing in t ∈ [0,+∞),
we have

Pa(β
−1X) =

r
∑

i=1

ρa(σi(β
−1X))

≤ rρa(σ1(β
−1X))

=
arσ1(X)

aσ1(X) + β
.

(20)

In order to get Pa(β
−1X) ≤ 1− 1

a
, it suffices to impose

arσ1(X)

aσ1(X) + β
≤ 1− 1

a
, (21)

equivalently,

β ≥ a(ar − a+ 1)σ1(X)

a− 1
.

This completes the proof. �

We now proceed to a proof of Theorem 2.
proof. [of Theorem 2] For each j ∈ Ii, combing the definition of Pa and
Lemma 3, we have

ρa

(

σj(γ
−1Ri)

)

≤ P (γ−1Ri) ≤ 1− 1

a
.
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Also since

aσj(γ
−1Ri)

aσj(γ−1Ri) + 1
≤ 1− 1

a
⇔ σj(γ

−1Ri) ≤ 1− 1

a

we can get that

σj(γ
−1Ri) ≤ ρa

(

σj(γ
−1Ri)

)

, ∀j ∈ Ii.

According to the facts that the non-convex fraction function ρa(t) is increasing
for t > 0, and σj(Ri) ≤ σk(Ri−1) for each j ∈ Ii and k ∈ Ii−1, i ≥ 2, we have

σj(γ
−1Ri) ≤ ρa

(

σj(γ
−1Ri)

)

≤ P (γ−1Ri−1)

K
.

It follows that

‖γ−1Ri‖F ≤ P (γ−1Ri−1)√
K

and
∑

i≥2

‖γ−1Ri‖F ≤
∑

i≥2

P (γ−1Ri−1)√
K

.

Combined with Corollary 2, we immediately get the second part of inequalities
(17). This completes the proof. �

3 The equivalence between the problem (TrAMRM) and (AMRM)

In this section, a sufficient condition on equivalence of the problem (TrAMRM)
and (AMRM) is demonstrated, we proved that the optimal solution to problem
(TrAMRM) also solves (AMRM) if some specific conditions are satisfied.

Definition 3 (see [10]) Let A : Rm×n 7→ R
d be a linear map. For every integer

r with 1 ≤ r ≤ m, define the r-restricted isometry constant to be the smallest
number δr(A) such that

(1− δr(A))‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr(A))‖X‖2F (22)

holds for all matrix X ∈ R
m×n of rank at most r.

Based on Definition 3, we shall demonstrate that the optimal solution of
the problem (TrAMRM) equivalences to the problem (AMRM).

Theorem 3 LetX∗ and X0 be the optimal solutions to the problem (TrAMRM)
and (AMRM), respectively. If there is a number K > 2T , such that

K

2T

(

1− δ2T+K(A)
)

−
(

1 + δK(A)
)

> 0, (23)

then there exists a∗ > 1 (depends on δK(A) and δ2T+K(A)), such that for any
1 < a < a∗, X∗ = X0, where rank(X0) = T .
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proof. Define the function

f(a) =
1

a2
K

2T

(

1− δ2T+K(A)
)

− 1− δK(A) (a > 0).

Clearly, the function f is continuous and decreasing in a ∈ (0,+∞). Notice
that at a = 1,

f(1) =
K

2T

(

1− δ2T+K(A)
)

− 1− δK(A) > 0, (24)

and as a → +∞, f(a) → −1−δK(A) < 0. Then, there exists a constant a∗ > 1
such that f(a∗) = 0. It is obvious that the number a∗ depends only on the
RIC of linear map A. Thus, for any 1 < a < a∗, we have

1

a

√

1− δ2T+K

2T
−
√

1 + δK
K

> 0. (25)

Let R = X∗ − X0, and in order to show that X∗ = X0, it suffices to show
that the matrix R = 0. Partition matrix R as matrices R0 and Rc which are
defined in Definitions 1 and 2. Since A(R) = A(X∗−X0) = 0, we can get that

0 = ‖A(γ−1R)‖2
= ‖A(γ−1R0 + γ−1Rc)‖2
= ‖A(γ−1R0 + γ−1R1) +

∑

i≥2

A(γ−1Ri)‖2

≥ ‖A(γ−1R0 + γ−1R1)‖2 − ‖
∑

i≥2

A(γ−1Ri)‖2

≥ ‖A(γ−1R0 + γ−1R1)‖2 −
∑

i≥2

‖A(γ−1Ri)‖2

≥
√

1− δ2T+K(A)‖γ−1R0 + γ−1R1‖F −
√

1 + δK(A)
∑

i≥2

‖γ−1Ri‖F .

(26)
Plus inequalities (16) and (17) into inequality (26), we can get that

0 ≥
√

1− δ2T+K(A)
1

a
√
2T

Pa(γ
−1R0)−

√

1 + δK(A)
1√
K

Pa(γ
−1R0)

=
(1

a

√

1− δ2T+K(A)

2T
−
√

1 + δK(A)

K

)

Pa(γ
−1R0).

(27)

Moreover, following the inequality (25), the factor

1

a

√

1− δ2T+K(A)

2T
−
√

1 + δK(A)

K

is strictly positive for any 1 < a < a∗, and thus Pa(γ
−1R0) = 0, which implies

that R0 = O. Combined with Corollary 2, Rc = O. Therefore, X∗ = X0. This
completes the proof. �

Corollary 3 Suppose that the positive integer T ≥ 1 is such that δ5T (A) <
3−2a2

3+2a2 for any a > 1, then X∗ = X0.
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proof. By Definition 1, δr1(A) ≤ δr2(A) for r1 ≤ r2. Let K = 3T , notice
that the inequality (25) holds when 3

2a2 (1 − δ5T (A)) > 1 + δ3T (A). Since

δ3T (A) ≤ δ5T (A), we immediately get that X∗ = X0 if δ5T (A) < 3−2a2

3+2a2 . This
completes the proof. �

Theorem 3 or Corollary 3 demonstrated that the optimal solution to the
problem (AMRM) can be exactly obtained by solving problem (TrAMRM) if
some specific conditions satisfied. Moreover, we also proved that the optimal
solution to the problem (TrAMRM) can be approximately obtained by solving
problem (RTrAMRM) for some proper smaller λ > 0.

Theorem 4 Let {λñ} be a decreasing sequence of positive numbers with λñ →
0, and Xλñ

be the optimal solution of the problem (RTrAMRM) with λ = λñ.
If the problem (TrAMRM) is feasible, then the sequence {Xλñ

} is bounded
and any of its accumulation points is the optimal solution of the problem
(TrAMRM).

proof. By

λñPa(X) ≤ ‖A(X)− b‖22 + λñPa(X),

we can get that the objective function in the problem (RTrAMRM) with λ =
λñ is bounded from below and is coercive, i.e.,

‖A(X)− b‖22 + λñPa(X) → +∞ as ‖X‖F → +∞,

and hence the set of optimal solution of the problem (RTrAMRM) with λ = λñ

is nonempty and bounded.
By assumption, we suppose that the problem (TrAMRM) is feasible and

X̄ is any feasible point, then

A(X̄) = b.

Since {Xλñ
} is the optimal solution of the problem (RTrAMRM) with λ = λñ,

we have
λñPa(Xλñ

) ≤ ‖A(Xλñ
)− b‖22 + λñPa(Xλñ

)
≤ ‖A(X̄)− b‖22 + λñPa(X̄)
= λñPa(X̄).

(28)

Hence, the sequence {Pa(Xλñ
)}ñ∈N+ is bounded, and the sequence {Xλñ

} has
at least one accumulation point. In addition, by inequality (28), we can get
that

‖A(Xλñ
)− b‖22 ≤ λñPa(X̄) for any λñ → 0.

If we set X∗ be any accumulation point of the sequence {Xλñ
}, we can derive

that

A(X∗) = b.

That is, X∗ is a feasible point of the problem (TrAMRM). Combined with
Pa(X

∗) ≤ Pa(X̄) and the arbitrariness of X̄, we can get that X∗ is the optimal
solution of the problem (TrAMRM). This completes the proof. �
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4 Algorithm for solving the problem (RTrAMRM)

In this section, the DC (Difference of Convex functions) algorithm is utilized
to solve the non-convex problem (RTrAMRM). For the sake of simplicity, we
call it as RTrDC algorithm.

4.1 DC programming and DC algorithm

Definition 4 (DC functions [18,19]) Let C be a convex subset of Rl. A real-
valued function f : C 7→ R is called DC (Difference of Convex functions) on C,
if there exist two convex functions g, h : C 7→ R such that f can be expressed
in the form

f(x) = g(x)− h(x). (29)

If C = R
l, then f is simply called a DC function. Each representation of the

form (29) is said to be a DC decomposition of f .

Generally speaking, the DC programming is an optimization problem of
the form

α = inf
x∈Rl

{f(x) = g(x)− h(x)}

where g, h are lower semi-continuous proper convex functions on R
l. The main

ideal of DC algorithm is to replace in the DC programming, at the current
point xk of iteration k, the second component h with its affine minimization
defined by

hk(x) = h(xk) + 〈x− xk, yk〉, yk ∈ ∂h(xk) (30)

to give birth to the convex programming of the form

inf
x∈Rl

{g(x)− hk(x)} ⇔ inf
x∈Rl

{g(x)− 〈x, yk〉} (31)

whose optimal solution is taken as xk+1.

Algorithm 1 : DC algorithm

Initialize: Let x0 ∈ R
l be an initial guess;

k = 0;
Repeat

yk ∈ ∂h(xk)
xk+1 ∈ arg min

x∈Rl

{g(x)− 〈x, yk〉}

k → k + 1
Until convergence of {xk}.
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4.2 DC algorithm for solving the problem (RTrAMRM)

Let
Tλ(X) = ‖A(X)− b‖22 + λPa(X). (32)

It is to see clear that the function Tλ(X) is a DC function of the form

Tλ(X) = g(X)− h(X),

where
g(X) = ‖A(X)− b‖22 + λ‖X‖∗

and
h(X) = λ‖X‖∗ − λP (X)

are all convex functions. Hence, the resulting problem of (RTrAMRM) via this
approximation can be written as a DC program

min
X∈Rm×n

{

(‖A(X)− b‖22 + λ‖X‖∗)− (λ‖X‖∗ − λPa(X))
}

. (33)

Applying DC algorithm on (33) amounts to computing the two sequences {Nk}
and {Xk} such that Nk ∈ ∂(λ‖X‖∗ − λPa(X)) and Xk+1 is the solution to
the following convex problem

Xk+1 ∈ arg min
X∈Rm×n

{

‖A(X)− b‖22 + λ‖X‖∗ − 〈X,Nk〉
}

. (34)

It is necessary to emphasize that, at each iteration, we need to solve a convex
sub-problem (34).

Algorithm 2 : RTrDC algorithm

Input: A : Rm×n 7→ R
d, b ∈ R

d;
Initialize: Given X0 ∈ R

m×n, a > 0 and λ > 0;
k = 0;
Repeat

Nk ∈ ∂(λ‖Xk‖∗ − λPa(Xk))

Xk+1 ∈ arg min
X∈Rm×n

{

‖A(X) − b‖22 + λ‖X‖∗ − 〈X,Nk〉

}

k → k + 1
Until convergence of {Xk}.

Remark 1 Let Xk = UkDiag(σi(X
k))V k be the SVD of the matrix Xk. Then

∂(λ‖Xk‖∗−λPa(X
k)) = UkDiag

(

λ− λb
(bσi(Xk)+1)2

)

V k. The detailed proof can

be seen in [20].

Before continuing our discussion, the definition of the singular value thresh-
olding operator [14] should be prepared, which underlies the closed form rep-
resentation of the optimal solution to the problem (34).
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Definition 5 (see [14]) Let Y = UΣV ⊤ = UDiag(σi(Y ))V ⊤ be the SVD of
matrix Y , for any λ > 0, suppose that

Dλ(Y ) , arg min
X∈Rm×n

{

‖X − Y ‖2F + λ‖X‖∗
}

, (35)

then the soft thresholding operator Dλ can be expressed as

Dλ(Y ) = UDλ(Σ)V ⊤ = UDiag
(

{σi(Y )− λ

2
}+

)

V ⊤ (36)

where t+ is the positive part of t, and t+ = max(0, t).

The singular value thresholding operator Dλ simply applies the soft thresh-
olding operator [21] defined on vector to the singular values of a matrix, and
effectively shrinks them towards zero. In particular, it needs to be emphasized
that the soft thresholding operator has been actively studied in different fields
such as signal processing [21,22], statistics [23], portfolio section [24] and visual
tracking [25,26,27,28,29].

Nextly, we will show that the optimal solution to the problem (34) can be
expressed a thresholding operation.

Let

L1(X) = ‖A(X)− b‖22 + λ‖X‖∗ − 〈X,Nk〉
and its surrogate function

L2(X,Z, µ) = µL1(X)− µ‖A(X)−A(Z)‖22 + ‖X − Z‖2F

where Z ∈ R
m×n is an additional variable. Clearly L2(X,X, µ) = µL1(X).

Theorem 5 For any fixed λ > 0, µ > 0 and Z ∈ R
m×n, min

X∈Rm×n

L2(X,Z, µ)

equivalents to

min
X∈Rm×n

{

‖X −Bµ(Z)‖2F + λµ‖X‖∗
}

, (37)

where Bµ(Z) = Z + µA∗(b −A(Z)) + 1
2µN

k.

proof. By the definition of L2(X,Z, µ), we have

L2(X,Z, µ) = µ‖A(X)− b‖22 + λµ‖X‖∗ − µ〈X,Nk〉 − µ‖A(X)−A(Z)‖22
+‖X − Z‖2F

= ‖X − (Z + µA∗(b−A(Z)) +
1

2
µNk)‖2F + λµ‖X‖∗ + ‖Z‖2F

−‖Z + µA∗(b −A(Z)) +
1

2
µNk‖2F + µ‖b‖22 − µ‖A(Z)‖22

= ‖X −Bµ(Z)‖2F + λµ‖X‖∗ + ‖Z‖2F − ‖Bµ(Z)‖2F + µ‖b‖22
−µ‖A(Z)‖22.

This completes the proof. �
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Theorem 6 For fixed positive parameters λ > 0 and 0 < µ < 1
‖A‖2

2

. If the ma-

trix X∗ is the optimal solution to min
X∈Rm×n

L1(X), then X∗ is also the optimal

solution to min
X∈Rm×n

L2(X,X∗, µ), that is

L2(X
∗, X∗, µ) ≤ L2(X,X∗, µ)

for any X ∈ R
m×n.

proof. By the definition of L2(X,Z, µ), we have

L2(X,X∗, µ) = µ‖A(X)− b‖22 + λµ‖X‖∗ − µ〈X,Nk〉
−µ‖A(X)−A(X∗)‖22 + ‖X −X∗‖2F

≥ µ‖A(X)− b‖22 + λµ‖X‖∗ − µ〈X,Nk〉
= µL1(X)

≥ µL1(X
∗)

= L2(X
∗, X∗, µ)

where the first inequality holds by the fact that

‖A(X)−A(X∗)‖22 = ‖Avec(X)−Avec(X∗)‖22
≤ ‖A‖22‖X −X∗‖2F .

This completes the proof. �

Theorem 6 demonstrated that the matrix X∗ is the global optimal solution
to min

X∈Rm×n

L2(X,X∗, µ) if and only if the matrix X∗ is the global optimal

solution to min
X∈Rm×n

L1(X). Combing with Theorem 5, we can get that the

optimal solution to min
X∈Rm×n

L2(X,X∗, µ) could be obtained by solving the

following problem:

min
X∈Rm×n

{

‖X −Bµ(X
∗)‖2F + λµ‖X‖∗

}

. (38)

where Bµ(X
∗) = X∗ + µA∗(b −A(X∗)) + 1

2µN
k. Moreover, by Definition 5,

the optimal solution to the minimization problem (38) could be deduced to
the following form

X∗ = Dλµ(Bµ(X
∗)) = U∗Dλµ(Σ

∗
B)(V

∗)⊤ (39)

where Bµ(X
∗) = U∗Σ∗(V ∗)⊤ = U∗Diag(σi(Bµ(X

∗)))(V ∗)⊤ is the SVD of the
matrix Bµ(X

∗), and the operator Dλµ is obtained by replacing λ with λµ in
Dλ.

With the thresholding representation (39), the procedure of the thresh-
olding algorithm for solving the sub-problem (34) can be naturally defined
as

Xs+1 = Dλµ(Bµ(X
s))

= UsDiag
(

{σi(Bµ(X
s))− λµ

2 }+
)

(V s)⊤
(40)
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until a stopping criterion is reached.

It is necessary to emphasize that the quantity of the solution of a regulariza-
tion problem depends seriously on the setting of the regularization parameter
λ > 0, and the selection of proper regularization parameter is a very hard
problem. In iteration (40), the cross-validation method is accepted to choose
the proper regularization parameter λ > 0. To make it clear, we suppose that
the matrix X∗ of rank r is the optimal solution to the problem (34), and the
singular values of matrix Bµ(X

∗) are denoted as

σ1(Bµ(X
∗)) ≥ σ2(Bµ(X

∗)) ≥ · · · ≥ σm(Bµ(X
∗)).

By (36), it then follows that

σi(Bµ(X
∗)) >

λ∗µ

2
⇔ i ∈ {1, 2, · · · , r},

σi(Bµ(X
∗)) ≤ λ∗µ

2
⇔ i ∈ {r + 1, r + 2, · · · ,m},

which implies

2σr+1(Bµ(X
∗))

µ
≤ λ∗ <

2σr(Bµ(X
∗))

µ
,

namely

λ∗ ∈
[

2σr+1(Bµ(X
∗))

µ
,
2σr(Bµ(X

∗))

µ

)

. (41)

We can then take

λ∗ =
2(1− θ)σr+1(Bµ(X

∗))

µ
+

2θσr(Bµ(X
∗))

µ
. (42)

with any θ ∈ [0, 1). Taking θ = 0, this leads to a most reliable choice of λ∗

specified by

λ∗ =
2σr+1(Bµ(X

∗))

µ
. (43)

In practice, we approximate Bµ(X
∗) by Bµ(X

s) in (43), and the regularization
parameter λ could be selected as

λ∗
s =

2σr+1(Bµ(X
s))

µ
(44)

in applications. When so doing, our algorithm will be adaptive and free from
the choice of regularization parameter.
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5 Numerical experiments

In this section, we present numerical results of the RTrDC algorithm and
compare them with some state-of-art methods (singular value thresholding
(SVT) algorithm [14] and singular value projection (SVP) algorithm [30]) on
two image inpainting problems. The three algorithms are tested on two gray-
scale images: 419 × 400 Venous and 256 × 256 Peppers. We use the SVD to
obtain their approximated low rank images with rank r = 30. The original
images, and their low-rank images are displayed in Figure 1 and Figure 2
respectively. The set of observed entries Ω is sampled uniformly at random

Original Venous image Approximated Venous image, r=30

Fig. 1 Original 419× 400 Venous image and its approximation image with rank r = 30.

Original Peppers image Approximated Peppers image, r=30

Fig. 2 Original 256× 256 Peppers image and its approximation image with rank r = 30.

among all sets of cardinality s. SR = s/mn denotes the sampling ration.
FR = s/r(m + n − r) denotes the freedom ration is the ratio between the
number of sampled entries and the ‘true dimensionality’ of a m × n matrix
of rank r. If FR < 1, it is impossible to recover an original low-rank matrix
because there are an infinite number of matrices of rank r with the observed
entries [15]. The stopping criterion is usually as follows

‖Xk −Xk−1‖F
‖Xk‖F

≤ Tol



Exact recovery low-rank matrix via transformed affine matrix rank minimization 17

where Xk and Xk−1 are numerical results from two continuous iterative steps
and Tol is a given small number. We take Tol = 10−8 in our experiments.
In addition, we measure the accuracy of the generated solution Xopt of our
algorithms by the relative error (RE) defined as follows

RE =
‖Xopt −M‖F

‖M‖F
.

In Theorem 4, we have proved that, for some proper smaller λ > 0, the optimal
solution to the problem (TrAMRM) can be approximately obtained by solving
problem (RTrAMRM). Moreover, in Theorem 3 we have proved that there
exists a∗ > 1 such that the optimal solution to the problem (TrAMRM) also
solves the problem (AMRM) whenever 1 < a < a∗. However, the value of a∗

is extremely difficult to evaluate, and it seriously depends on the rank of the
optimal solution of (AMRM). For the sake of simplicity, in these experiments,
we set a = 1.2, which is closes to 1.

5.1 Image inpainting-noiseless case

In this section, we consider the noiseless case and take a series of experiments to
demonstrate the performance of the RTrDC algorithm on two image inpainting
problems.

Venous image, noiseless, (r = 30, SR = 0.40,FR = 2.8323)
Algorithm RTrDC algorithm SVT algorithm SVP algorithm

RE 3.52e–06 7.29e–02 7.40e–01
Peppers image, noiseless, (r = 30, SR = 0.40,FR = 1.8129)

Algorithm RTrDC algorithm SVT algorithm SVP algorithm
RE 1.81e–05 4.43e–02 7.60e–01

Table 1 Numerical results of RTrDC algorithm, SVT algorithm, SVP algorithm for image in-
painting problems (noiseless case), SR = 0.40.

Tables 1 and 2 report the numerical results of RTrDC algorithm, SVT
algorithm and SVP algorithm for the image inpainting problems with fixed
rank r = 30. Combined with Figure 3 and Figure 4, we can find that our
algorithm performs far more better than other two algorithms.

Venous image, noiseless, (r = 30, SR = 0.30,FR = 2.1242)
Algorithm RTrDC algorithm SVT algorithm SVP algorithm

RE 9.84e–04 2.36e–01 8.15e–01
Peppers image, noiseless, (r = 30, SR = 0.30,FR = 1.3597)

Algorithm RTrDC algorithm SVT algorithm SVP algorithm
RE 9.70e–04 1.04e–01 8.13e–01

Table 2 Numerical results of RTrDC algorithm, SVT algorithm, SVP algorithm for image in-
painting problems (noiseless case), SR = 0.30.
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30% random sampling RTrDC

SVT SVP

Fig. 3 Comparisons of RTrDC algorithm, SVT algorithm and SVP algorithm for recovering
the approximated Venous image (noiseless case) with SR = 0.30.

30% random sampling RTrDC

SVT SVP

Fig. 4 Comparisons of RTrDC algorithm, SVT algorithm and SVP algorithm for recovering
the approximated Peppers image (noiseless case) with SR = 0.30.
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5.2 Image inpainting-noise case

In this section, we consider the noise case and take a series of experiments to
demonstrate the performance of the RTrDC algorithm on two image inpainting
problems. We generate the noised image by

imnoise(image, ’gaussian’, 0, 0.01).

The approximated Venous image and its noised image are displayed in Figure
5, and the approximated Peppers image and its noised image are displayed in
Figure 6.

Approximated Venous image, r=30 Noised approximated Venous image

Fig. 5 Approximated Venous image and its noised image.

Approximated Peppers image, r=30 Noised approximated Peppers image

Fig. 6 Approximated Peppers image and its noised image.

Tables 3 and 4 and Figures 7 and 8 show that the RTrDC algorithm per-
forms the best in finding a low-rank matrix on image inpainting problems.

6 Conclusions

In this paper, a non-convex function is studied to replace the rank function in
the problem (AMRM), and translate this NP-hard problem into the problem
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Venous image, noise (r = 30, SR = 0.40,FR = 2.8323)
Algorithm RTrDC algorithm SVT algorithm SVP algorithm

RE 2.02e–01 3.38e–01 8.03e–01
Peppers image, noise, (r = 30, SR = 0.40,FR = 1.8129)

Algorithm RTrDC algorithm SVT algorithm SVP algorithm
RE 1.15e–01 1.62e–01 7.74e–01

Table 3 Numerical results of RTrDC algorithm, SVT algorithm, SVP algorithm for image in-
painting problems (noise case), SR = 0.40.

Venous image, noise, (r = 30, SR = 0.30,FR = 2.1242)
Algorithm RTrDC algorithm SVT algorithm SVP algorithm

RE 2.04e-01 3.98e-01 8.56e-01
Peppers image, noise, (r = 30, SR = 0.30,FR = 1.3597)

Algorithm RTrDC algorithm SVT algorithm SVP algorithm
RE 1.27e-01 1.92e-01 8.34e-01

Table 4 Numerical results of RTrDC algorithm, SVT algorithm, SVP algorithm for image in-
painting problems (noise case), SR = 0.30.

30% random sampling RTrDC

SVT SVP

Fig. 7 Comparisons of RTrDC algorithm, SVT algorithm and SVP algorithm for recovering
the approximated Peppers image (noise case) with SR = 0.30.

(TrAMRM). We theoretically proved that the optimal solution to the problem
(TrAMRM) also solves the problem (AMRM) whenever some specific condi-
tions satisfied. Moreover, we also proved that the optimal solution to the prob-
lem (TrAMRM) could be approximately obtained by solving its regularization
problem (RTrAMRM) for some proper smaller λ > 0. Lastly, the DC algo-
rithm is utilized to solve the problem (RTrAMRM). Numerical experiments
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30% random sampling RTrDC

SVT SVP

Fig. 8 Comparisons of RTrDC algorithm, SVT algorithm and SVP algorithm for recovering
the approximated Venous image (noise case) with SR = 0.30.

on image inpainting problems show that our method performs effectively in
recovering low-rank images compared with some art-of-state methods.
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