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Abstract

Micro-expression is one of important clues for detecting lies. Its most out-
standing characteristics include short duration and low intensity of movemen-
t. Therefore, video clips of high spatial-temporal resolution are much more
desired than still images to provide sufficient details. On the other hand, ow-
ing to the difficulties to collect and encode micro-expression data, it is small
sample size. In this paper, we use only 560 micro-expression video clips to
evaluate the proposed network model: Transferring Long-term Convolutional
Neural Network (TLCNN). TLCNN uses Deep CNN to extract features from
each frame of micro-expression video clips, then feeds them to Long Short
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Term Memory (LSTM) which learn the temporal sequence information of
micro-expression. Due to the small sample size of micro-expression data,
TLCNN uses two steps of transfer learning: (1) transferring from expression
data and (2) transferring from single frame of micro-expression video clips,
which can be regarded as “big data”. Evaluation on 560 micro-expression
video clips collected from three spontaneous databases is performed. The
results show that the proposed TLCNN is better than some state-of-the-art
algorithms.

Keywords: Micro-expression, Deep Learning, Transferring Learning ,
Convolutional Neural Network.

1. INTRODUCTION

Lie is an integral and inevitable existence in society that occurs every day
and several times within a day [1][2]. The consequences of telling lies (the
failed identification of concealed and falsified information) are enormous in
many contexts, including suspect interrogations, customs agencies, airport
security, and the courtroom [3]. Effective lie detection may help inhibit and
avoid potential dangers and harms. The polygraph, a widely used method
to detect lies, is invasive because it must be connected to the individual’s
body throughout the session [4], where individuals are aware that they are
being monitored and may develop countermeasures. Lie detection based on
nonverbal cues is unobtrusive, and the individuals being observed are less
likely to develop countermeasures.

In USA, officers were trained to judge the potentially dangerous people
by their nonverbal behaviors [5]. Among the various nonverbal behaviors,
micro-expression is considered as a promising one, because it leaks people’s
concealed emotions and may reveal their intent, thus is applicable to detect-
ing lies [6]. In comparison with those connecting apparatus such as poly-
graph, lie detection based on micro-expressions, which can be captured with
hidden camera, is unobtrusive.

Although micro-expression now is gaining more attention and has po-
tential application in a variety of fields, humans have difficulty in detecting
and recognizing them. This difficulty results from their short duration, low
intensity, and fragmental action units [7][8]. Although there is a debate
regarding their duration, the generally accepted limit is 0.5 seconds [8][9].
Micro-expressions are usually very subtle because individuals try to control
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and repress them. In addition, micro-expressions usually exhibit only parts
of the action units of fully-stretched facial expressions.

The automatic recognizing micro-expressions from on-line camera or off-
line videos in interrogation interview context may greatly help security of-
ficers in detecting the suspects’ usual or even deception clues. Therefore,
computer vision techniques have the potential to be used in rapid security
screening without the need for skilled staff or physical contact.

Research on facial expressions originate from Darwin et al. [10]. A pre-
vious study conducted by Mehrabian et al. [11] has revealed that 55% of
messages regarding feelings and attitudes are conveyed via facial expression-
s. Micro-expression was firstly discovered by Haggard et al. [12], which
were called rapid expressions that showing repressed emotions at that time.
Ekman et al. [7] founded this kind of expressions from an inpatient with psy-
chotic who wanted to commit suicide and concealed the negative expression
within 1/12 seconds in smiles, and they named it micro-expression. Facial
Action Coding System (FACS) [13] and Micro Expression Train Tool (MET-
T) were developed afterwards. Micro-expressions can reveal our authentic
emotions, and it is considered to be one of the most important non-verbal
leakages and clues (e.g., judging whether someone is lying or honest [6] [14],
Clinical Medicine [15] [16] [17], Political Psychology [18]). There are a mul-
titude of researchs concerning facial expressions, however, more knowledge
needs to be further studied respecting micro-expressions.

Some studies on micro-expression recognitions have been published in
recent years. Polikovsky et al. [19] recognized micro-expressions based on
3D-Gradients orientation histogram descriptor. Pfister et al. [20] used a Tem-
poral Interpolation Model (TIM) based on Laplacian matrix to normalize the
frame numbers of micro-expression video clips. Then, the LBP-TOP [21] was
used to extract the motion and appearance features of micro-expressions and
multiple kernel learning was used for classification. Wang et al. [22] utilized
Discriminant Tensor Subspace Analysis (DTSA) which treated a gray micro-
expression video clip as a third order tensor and Extreme Learning Machine
(ELM) used for classification. Wang et al. [23][24] set up a novel color space
model, Tensor Independent Color Space (TICS) because color could provide
useful information for expression recognition. Then they [25] used the sparse
part of Robust PCA (RPCA) [26] to extract the subtle motion information
of micro-expression and Local Spatiotemporal Directional Features (LSTD)
[27] to extract the local texture features. Yu et al. [28] proposed Facial
Dynamics Map (FDM) to describe the motion pattern of a micro-expression
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instance. Liu et al. [29] proposed a simple yet effective Main Directional
Mean Optical-flow (MDMO) feature for micro-expression recognition. Fur-
thermore, Wang et al. [30] proposed a Main Directional Maximal Difference
(MDMD) Analysis for micro-expression spotting. Shreve et al. [31] used op-
tical strain to spot marco-expression and micro-expression in videos. Huang
et al. [32] proposed a Spatiotemporal Local Binary Pattern with Integral
Projection (STLBP-IP), in which they used integral projection for extract-
ing face shape information and subsequently employed 1-D and 2-D local
binary pattern to face shape, for micro-expression recognition. They [33]
also proposed Spatiotemporal Local Quantized Pattern (STCLQP), which
exploits magnitude and orientation as complementary of sign information,
for improving the performance of micro-expression recognition. Patel et al.
[34] used the pretrained ImageNet-VGG-f CNN to extract the features of
each frame of videos and used evolutionary search to select the discrimina-
tive feature for micro-expression recognition.

Recently, owing to the rapid development of computer hardware, especial-
ly Graphical Processor Unit (GPU), deep learning is applied on many areas
such as face recognition [35] and verification [36], and shows outstanding per-
formances. These deep learning methods use multiple processing layers to
discover patterns and structures in very large data sets. Each layer learns a
concept from the data that subsequent layers build on; the higher the level,
the more abstract the concepts that are learned. Deep learning does not de-
pend on prior data processing and automatically extracts features [37]. These
advantages and good performances of deep learning are ascribed to big data.
However, the number of micro-expression video clips is usually small. Deep
learning on data with small sample size may not achieve good performances.
To address this problem, we use transfer learning to pre-train a deep convo-
lutional neural network and we propose the Transferring Long-term Convo-
lutional Neural Network (TLCNN) model for micro-expression recognition.
In TLCNN, there are two steps of transfer learning: (1) transferring from
expression data and (2) transferring from single frame of micro-expression
video clips, which can be regarded as ”big data”. To fully use the temporal
information in micro-expression videos, TLCNN also uses Long Short Ter-
m Memory (LSTM) to extract temporal features of micro-expression videos
from mid-level image representation for each frame images.

The rest of this paper is organized as follows: in Section 2, we briefly
review the deep convolutional neural network and the recurrent neural net-
work. In Section 3, we analyze the small sample size problem of micro-
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expression data and propose Transferring Long-term Convolutional Neural
Network (TLCNN) model. Section 4 presents the evaluation on 560 micro-
expression video clips collected from three spontaneous databases and the
results show that the proposed TLCNN is better than state-of-the-art algo-
rithms. Finally, conclusions are presented in Section 5 and several issues for
future work are discussed.

2. Background

2.1. Deep Convolutional Neural Network

A convolutional neural network (CNN) is a special type of a general feed-
forward neural network which is specifically designed to deal with still images
[38]. Generally, a Deep CNN consists of multiple convolutional layers and
pooling layers followed by a few fully-connected layers. In the convolutional
layer, the convolution operation is used to extract features from local neigh-
borhood on feature maps in the previous layer. Then an additive bias is
applied and the result is passed through an activation function. The nota-
tion vxyij means the value of an unit at position (x, y) in the jth feature map
in the ith layer. Then

vxyij = f

(
bij +

∑
k

Pi−1∑
p=0

Qi−1∑
q=0

wpq
ijkv

(x+p)(y+q)
(i−1)k

)
(1)

where f(·) is an activation function, bij is the bias for this feature map, k
is the index over the set of feature maps in the (i− 1)th layer connected to
the current feature map, the kernel weight wpq

ijk is the value at the position
(p, q) of the kernel connected to the kth feature map, and Pi and Qi are the
height and width of the kernel, respectively. Here, the kernel weight wpq

ijk is a
special type of weight, which is gotten by learning. In the pooling layers, the
resolution of the feature maps is reduced by pooling over local neighborhood
on the feature maps in the previous layer.

The CNN described above is called 2D-CNN, because it only extract 2D
features from the spatial dimensions. To analyze the video temporal infor-
mation, Ji et al. [39] proposed 3D-CNN. 3D-CNN performs 3D convolutions
in the convolution stages of CNNs to extract features from both spatial and
temporal dimensions. The 3D convolution is achieved by convolving a 3D
kernel to the cube formed by stacking multiple contiguous frames together.
By this construction, the feature maps in the convolution layer are connected
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to multiple contiguous frames in the previous layer, thereby capturing mo-
tion information. Formally, the value at position (x, y, z) on the jth feature
map in the ith layer is given by

vxyzij = f

(
bij +

∑
k

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijk v

(x+p)(y+q)(z+r)
(i−1)k

)
(2)

where Ri is the size of the 3D kernel along the temporal dimension, wpqr
ijk is

the (p, q, r)th value of the kernel connected to the kth feature map in the
previous layer. Fig. 1 shows a comparison of 2D and 3D convolutions.

2.2. Recurrent Neural Network

Besides 3D-CNN, recurrent neural network (RNN) can also deal with the
video temporal information. RNN is a neural network dealing with an input
sequence xt (t = 1, 2, . . . , T ) and output a corresponding sequence yt, using
an internal hidden state ht. The RNN sequentially reads each symbol xt of
the input sequence and updates its internal hidden state ht according to

ht = f(Wxhxt +Whhht−1 + bh) (3)

where f(·) is an activation function, Wxh is a weight from xt to ht and Whh

is a weight from ht−1 to ht. RNN can output a prediction yt at each time
step t

yt = f(Whyht + by) (4)

where Why is a weight from ht to yt.
To solve it, RNN is unfolded the network along the input sequence. Fig.

2 shows part of an unfolded RNN. The unfolded RNN can be viewed as a
general neural network to define forward and backward operations.

However, RNN is difficult to be trained to learn long sequences, likely due
in part to the vanishing and exploding gradients problem that can result from
propagating the gradients down through the many layers of the recurrent
network, each corresponding to a particular step t [40]. To address this
problem, Long Short Term Memory (LSTM) was proposed. It incorporate
memory units to make the network to learn by Forget Gate ft and Input
Gate it when to forget previous hidden states and when to update hidden
states given new information.

A LSTM unit is described Fig. 3. Let σ(x) = (1 + e−x)−1 be the sig-
moid nonlinearity which squashes real-valued inputs to a [0, 1] range, and let

6



(a) 2D convolution

T
e
m

p
o

ra
l 

se
q

u
e
n

c
e

(b) 3D convolution

Figure 1: Comparison of (a) 2D and (b) 3D convolutions. In (b) the size of the convolution
kernel in the temporal dimension is 3 and the sets of connections are color-coded so that
the shared weights are in the same color. In 3D convolution, the same 3D kernel is applied
to overlapping 3D cubes in the input video to extract motion features. [39]
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Figure 2: An example of unfolding CNN.
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Figure 3: An example of a LSTM unit.
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ϕ(x) = ex−e−x

ex+e−x = 2σ(2x)− 1 be the hyperbolic tangent nonlinearity, similarly
squashing its inputs to a [−1, 1] range. The LSTM updates for time t given
inputs xt, ht−1, and ct−1 are:

it = σ(Wxixt +Whiht−1 + bi) (5)

ft = σ(Wxfxt +Whfht−1 + bf ) (6)

ot = σ(Wxoxt +Whoht−1 + bo) (7)

gt = ϕ(Wxcxt +Whcht−1 + bc) (8)

ct = ft ⊙ ct−1 + it ⊙ gt (9)

ht = ot ⊙ ϕ(ct) (10)

where ot is a Output Gate, gt is a Input Modulation Gate and ct is a memory
cell. The memory cell unit ct is a summation of two items: the previous
memory cell unit ct−1 which is modulated by ft, and gt, a function of the
current input and previous hidden state, modulated by the input gate it.
Because it and ft are sigmoidal, their values lie within the range [0, 1], and it
and ft can be thought of as knobs that the LSTM learns to selectively forget
its previous memory or consider its current input. Likewise, the output gate
ot learns how much of the memory cell to transfer to the hidden state. These
additional cells enable the LSTM to learn extremely complex and long-term
temporal dynamics the RNN is not capable of learning [40].

3. Transferring Long-term Convolutional Neural Network Model

3.1. Deep Leaning and Big Data

The increase of large-scale data in computational resources make the use
of more powerful statistical models become a reality. At the aspect of lever-
aging large-scale data, deep neural networks have shown superior scaling
properties than traditional machine learning methods like Subspace Analy-
sis.

The deep and large networks have shown remarkable results once: (1)
large amount of training data has been applied and (2) large scale parallel
computing has become available with the development of CPU cores [41] and
GPU [42]. Most obviously, it has been confirmed by Krizhevsky et al. [42]
that with the use of standard backpropagation, great recognition accuracy
could be obtained on a large dataset by very large and deep convolutional
neural networks.
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For example, DeepFace [35] used 4.4 million labeled faces as training
samples to obtain 97.35% accuracy for the face recognition task on LFW
face database. DeepID [36] used more 87 thousands training samples to
obtain 97.45% for the face verification task on LFW face database.

3.2. Small Sample Size on Micro-expression

However, the number of samples of micro-expression data is very small.
Up to now, there are 3 spontaneous micro-expression databases: SMIC [43],
CASME [44] and CASME 2 [45]. SMIC contains 164 micro-expression clips
induced by 16 participants. Clips from all participants were recorded with
a high speed 100fps camera . CASME database contains 195 spontaneous
micro-expressions (selecting from 1500 elicited facial movements) filmed un-
der 60 fps. These samples were coded so that the onset, peak and offset
frames were tagged. Another micro-expression database, CASME 2, is later
developed and contains 247 micro-expression samples from 26 participants.
They are selected from nearly 3,000 elicited facial movements. Table 1 lists
the above three public micro-expression databases.

Table 1: The existing spontaneous micro-expression databases.

Databasme Sample Size Emotion Class Frames per second Label

SMIC 164 3 100 Emotion
CASME 195 7 60 Emotion/AUs
CASME 2 247 5 200 Emotion/AUs

Though researchers have great demands on spontaneous micro-expression
databases, only very few were developed. The main difficulties lie in micro-
expression collecting and annotating. Micro-expression usually occurs when
the individual has strong emotions while tries to conceal. Since it’s difficult
to set a high-stakes situation in a lab, the convenient way to elicit micro-
expressions is presenting emotional video clips and asking participants to
suppress any facial expressions. This method was adopted to elicit and col-
lect micro-expressions in these 3 databases though had some drawbacks such
as that not all participants show (leak) micro-expressions and some very few.
In micro-expression annotation, coders takes considerable time and effort to
code the duration and AUs. Micro-expressions are currently recognized and
defined by its duration [8]; to calculate the duration of facial expressions,
researchers have to manually count the frames and ensure it falls within the
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range of 0.5s in order to classify a facial expression as a micro-expression.
Spotting the beginning (onset) and ending (offset) frames of these subtle
facial movements is time-consuming and requires intensive manual labor.
Moreover, manual coding with FACS is laborious, time-consuming, and stren-
uous especially for subtle facial movements. Previous studies have indicated
that coding, comprehensively, a one minute video footage typically takes over
two hours [46]. For very subtle facial expressions (a facial expression with
intensity lower than the lowest intensity level depicted in the FACS manu-
al) manual coding is even more demanding and time-consuming. Therefore,
annotating is other challenge to develop micro-expression databases.

However, these small samples have ”big data”. Very high dimensional
data are generated from a high-speed and high-resolution camera. A micro-
expression video sequence of 0.5 s, filmed at 200 fps, with a resolution of
800 × 600 would generate a data file of roughly 137 MB. The ”big data” is
used to pre-train our network.

3.3. Transferring Learning From Expression to Micro-expression

Transfer learning aims to transfer knowledge between related source and
target domains [47]. A domain D consists of two components: a feature space
X and a marginal probability distribution P (X), where X = {x1, . . . , xn} ∈
X . Given a specific domain, D = {D, P (X)}, a task consists of two compo-
nents: a label space Y and an objective predictive function f(·) (denoted by
T = {Y , f(·)}), which is not observed but can be learned from the training
data, which consist of pairs {xi, yi}, where xi ∈ X and yi ∈ Y . The function
f(·) can be used to predict the corresponding label, f(x), of a new instance
x.

Given a source domain DS and a domain task TS, a target domain DT

and a target task TT , transfer learning aims to help improve the learning of
the target predictive function fT (·) in DT using the knowledge in DS and TS,
where DS ̸= DT , or TS ̸= TT . We denote the number of elements of DS and
DT as nS and nT , respectively. In most cases, 0 ≤ nT ≪ nS.

In some situations, when the source domain and target domain are not
related to each other, brute-force transfer cannot be successful. In the worst
case, it may even hurt the performance of learning in the target domain. Here,
the source domain is the expression data, and the target domain is the micro-
expression data. The source and target domains are different but related,
because micro-expression is a special type of expression. Transfer Learning
transfers some knowledge, which may be common between different domains,
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to help improve performance for the target domain or task. Expressions and
micro-expressions share the common knowledge, which are similar AUs when
expressing emotions, thus have similar texture information. As dynamic
facial movements, they have the same temporal pattern, onset phase, apex
phase and offset phase. The similar texture and temporal pattern make
possible for transfer learning from expressions to micro-expression though
the duration of micro-expression is shorter and the intensity usually less.

Not only the source domain and the target domain but also the source
task and the target task are related. In our experiments, the source label
space is

YS = {Happy,Angry, Sad, Contempt,Disgust,Neutral,

Fear, Surprise, Afraid}
(11)

and the target label space is

YT = {Positive,Negative, Surprise, Others}, (12)

where Positive = {Happy}, Surprise = {Surprise}, and Negative =
{Afraid, Angry,Disgust, Sad, Fear}. For micro-expressions, some facial
movements are very subtle and difficult to label with basic emotions. Those
facial movements with unclear emotion are classified as Others. So, the
source task and the target task are related. This further develops the per-
formance of transfer learning.

In the other hand, Deep CNN amounts to estimating millions of param-
eters and requires a very large number of annotated samples [48]. As stated
in Section 3.2, however, the number of samples of micro-expression data is
only 606 (nT = 606), which is very small compared to existing large face data
and expression data. Deep CNN on such small size data cannot guarantee
to have a good performance. Compared to micro-expression data, expres-
sion data have larger size. In our experiments, 3383 (nS = 3383) expression
samples are used. nT ≪ nS is hold. Meantime, the larger data size, the
better performance of deep learning. Once a deep CNN is trained on a large
sample size expression dataset, we can use any intermediate representation,
such as the feature map from any convolutional layer or the vector repre-
sentation from any subsequent fully-connected layers, of the whole network
for micro-expression. It has been observed that the use of these intermedi-
ate representation from the deep CNN as an image descriptor significantly
boosts subsequent tasks.
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3.4. CNN Architecture

We train our CNN to extract the features from each frame in micro-
expression video clips. The overall architecture is shown in Fig. 4 . The
CNN net contains five convolutional layers and three fully-connected layers.
The output of the last fully-connected layer is fed to a 4-way softmax layer
which produces a distribution over the 4 class labels.

Input image
3 channels

C1 96 111 111: @ ×

M1 96 55 55: @ ×

C2 384 26 26: @ ×

M2 384 13 13: @ ×

C3 512 13 13: @ × C4 512 13 13: @ ×
C5 384 13 13: @ ×

M3 384 6 6: @ ×

FC6
×1 4096

FC7
×1 4096

FC8
×1 4

Figure 4: CNN Architecture.

The ReLU non-linearity layer is applied to the output of every convo-
lutional and fully-connected layer. Max-pooling layer follows the first, sec-
ond and fifth convolutional layer. The response-normalization layer follows
the first and second convolutional layer. After the first and second fully-
connected layer, there is a dropout layer.

A 3-channels image (RGB) of size 240 × 320 is cropped by the data
layer as 227 × 227 × 3 image as the input of the first convolutional layer.
The first convolutional layer (C1) filters 227 × 227 × 3 input image with
96 kernels of size 7 × 7 with a stride of 2 pixels, then the 96 feature maps
are fed to a max-pooling layer (M1) which takes the max over 3× 3 spatial
neighborhoods with a stride of 2 pixels, separately for each feature map.
The second convolutional layer (C2) takes as input the output of the first
convolution layer which has a shape of 96 × 55 × 55 and filter it with 384
kernels of size 5 × 5 with a stride of 2 pixels. After activated by the ReLU
layer, pooled (M2, parameters same as M1) and response-normalized, the
output shape of the second convolutional layer is 384 × 13 × 13. The third
(C3), fourth (C4), and fifth (C5) convolutional layer have 512, 512, and 384
kernels separately. All the kernels have the same size of 3 × 3 with pad of
1 pixel and stride of 1 pixel. So the output shape of the third, fourth, and
fifth convolutional layer are 512× 13× 13, 512× 13× 13, and 384× 13× 13.

The first five convolutional layers are used to extract low-level features,
like texture and simple edges. The following max-pooling layers make the
output of the convolutional layers more robust to small registration errors,

13



especially when applied to expression images. Another advantage of the max-
pooling layer is the layer parameters can be reduced by half for computation.
However, if we use many max-pooling layers, some small and precise features
such as detailed facial structures will lose. These features are important for
micro-expression recognition. Hence, we only apply the max-pooling layers
to the first, second, and fifth convolutional layer. Fig. 5 shows the feature
map of C5.

Figure 5: The feature map of C5.

The subsequent layers are fully-connected (FC6, FC7, FC8). The first
and second fully-connected layers have 4096 neurons each with dropout ra-
tio of 0.5. The last fully-connected layer has 4 neurons as the classes of
micro-expression. A micro-expression has diverse appearance between dif-
ferent areas of facial images. For example, features extracted from areas
between eyes and eyebrows show much higher discrimination ability com-
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pared to areas between the nose and mouth. So we choose dropout layers to
learn combinations of different feature maps from previous layers as various
high-level features. Furthermore, the use of dropout layers also can improve
the generalized ability of neural networks, prevent over-fitting, and achieve
a good performance on the sparse matrix activated by the ReLU function.
The fully-connected layers are able to capture correlations between features
in distant areas of images such as mouth and eyes etc.

Then the output vector of FC8 layer is fed to a 4-classes softmax layer to
produce pk = exp(f(xk))/

∑
h exp(f(xh)), where xk is a given input. Then

we use the loss function and stochastic gradient backpropagation (SGD) to
update the network parameters to optimize the network.

3.5. Transferring Long-term Convolutional Neural Network

We use large sample size expression data to pre-train the above Deep
CNN. The trained network includes some expression information which are
shared with micro-expression. These information will be transferred to train
a network for micro-expression recognition and accelerate the network train-
ing speed.

CNN

CNN

CNN

CNN

CNN

Visual Input Visual Features Sequence Learning

Predictions
LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

FC8

Figure 6: The idea of our method.

The number of micro-expression video clips is small. However, there are
dozens or hundreds of frames in each video clip. If each frame is regarded as
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a sample, micro-expression data will be ”big data”. We use such ”big data”
to train again the trained network by the expression data. In this transfer
learning step, the source domain is the frame images of micro-expression
video and the target domain is the micro-expression video clips. Formally, the
source sample space XS = {x11, x12, . . . , x1f , . . . , xn1, xn2, . . . , xnf} and the
target sample space XT = {x1, x2, . . . , xn}, where xi = {xn1, xn2, . . . , xnf}.
So, the source domain and the target domain are highly related. Further,
the source label space YS and the target label space YT are the same. So,
the source task and the target task are also highly related. If each micro-
expression video clip has 32 frames, than nT ≪ nS = 32 × nT . These
guarantee that the transfer learning from single frame to video clips can
obtain much better performance.

However, only using Deep CNN will lost the dynamic sequence informa-
tion of micro-expression. To address the problem, we combine Deep CNN
and LSTM which can learn the sequence information. Fig. 6 depicts the
idea of our method. In the proposed method, Deep CNN extracts features
from each frame in micro-expression video clips and produce a fixed-length
feature vector representation ϕt ∈ Rd. Here, the feature vector representa-
tion is the result of FC6 layers in Deep CNN. After computed the feature
vector representation of the micro-expression video clip < ϕ1, ϕ2, . . . , ϕT >,
the sequence model then takes over.

Each feature vector representation ϕt is regarded as an input xt of LSTM,
which maps an input xt and a previous timestep hidden state ht−1 to an
output zt and updated hidden state ht. Therefore, inference must be run
sequentially, by computing in the following: h1 = fW (x1, h0) = fW (x1, 0),
then h2 = fW (x2, h1), and so on, up to hT . Finally, all zt are mapped to
labels of micro-expressions by a full-connected layer (FC8). Finally, we train
jointly Deep CNN and LSTM together to improve the final accuracy.

4. EXPERIMENTS

4.1. Pre-train Network by Expression Data

The data we use to pre-train our Deep CNN model is facial expression
data. The standard that we choose expression database is based on six basic
emotions. Besides, the direction of face and the intensity of expression is also
taken into consideration. According to these, we strictly selected part of ex-
pression samples from four facial expression databases, Karolinska Directed
Emotional Faces [49], MMI Facial Expression Database [50], Radboud Faces
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Database [51], Taiwanese Facial Expression Image Database [52]. Karolinska
Directed Emotional Faces (KDEF) is a set of totally 4900 pictures of human
facial expressions of emotion. It was originally developed to be used for psy-
chological and medical research purpose. The dataset contains 70 subjects,
displaying 7 different facial emotions from 5 different angles each. MMI Facial
Expression Database(MMI) consists of over 2900 videos and high-resolution
still images of 75 subjects, most of the videos and images are annotated for
the presence of AUs and emotion. Radboud Faces Database (Radboud) con-
sists of 67 subjects including adults and children, each have 8 categories of
emotions from 3 gaze directions of left, frontal and right. Taiwanese Facial
Expression Image Database (TFEID) consists of 7200 stimuli captured from
40 subjects (20 males), each with 8 facial expressions: neutral, anger, con-
tempt, disgust, fear, happiness, sadness and surprise. Subjects were asked to
gaze at two different angles (0◦ and 45◦). Each expression includes two kinds
of intensities (high and slight). Table 2 lists the four expression databases.
Fig. 7 shows the cropped samples in the four databases.

Table 2: Four expression databases.

Database Sample Size Emotion Class Emotion

KDEF 980 7 afraid, angry, disgust, happy, neutral, sad, surprise
MMI 176 6 neutral, anger, disgust, fear, happy, sad

Radboud 1608 8 happy, angry, sad, contempt, disgust, neutral, fear, surprise
TFEID 619 8 neutral, anger, contempt, disgust, fear, happy, sad, surprise

We select 980, 176, 1608, 619 images separately from the four databases.
Totally, we use 3383 images to pre-train a Deep CNN model and catego-
rize them into 9 classes: neutral, anger, disgust, fear, happy, sad, surprise,
shame, contempt. Before feeding these images to the network, face areas are
cropped from original images. We use 66 facial feature points detected by
Discriminative Response Map Fitting (DRMF) [53] method to locate facial
areas in images. These 66 facial feature points lead to good performance on
describing facial features such as eyebrow, ear, jaw, lips and locating facial
region. Fig. 8 shows these 66 feature points by DRMF and a cropped face
area. So we can obtain facial area in our training by cropping our images
with a rectangle that is mostly suitable for containing all the feature points.
We split all the images into 5 parts, four parts are used for training, the other
part is used for validation.

We use expression data to pre-train the network as described in Section
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(a) Karolinska Directed Emotional Faces

(b) MMI Facial Expression Database

(c) Radboud Faces Database

(d) Taiwanese Facial Expression Image Database

Figure 7: The examples in the four expression databases.

(a) 66 feature points (b) cropped face area

Figure 8: An example of face area cropping by using 66 feature points from DRMF.
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3.4 which is modified the FC8 layer as 9 neural unit corresponding to 9
expression labels. When the change of test accuracy does not exceed a small
threshold in contiguous iterations, the training process is terminated. The
final accuracy is 94% (see Fig. 9).
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Figure 9: The iteration curves when to pre-train network by expression data.

4.2. Train Network by Micro-expression Data

We use three spontaneous micro-expression databases described in Sec-
tion 3.2. Among all the samples in the above three micro-expression databas-
es, several samples in which the 66 facial feature points in the first frame could
not be detected correctly by the DRMF method were removed. At last, we
selected 167, 236, 157 samples separately from above three micro-expression
databases. These all 560 samples were categorized into 4 classes: Positive
(91 samples), Negative (179 samples), Surprise (75 samples), and Others (214
samples).
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Micro-expressions are featured by shorter duration, lower intensity and
usually partial movements, which makes the emotion classification difficult
since we can’t simply label the emotion types as FACS recommends (which
is developed based on regular facial expressions). And we find that differen-
t databases used different criteria to annotate the micro-expressions, which
incurs problems when training the models for recognition. Therefore, we
re-classify the micro-expressions into 3 or 4 classes, e.g. positive, negative,
and surprise. Positive one refers to happiness, which is easily elicited and
have distinct features. Negative ones contain disgust, sadness, fear, et al.,
which are difficult to distinguish between one another. Surprise, which is
not necessary to be positive or negative, has its own distinct pattern of AUs
and indicates feelings of unexpectedness. With this re-classification, these
micro-expressions can be divided into 3 groups and have clear meaning in
a more general level. The “Others” micro-expressions are ambiguous in e-
motional meaning, even without clear distinguishing between positive and
negative. These micro-expressions demonstrate there is something in the
persons’ mind, but have to be further interpreted according to the situation-
s. Using such classification (4 class), which is feasible from psychological
perspective, different databases can be compatible to each other.

All the pictures were cropped with a rectangle generated by 66 facial fea-
ture points of the first frame to get facial regions. Considering the difference
of frame rate between 3 micro-expressions, we used temporal interpolation
model (TIM) to temporally interpolate the sample video clip to normalized
frame number of 32 and 64. We split the images into 5 parts, four parts are
used for training, the other part is used for testing. There are 448 samples
in the training set, and 112 samples in testing set.

For TIM32, each micro-expression video clip has 32 frames. 560 video
clips have totally 32 × 560 = 17920 frames. Each frame is regarded as a
sample. So, there are 32 × 448 = 14336 samples in the training set, and
32 × 112 = 3584 samples in testing set. These data are used to train the
network which is trained by expression data described in Section 4.1. The
momentum of SGD is set to 0.9, and batch size is set to 224. We have set
an equal learning rate for all trainable layers to 0.001, which is decreased
by an order of magnitude every 2560 iterations. At the time of 10000 itera-
tions approximately, we find the validation error become stable. In order to
prevent the local optimal solution, we choose the model which had the best
accuracy to fine-tune with basic learning rate resetting to 0.0005. Then we
got the Deep CNN model with the best accuracy after approximately 10000
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iterations.
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Figure 10: The iteration curves when to jointly train the Deep CNN and LSTM.

In the following, we use the trained Deep CNN to extract features from
each frame of micro-expression, then feed them to LSTM and jointly train
Deep CNN and LSTM. In order to improve the generalization of the network
and data diversity, The consecutive 16 frames are randomly chosen from a
micro-expression video. Each batch includes 16 videos. One epoch over the
whole data needs 112 batch iterations. The learning rate for all trainable
layers are set to 0.01, which is automatically decreased to 10% of the pre-
vious learning rate after 5600 iteration. The training is stopped after 20000
iterations and the best accuracy is chosen. Then, same with the previous
CNN training, we fine-tune the LSTM from the chosen model. At last, the
best accuracy is chosen. Fig. 10 shows the iteration curves.

In order to evaluate the proposed network model for micro-expression
recognition, we conduct 3D-CNN, MDMO, FDM, LBP-TOP, STLBP-IP and
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STCLQP on the same data.
The net we use to train 3D-CNN is similar to the net we use to train

TLCNN, which also has five convolutional layers and three fully-connected
layers. The convolutional layers have 64, 128, 256, 256 and 256 neural units
separately. The three fully-connected layers have 2048, 2048 and 4 neural
units each. The number of neural units of the fully-connected layer is cor-
respond to 4 micro-expression labels. Considering the memory of GPU, the
input frame size is 128 × 171. The momentum of SGD is set to 0.9. For
TIM32 setup, the basic learning rate is 0.003, which would be automatically
decreased to 10% of itself after 20000 iterations, the length of video clips is
32, the batch size is 7. For TIM64 setup, the basic learning rate is 0.001,
which would be automatic decreased to 10% of itself after 20000 iterations,
the length of video clips is 64, the batch size is 4.
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Figure 11: The relation between λ and the recognition accuracy.

MDMO feature could be obtained by the following steps. 1) The facial
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region is partitioned into 36 ROIs with the 66 facial feature points marked
by Discriminative Response Map Fitting (DRMF) [53]. 2) The optical flow
[V i

x , V
i
y ]

T between the first frame f1 and each fi of subsequent frames is
calculated, and is converted into polar coordinates (ρi, θi), where ρi and θi
are the magnitude and direction of the optical flow vectors respectively. 3) All
the optical flow vectors are classified into 8 bins according to their directions.
For each ROI, choose the bin in which the number of vectors is maximum
from all frames and compute a mean vector to represent this ROI, then we
get the 36 × 2 optical flow feature vector for each sequence; 4) To balance
the effect of magnitude and direction, introduce one parameter λ ∈ (0, 1),
then the MDMO feature can be represented as ϕ = (λρ1, λρ2, . . . , λρ36, (1−
λ)θ1, (1 − λ)θ2, . . . , (1 − λ)θ36). We put the MDMO features into the SVM
with the polynomial kernel function to classify. Fig. 11 shows the relation
between λ and the recognition accuracy. When λ = 0.77, MDMO obtains
the best accuracy 60.11%.

FDM first extracts dense optical flow fields, and then divides the optical
flow fields into P × Q × ⌊T

τ
⌋ (T is the number of frame.) smaller cuboids

of size. Each cuboid is small enough such that the motion vectors within it
should describe almost identical motion pattern. A sophisticated algorithm
is applied to find an optimal direction for each small cuboid. The optical
directions are further quantized and linked as the Facial Dynamics Map.
The final classification is performed by an SVM with RBF kernel. In our
experiment, P ×Q is selected among 4×4, 6×6, 8×8, 12×12, 16×16. For
TIM32, τ is selected among 3, 6, 10; and for TIM64, τ is selected among 7,
10, 12. Please note in FDM, we may ignore some optical flow frames under
certain parameters. For example, in TIM32, we have 31 optical flow frames.
When we set τ to 3, we get 10 batches (31 / 3), and the final optical flow
frames is discarded. Therefore, we should avoid discarding too many frames
when we select τ . We choose the best accuracy as the final accuracy in each
training.

The LBP description from three orthogonal planes (LBP-TOP) [21] is
a dynamic texture operator extended from Local Binary Patterns (LBP)
and have been successfully applied on expression recognition and micro-
expression recognition. In fact, LBP-TOP calculates three LBP codes from
three orthogonal planes of 3D objects such as micro-expression video clips
(see Fig. 12) and concatenates them into a LBP-TOP code. Here, we calcu-
late three LBP-TOP codes from R, G and B color component channels and
concatenate them into a long code which is fed to SVM. The performance
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Figure 12: A diagram of LBP-TOP.
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of LBP-TOP on RGB color space is better than that on gray [24]. Because
LBP-TOP is a local feature extraction method, facial images are divided into
6 × 6 patches. For LBP-TOP, the radii in axes X, Y, T were assigned as 3.
The number of neighboring points (be marked as P ) in the XY, XT and YT
planes all were set as 8. The uniform pattern is used in LBP coding.

STLBP-IP, firstly, used integral projection to extract the shape informa-
tion of all frames in one video. Secondly, for appearance features, it further
used 1D Local binary pattern (1DLBP) to obtain their features. Shape infor-
mation of all frames is constituted as a new temporal texture images. Then
2D Local binary pattern (2DLBP) is utilized to extract texture feature as
temporal features. In our implementation, we used STLBP-IP on gray-level
video. Following [50], facial images are divided into 8×9 blocks. For 1DLBP,
the number of neighboring points (be marked as P) in horizontal and ver-
tical projection were assigned as 8. For 2DLBP, the radii and number of
neighboring points in a temporal texture images were set as 3 and P, respec-
tively. The uniform pattern is used in 1DLBP and 2DLBP coding. SVM
with Chi-square kernel was employed, in which the penalty parameter was
grid-searched.

STCLQP was employed on gray-level video. Facial images are divided
into 8 × 8 blocks, in which the feature of each block is extracted by using
STCLQP. For orientation information, Gaussian kernel based on 3× 3 pixel
sizes is used. The level of orientation estimation and quantization level are
set as 16 and 4. For efficient computational cost, we employed one circular
neighbor topology (2, 16) with 16 sampling points and radius 2 around the
central point. The codebook of size 20 is studied by using k-means method.
The dimensionality of sign, magnitude and orientation features was reduced
by Supervised Locality Preserving Projection, and reduced features are con-
catenated into one feature vector. SVM with linear kernel was employed, in
which the penalty parameter was grid-searched.

In order to evaluate the transferring effect, we train the network without
transferring from the expression data and denote it as TLCNN(E). Further-
more, we only jointly train the Deep CNN and LSTM without transferring
from expression information and single frame information and denote it as
TLCNN(EM). In addition, we also use the feature map of C5 layer to extract
features and feed them into SVM. Table 3 lists the results of these methods.
Fig. 13 shows the bar graphs of the mean accuracies of these methods.

Although the different methods obtain the best performances in differen-
t folds, the proposed TLCNN obtain the best mean performances both on
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(a) TIM32

(b) TIM64

Figure 13: The bar graphs of the mean accuracies of these methods.
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Table 3: The results of these methods.

Methods
TIM32 TIM64

Fold1 Fold2 Fold3 Fold4 Fold5 Mean Fold1 Fold2 Fold3 Fold4 Fold5 Mean

TLCNN 76.17 68.95 67.77 72.32 70.73 71.19 74.47 64.62 66.10 70.98 69.41 69.12
TLCNN(E) 74.67 67.08 66.77 72.43 69.81 70.15 73.20 66.88 65.32 71.12 67.31 68.77
TLCNN(EM) 71.54 65.63 66.60 70.01 67.69 68.29 69.56 64.72 65.42 66.71 66.98 66.68
C5+SVM 64.29 65.18 64.29 57.14 66.07 63.39 64.29 65.18 66.07 60.71 66.96 64.64
3D-CNN 64.29 64.29 55.36 67.86 62.50 62.86 63.39 63.39 56.25 68.75 61.61 62.68
MDMO 61.11 61.26 61.47 64.15 57.27 61.05 65.74 58.56 66.06 62.26 60.61 62.65
FDM 53.57 41.96 48.21 49.11 44.64 47.50 47.32 50.89 43.75 45.54 45.54 46.61

LBP-TOP 65.18 65.18 66.96 63.39 72.32 66.61 62.50 66.96 67.86 66.96 74.11 67.68
STLBP-IP 66.96 63.29 73.21 67.86 67.86 67.84 66.96 62.50 72.32 65.18 66.07 66.61
STCLQP 69.64 65.17 72.32 69.64 71.43 69.64 67.86 66.07 70.54 69.64 65.50 67.92

TIM32 and on TIM64. Compared to TLCNN, TLCNN(E), TLCNN(EM),
and 3D-CNN (the methods with less transferred information) are lower about
3%. So the transferred information takes effect. In Fold4, TLCNN(E) ob-
tains slily better performances than TLCNN. This is related with the training
samples distribution. We also see that the performance of C5+SVM is worse
than those of TLCNN, TLCNN(E), and TLCNN(EM). The reason is that
C5+SVM doesn’t have the temporal sequence information compared to TL-
CNN.

To prove the effectiveness of TLCNN and transferring learning from ex-
pression data and single frames, we also conducted statistical analyses (T-
tests) to examine the difference in performance between TLCNN and other
algorithms. The performance of TLCNN is statistically better than those
of C5+SVM, 3D-CNN, MDMO, and FDM, all p<0.05. TLCNN performs
marginally significant better than TLCNN(EM), LBP-TOP, STLBP-IP, and
STCLQP (0.05<p<0.1). Statistically, we observed no difference in perfor-
mance between TLCNN and TLCNN(E) all p>0.2, noting that TLCNN(E)
used a step that transfers learning from single frames to video clips.

In these methods, MDMO and FDM are methods based on optical flow
and have the worst performances. TLCNN(EM), C5+SVM and 3D-CNN are
deep learning methods without transfer learning and have worse performance
than LBP-TOP, STLBP-IP, and STCLQP which are methods based on LBP.
TLCNN and TLCNN(E) are deep learning methods with transfer learning
and have the best performances.
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5. CONCLUSION

In this paper, we proposed Transfer Long-term Convolutional Neural Net-
work (TLCNN), which uses Deep CNN to extract features from each frames
of micro-expression video clips, then feed them to Long Short Term Memory
(LSTM) which learns the temporal sequence information of micro-expression.
For the two outstanding characteristics of micro-expression, TLCNN uses t-
wo steps of transfer learning: (1) transferring from expression data and (2)
transferring from single frame of micro-expression video clips, which can
be regarded as “big data”. The experiment results on three spontaneous
micro-expression databases show that the proposed TLCNN is better than
some state-of-the-art algorithms namely D-CNN, MDMO, FDM, LBP-TOP,
STLBP-IP and STCLQP.
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