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Abstract

No-reference image quality assessment (NR-IQA) is developing rapidly, but

there lacks of research on exploring robust statistics to improve the prediction

accuracy and monotonicity of NR-IQA algorithms, in particular for assessing

photographic images captured by different digital cameras where a variety of

unknown distortions may happen. Hence this paper proposes a novel robust-

statistics-based NR-IQA method (termed RSN) for photographic images. In

RSN, we present three types of features based on robust statistics: robust natu-

ral scene statistics of multiple components, robust multi-order derivatives, and

robust complementary features in the frequency domain. Then support vec-

tor regression is applied to predict image quality using the extracted features.

Experimental results show that RSN remarkably outperforms state-of-the-art

NR-IQA methods on the CID2013 database of photographic images, as well as

on the popular LIVE and TID2013 databases.
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1. Introduction

With the rapid popularity of smart phones, images produced by digital cam-

eras are becoming an increasingly important medium of access to information.

However, they are still prone to be distorted during acquisition, compression,

transmission, processing and restoration. Distortions impair the image quality5

and even the understanding of the information contained. Therefore, it is timely

to automatically predict the perceptual quality of photographic images shown

in 1.

Image quality assessment (IQA) is performed in two ways: subjective and

objective. Subjective IQA is accurate to reflect human’s visual perception, but10

it is time-consuming, cumbersome and often impractical. Hence, it is neces-

sary to develop objective IQA algorithms, which can evaluate image quality

automatically and accurately. According to the information availability of pris-

tine reference images, objective IQA methods can be divided into three cate-

gories: full-reference (FR), reduced-reference (RR) and no-reference (NR) [1–6].15

When reference images are available, the FR-IQA methods, such as SSIM [1],

GMSD [7], VSI [8], LLM [9], MvSSIM [10] and PQIC [11], can be applied

to directly evaluate the difference between a distorted image and its reference

image. For RR-IQA, part of the reference image information is available to cal-

culate the quality scores. In reality, the reference images are often unavailable,20

hence FR-IQA and RR-IQA are infeasible and NR-IQA should be used instead.

The state-of-the-art NR-IQA methods include DIIVINE [12], BLIINDS-II [13],

BRISQUE [14], CNN [15], HOSA [16], IDEAL [17], method in [18], etc. This

paper concentrates on NR-IQA for photographic images.

The aforementioned NR-IQA methods, unfortunately, have been validated25

only on images affected by artificial distortions, such as those in the LIVE

[19] and TID2013 [20] databases. Photographic images often mix a variety of

unpredictable distortions for which a single type of features, e.g. sharpness, il-

lumination and colour information, can predict poorly. Hence, some algorithms

focusing on feature fusion are proposed for photographic images. In [21], a30
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hybrid approach is illustrated to utilise the natural scene statistics (NSS) mod-

elling and the quality-aware interpretable features, such as sharpness and noise.

The method in [22] combines sharpness measure and compound noise estima-

tion. The BQIC method [23] addresses this problem from two aspects, NSS and

local sharpness.35

Figure 1: Examples of photographic images in the CID2013 database. The quality scores

(MOS) of the images are 31.3, 47.8 and 87.9 in order.

Despite these promising methods, there is still a lack of research on explor-

ing robust statistics to improve the prediction accuracy and monotonicity of

IQA (including NR-IQA) algorithms for photographic images . Robust statis-

tics [24], a valid discipline of statistical to make popular statistics less affected by

outliers and perform better over a wider range of probability distributions, has40

been widely applied in digital image processing, such as image thresholding [25],

image denoising [26], image registration [27] and face recognition [28]. There-

fore in this paper, we proposes a novel Robust Statistics-based NR-IQA method

(termed RSN) for photographic images. In RSN, we propose three types of new

robust statistical features: robust natural scene statistics of multiple compo-45

nents, robust multi-order derivatives, and robust complementary features in the

frequency domain.

More specifically, these three types of new robust features are extracted as

follows. Firstly, we construct five components of an image (luminance compo-

nent, two chrominance components, maximum local variation component and50

minimum local variation component [29]), and compute the median subtracted

contrast normalised coefficients (MDSCN), as the robust counterpart of the
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mean subtracted contrast normalised coefficient (MSCN) [14, 30], using some

robust summary statistics. From the MDSCN coefficients, the variance, shape,

skewness, kurtosis and entropy are extracted as robust NSS features. Secondly,55

we propose the robust multi-order derivative features, which are composed of

the medians and mean absolute deviations (MADs) of the colour image and its

first three derivatives. Thirdly, we utilise some complementary features in the

frequency domain, which include the robust saliency features that we derive

from the statistical property of saliency maps and the sharpness measured by60

the FISH characteristic [31]. When a feature vector is constituted by the three

types of features, support vector regression (SVR) is used to map the feature

vector to image quality.

Besides our above-mentioned contributions to feature extraction, we shall

use experiments to demonstrate that the proposed robust features and RSN65

method can achieve remarkable improvement in prediction monotonicity and

accuracy on the CID2013 database of photographic images, as well as on the

popular LIVE and TID2013 databases.

The rest of the paper is organized as follows. Section 2 presents the details

of the proposed camera image quality assessment algorithm. In Section 3, the70

experimental details and results are presented, and the effectiveness of our al-

gorithm is validated. Finally, some conclusions and future work are presented

in Section4.

2. The proposed method

The framework of our new RSN method is shown in Fig.2, mainly including75

two parts: feature extraction and regression-model learning. In [21–23], when

various features are fused, the IQA performance is largely improved, especially

for photographic images affected by multiple unknown distortions. In this paper

we shall show that using our proposed robust NSS features, robust multi-order

derivative features and robust complementary features can offer even much fur-80

ther improvement.
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Figure 2: The framework of the proposed robust statistics-based no-reference IQA method for

photographic images (RSN).

2.1. Robust NSS features

Figure 3: The process of extracting robust NSS features.

In this subsection, motivation and implementation of our robust NSS fea-

tures are provided. There is a well-known hypothesis about NSS [14, 32] that

natural images possess certain statistical properties that can be modified by85

the presence of distortions. The NSS approach has been successfully applied

in NR-IQA through several image domains, such as the wavelet domain in DI-

IVINE [12], the DCT domain in BLIINDS-II [13] and the spatial domain in

BRISQUE [14] and IDEAL [17]. Our robust NSS features are based on the NSS

in the spatial domain because of the pursuit of lower computational complexity90

and better performance. Recently, the characteristics of chrominance compo-

nents have been gradually exploited to complement the features in luminance

components. The IDEAL [17] proposes four statistic properties from colour

representations: hue, saturation, opponent angle and spherical angle. Hence,

we attempt to exploit the statistical properties of luminance components IL95

along with two different chrominance components (IM , IN ) in the LMN colour
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space [33]. Also, in MLV [29], the distribution of maximum local variation

component IMaxL can be parameterised with the generalised Gaussian distri-

bution (GGD), which is easy to extend to minimum local variation component

IMinL. That is, we extract the robust NSS features on multiple components,100

the diagram of which is shown in Fig.3.

Specifically, given an RGB image of size H ×W , we first convert it into the

LMN colour space [33], obtaining a luminance component IL and two chromi-

nance components IM and IN .
IL

IM

IN

 =


0.06 0.63 0.27

0.30 0.04 −0.35

0.34 −0.60 0.17



IR

IG

IB

 . (1)

Then, inspired by the statistical properties of MLV [29] to describe sharpness,105

we propose to augment the feature space by adding two new order-statistics-

based components: the maximum local component (IMaxL) and minimum local

component (IMinL) of the luminance component IL:

IMaxL =


ψ(IL(1, 1)) . . . ψ(IL(1,W ))

...
. . .

...

ψ(IL(H, 1)) . . . ψ(IL(H,W ))

 , (2)

where each entry ψ(IL(x, y)) of pixel I(x, y) is defined as

ψ(IL(x, y)) = max
(i,j)∈N(x,y)

{|I(i, j)− I(x, y)|}, (3)

in which N(x,y) denotes a 3 × 3 neighbourhood of I(x, y). The minimum local110

component IMinL can be similarly obtained.

Then, for each of the five components Ik, we propose the median subtracted

contrast normalised (MDSCN) coefficient Îk as the new robust counterpart of

MSCN:

Îk(x, y) =
Ik(x, y)−medk(x, y)

RMDk(x, y) + C
, (4)

where index k ∈ {L,M,N,MaxL,MinL} denotes a component; C is a small115

constant preventing the denominator from tending to zero; medk(x, y) is the
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local median, a robust order-statistic for data location; and RMDk(x, y) is the

local root median square error, a statistic for data variability:

RMDk(x, y) =

√√√√ 1

|N(x,y)|
∑

(i,j)∈N(x,y)

(Ik(i, j)−medk(x, y))2, (5)

where |N(x,y)| denotes the size of the local image patch 3× 3.

Figure 4: Histograms of the MDSCN and MSCN coefficients for five components of the three

photographic images shown in Fig. 1.

We analyze histograms of the robust MDSCN and non-robust MSCN coef-120

ficients for different components. Three photographic images captured in the

same scene are shown in Fig. 1. Their subjective quality scores (MOS) are 31.3,

47.8 and 87.9 in order, in which the higher the subjective score, the better the

quality. The histograms of the MDSCN and MSCN coefficients for five compo-

nents {ÎL, ÎM , ÎN , ÎMaxL, ÎMinL} of the three photographic images are shown in125

Fig. 4. The first row corresponds to MDSCN coefficients (robust version) and

the second row corresponds to MSCN coefficients (non-robust version). The

blue, red and yellow dotted lines in each histogram correspond to the three

images in Fig. 1, respectively. It can be seen that the histograms of MSCN

coefficients not only contains many outliers, but also may tilt to one side, such130

as the distributions for Lmax and Lmin components. However, these two prob-

lems can be overcome in the robust MDSCN coefficients as illustrated in Fig 4.

7



In addition, the histograms of robust MDSCN coefficients for photographic im-

ages with different quality scores are more recognizable than the corresponding

non-robust version.135

It was shown that the MSCN coefficients of a distorted grey-image can be

effectively characterised by GGDs [14]. We also use GGDs to model the distri-

butions of the MDSCN coefficients. Therefore, we finally use the parameters of

GGDs to summarise the statistical properties of these new coefficients. Let us

take the luminance component as example to illustrate our process of feature140

extraction.

For an MDSCN coefficient ÎL(x, y) = zÎL , its probability density function of

the GGD with zero mean is

f(zÎL ;αÎL , βÎL) =
αÎL

2βÎLΓ( 1
αÎL

)
exp

{
−(
|zÎL |
βÎL

)
αÎL

}
, (6)

where shape parameter αÎL and scale parameter βÎL satisfy βÎL = σÎL

√
Γ(1/αÎL

)

Γ(3/αÎL
) .

Hence, two parameters (αÎL , σ
2
ÎL

) for shape and variance are sufficient to repre-145

sent the GGD of ÎL; they are estimated as with [34] over each image scale.

Besides these two estimated parameters, we also choose three other sample

statistics to make a more comprehensive set of robust NSS features from the

MDSCN coefficients: sÎL , the sample skewness; kÎL , the sample kurtosis; and

eÎL , the entropy. As with [35], they are calculated as150

d(ÎL) =

√
µ(ÎL − µ(ÎL))2, (7)

sÎL =
µ[(ÎL − µ(ÎL))3]

d(ÎL)3
, (8)

kÎL =
µ[(ÎL − µ(ÎL))4]

d(ÎL)4
− 3 (9)

and

eÎL = −
∑
j

pj(ÎL) log2(pj(ÎL)), (10)

where µ(·) is the sample mean and p(·) is the histogram.
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Hence, five sample estimators of (α, σ2, s, k, e) for each of the five MDSCN155

components {ÎL, ÎM , ÎN , ÎMaxL, ÎMinL} are chosen as the robust NSS features.

2.2. Robust multi-order derivative features

Figure 5: Examples of multi-order derivatives. Different rows correspond to photographic

images with different quality scores (31.3, 47.8, 87.9) shown in Fig. 1 and different columns

correspond to different order derivatives (I
(0)
L , I

(1)
L , I

(2)
L , I

(3)
L ).

The multi-order derivatives of luminance components (gray images) are

shown in Fig. 5. Different rows correspond to photographic images with dif-

ferent quality scores (31.3, 47.8, 87.9) shown in Fig. 1 and different columns160

correspond to the luminance component and its first three order derivatives

(I
(1)
L , I

(2)
L , I

(3)
L ). We treat IL as its own zero-order derivative I

(0)
L . According

to [36], the first order derivative I
(1)
L is usually related to the slope and elas-

ticity of image surface, the second order derivative I
(2)
L is used to capture the

curvature, and higher order derivatives can capture detailed discriminative in-165

formation [37]. For photographic images with different quality scores in the

same scene, the characteristics of the same derivative, such as structure, edge,

texture are different. Thus, higher order derivatives can capture the details of

image structure in the spatial domain, and have been successfully applied to
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FR-IQA [7] and NR-IQA [37]. In our proposed method, we use the Prewitt170

filter of size 3× 3 to calculate the derivatives for its simplicity.

It is well known that, when the histogram is skew or heavy-tailed or when

there are outliers, the median and mean absolute deviation (MAD) are more

robust estimators of location and variation than the mean and standard devia-

tion, respectively [25, 38]. Hence we propose to use the medians and MADs of175

the colour image (IL, IM , IN ) and the first three derivatives (I
(1)
L , I

(2)
L , I

(3)
L ) of

the luminance component IL as our robust multi-order derivative features.

Given a grey-image IL (or say I
(0)
L ), the nth order derivative image I

(n)
L is

calculated from the (n− 1)th order one I
(n−1)
L :

I
(n)
L =

√
(I

(n−1)
L ∗ hx)2 + (I

(n−1)
L ∗ hy)2, (11)

where hx and hy are the Prewitt filters along the horizontal and vertical direc-180

tions, respectively.

Then we choose the medians and MADs of the {IL, IM , IN , I(1)
L , I

(2)
L , I

(3)
L }

as the robust multi-order derivative features; MAD is defined as

MAD
(n)
k =

1

|I(n)
k |

∑
(i,j)∈I(n)

k

|I(n)
k (i, j)−med

(n)
k |, (12)

where index k ∈ {L,M,N} denotes a component, index n ∈ {0, 1, 2, 3} denotes

the derivative order, and |I(n)
k | denotes the size of the component I

(n)
k .185

2.3. Robust complementary features

The above-defined robust NSS and derivative features are extracted from

the spatial domain. To make the feature space more complete, we propose to

extract the saliency features and sharpness from the frequency domain as a

complement to the robust spatial features.190

Firstly, the saliency features have been successfully applied in the FR-IQA

algorithm VSI [8]. Considering the assumption that an image’s visual saliency

map has a close relationship with its perceptual quality since both of them de-

pend on how the human visual system perceives an image [39], we also integrate
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the saliency features into our algorithm. Specifically, we first choose SDSP [40],195

a well-performing saliency detection method, to get the saliency map S. Then

we calculate the robust-statistics-based median medS of S as a saliency feature.

In addition, we compute the MDSCN Ŝ of S and model it with the Laplace

distribution with zero mean:

f(zŜ ;βŜ) =
1

2βŜ
exp(−

|zŜ |
βŜ

), (13)

where βŜ is the scale parameter. We choose the moment estimator of βŜ of the200

Ŝ map as another saliency feature:

βŜ =

√
EŜ2 − (EŜ)2

2
, (14)

where EŜ is the first raw moment of Ŝ and EŜ2 the second raw moment.

Secondly, the sharpness of an image is a useful feature for NR-IQA, because a

sharp region is where fine details are resolvable and edges and object boundaries

appear to be of high contrast [41]. We choose the global Fast Image Sharpness205

(FISH) [31] as the sharpness feature in the frequency domain.

2.4. Regression model

As mentioned in the previous sections, we develop three types of features: 25

robust NSS features, 12 robust multi-order derivative features, and three com-

plementary features. Moreover, the past IQA research suggests that adopting210

some multi-scale information can improve the performance [14]; hence we ex-

tract all features over two scales, the original scale and the down-sampled scale

by a factor of 2. Overall, we form a feature vector of size 40× 2.

To map from the feature vector to the subjective quality scores (MOS/DMOS),

we train an SVR model, as commonly adopted in NR-IQA [14, 17, 21].215

3. Experimental results

3.1. Experimental settings

We use the newly released CID2013 [20] database of photographic images

to evaluate our method and compare it with existing state-of-the-art NR-IQA
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algorithms. This database is mainly designed to validate the NR-IQA algorithms220

for multi-degraded images without references. It consists of 474 photographic

images obtained by 79 different types of cameras in 8 different shooting scenes.

Moreover, in order to validate the versatility of our method, experiments on

two popular databases, the LIVE database [19] and the TID2013 database [42],

are also conducted. The LIVE database contains 779 distorted images with225

JPEG2000, JPEG, Gaussian blur, white noise and fast fading, of 29 original

images. The TID2013 database is constructed from 25 reference images and

includes 3000 images with 24 types of distortion at five distortion levels.

Considering the non-linear relationship between the predicted score and the

subjective score, logistic functions are usually applied to convert the predicted230

scores into the same scale as the subjective scores [19, 20, 43]. In this paper, we

adopt the five-parameter logistic fit function used in [20]:

f(x̂) = β1

{
1

2
− 1

1 + exp(β2(x̂− β3))

}
+ β4x̂+ β5, (15)

where x̂ is the predicted score, and β1 to β5 are the function parameters to be

determined by minimising the MSE between f(x̂) and the true subjective score.

In order to evaluate the performance of algorithms, three common evaluation235

criteria are used: Spearman’s rank ordered correlation coefficient (SROCC),

Pearson’s linear correlation coefficient (PLCC) and the root mean square er-

ror (RMSE). Among them, SROCC is to assess prediction monotonicity, while

PLCC and RMSE are to assess prediction accuracy.

3.2. Comparison on the CID2013 database240

We compare our method with some state-of-the-art NR-IQA methods in-

cluding the present best method on the CID2013 database. These methods are:

BRISQUE [14], BLIINDS-II [13], IDEAL [17], RISE [44], the method in [21],

CIQM [45], BQIC [23, 46] and the method in [22]. The experimental setting

with leave-one-out cross validation [47] is commonly used in many NR-IQA245

method[18, 21, 35]. Since the CID2013 database is divided into six sets based

on different image scenes, we adopted six-fold leave-one-out cross validation [21]:
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Table 1: Performance on the CID2013 database. NSRN: the non-robust counterpart of RSN.

PLCC SROCC RMSE

BRISQUE [14] 0.781 0.784 14.140

BLIINDS-II [13] 0.639 0.635 17.409

RISE [44] 0.793 0.769 13.782

Method in [21] 0.799 0.815

Method in [22] 0.818 0.793 12.948

CIQM [45] 0.817 0.805 12.887

BQIC [23] 0.829 0.821 12.680

IDEAL [17] 0.814 0.817 13.302

NRSN 0.834 0.823 12.043

RSN 0.909 0.890 9.341

we divided the image database into six sets based on image scenes, and used

five image sets for training the SVR model and the remaining one for testing.

The procedure repeats six times, each time with a different test set, and the250

mean results of the six-fold evaluation of SROCC, PLCC and RMSE are taken.

The experimental results are listed in Table 1. Our method performs remark-

ably better than other methods in terms of all three measures, PLCC, SROCC

and RMSE, as well as its non-robust counterpart (NRSN). Even compared with

the latest method BQIC [23], our PLCC and SROCC are more than 9% and255

8% better, respectively. This indicates a better correlation of our method with

the human visual perception of the distorted images than other state-of-the-art

NR-IQA methods.

It is necessary to further analyse the effectiveness of each type of robust

features and the different combinations of them. The experimental results are260

listed in Table 2. It shows that the robust NSS features (NSS*), that use the

robust MDSCN to normalise components, are superior to the NSS features that

use the ordinary MSCN. Similarly, the robust multi-order derivative features

(Derivatives*), that extract the medians and MADs as features, achieve bet-
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Table 2: Analysis of each type of features on the CID2013 database. NSS*: robust NSS

features; Derivatives*: robust multi-order derivative features; Complement*: robust comple-

mentary features (saliency and sharpness).

features used PLCC SROCC RMSE

NSS 0.718 0.712 15.402

NSS* 0.875 0.866 10.655

Derivatives 0.829 0.812 12.339

Derivatives* 0.860 0.854 10.947

Complement* 0.822 0.803 12.511

NSS*+Derivatives* 0.885 0.877 10.128

NSS*+Complement* 0.877 0.870 10.454

Derivatives*+Complement* 0.873 0.864 10.753

NRSN 0.834 0.823 12.043

RSN 0.909 0.890 9.341

ter performance than their ordinary counterparts (Derivatives) that use the265

mean and standard variation. Furthermore, the performance of combined fea-

tures (NSS* and Derivatives*) is better than that of separate features (NSS*

or Derivatives*). Similar patterns are with other combined features. In the

end, when all three types of features are used together, we can obtain the best

performance. This indicates that these three types of robust features are comple-270

mentary to some extent and they are superior to their non-robust counterparts.

Moreover, in order to demonstrate the collective added value of the robust

features, we also implement a non-robust version of our RSN, by replacing the

involved robust statistics with their ordinary counterparts. We call this non-

robust version ‘NRSN’. As shown in Table 1 (or Table 2), NRSN performs worse275

than RSN, its robust version.

3.3. Comparison on the LIVE and TID2013 databases

To verify the versatility of our approach, we also compare it with some state-

of-the-art NR-IQA approaches on the popular LIVE and TID2013 databases.
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Table 3: Performance on the LIVE and TID2013 databases.

LIVE TID2013

PLCC SROCC PLCC SROCC

BRISQUE [14] 0.939 0.940 0.800 0.719

BLIINDS-II [13] 0.930 0.931 0.736 0.644

DIIVINE [12] 0.917 0.916 0.641 0.558

IDEAL [17] 0.946 0.941 0.767 0.719

UNIQUE [48] 0.956 0.952 0.868 0.860

NRSN 0.974 0.971 0.896 0.884

RSN 0.975 0.976 0.906 0.906

The approaches chosen include the mainstream BLIINDS-II [13], DIIVINE [12],280

and BRISQUE [14], as well as the recently published IDEAL [17] and UNIQUE [48]

methods. PLCC and SROCC are adopted as evaluation measures, and the ex-

perimental settings remain unchanged.

The experimental results in Table 3 show that the proposed method (RSN)

is the best in terms of both SROCC and PLCC on the LIVE and TID2013285

databases; that is, it is superior to the compared NR-IQA methods and its

non-robust version (NRSN) in prediction monotonicity and accuracy.

In summary, our robust statistics-based RSN method performs strongly

for both the complex mixed-distortion photographic images in the CID2013

database and the simulated-distortion images in the LIVE and TID2013 databases.290

3.4. Computational complexity

We now demonstrate that our method does not expend substantial computa-

tion. We compare the overall computational complexity of our RSN with other

mainstream NR-IQA methods on the CID2013 database, such as DIIVINE [12],

BLIINDS-II [13], BRIQUE [14], IDEAL [17], and Method in [22]. In Table 4,295

we list the time taken (in seconds) to calculate each quality measure on a pho-

tographic image of resolution 1200 1400 on a 2.4Ghz Inter Xeon CPU with

64 GB RAM system running Xubuntu 16.04 OS. We use non-optimized MAT-
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LAB codes for all of these algorithms to ensure a fair comparison. It can be

observed that the computational time of our method is ranked under the middle300

among the compared methods although it is higher than its non-robust version

(NRSN).

Table 4: Complexity analysis. NSRN: the non-robust counterpart of RSN.

Algorithm Time(seconds)

DIIVINE [12] 85.836

BLIINDS-II [13] 400.178

BRIQUE [14] 1.027

IDEAL [17] 5.336

Method in [22] 7.150

NRSN 1.908

RSN 4.485

The computational time of different stages of our algorithm is shown in

Table 5. We can observe that the time consumption of prediction with the SVR

model is almost negligible, and most computational time is consumed in feature305

extraction. The extractions of three robust features take up different proportions

of computational time, of which the extraction of robust NSS feature accounts

for the largest proportion.

Table 5: Percentage of computational time on individual stages. NSS*: robust NSS features;

Derivatives*: robust multi-order derivative features; Complement*: robust complementary

features (saliency and sharpness).

Processing stage Percentage of Delay

NSS* 77.40%

Derivatives* 8.70%

Complement* 13.85%

SVR model 0.05 %
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3.5. Discussion

In this subsection, we discuss in depth why our algorithm (RSN) can be310

significantly superior to other NR-IQA algorithms on the CID2013 database.

Firstly, the non-robust version NRSN with the NSS feature, the derivative

feature and the complementary feature in the frequency domain lays the foun-

dation. The performance of the NRSN algorithm is slightly better than other

algorithms as shown in Table 1.315

Secondly, the strategy based on robust statistics greatly improves the perfor-

mance of non-robust features. Photographic images are impaired with a variety

of unknown distortions, which causes that distributions of photographic im-

ages are scattered and there are many outliers in the distributions. Thus, the

robust statistics are proposed to replace general statistics, which significantly320

improves the non-robust version (NRSN). Specifically, the MDSCN coefficients

are used to replace the MSCN coefficients in the extraction of the NSS feature

and the complementary feature. The median and MAD are used to replace the

mean and variance in the extraction of derivative feature, respectively. The ex-

periment shown in Table 2 has demonstrated that any single robust statistical325

feature is significantly superior to its non-robust statistical feature, as well as

the algorithm (RSN) based on robust statistics is significantly superior to its

corresponding non-robust version (NRSN).

Finally, in many cases, a single feature is not enough to characterize the

quality of photographic images with multiple unknown distortions. Thus, we330

integrate three features based on robust statistics (robust NSS feature, robust

derivative feature and robust complementary feature) in our algorithm. The

effectiveness of fusion strategy is proved good in the above section.

4. Conclusion

In this paper, we proposed a novel NR-IQA method termed RSN for photo-335

graphic images based on robust statistics. Three new types of robust features
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are constructed: 1) robust NSS features on multiple components by normalis-

ing each component to median subtracted contrast normalised (MDSCN) co-

efficients and incorporating the information of skewness, kurtosis and entropy;

2) robust multi-order derivative features by utilising their medians and mean340

absolute derivations (MADs); and 3) the complementary characteristics in the

frequency domain - robust saliency and sharpness. Experimental results demon-

strated that the proposed RSN achieved remarkable improvement in prediction

monotonicity and accuracy on the CID2013 database of photographic images,

and the combination of the three types of features was more effective than any345

other combination.

Our future work is to investigate how to combine deep learning with NR-IQA

for photographic images. CNN has been used in NR-IQA [15], but there remains

no deep-learning algorithm for resolving NR-IQA for photographic images.
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