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Abstract

This work identifies an important, previously unaddressed issue for regres-
sion based on neural networks – learning to accurately approximate problems
where the output is not a function of the input (i.e. where the number of
outputs required varies across input space). Such non-functional regression
problems arise in a number of applications, and can not be adequately han-
dled by existing neural network algorithms. To demonstrate the benefits pos-
sible from directly addressing non-functional regression, this paper proposes
the first neural algorithm to do so – an extension of the Resource Allocating
Network (RAN) which adds additional output neurons to the network struc-
ture during training. This new algorithm, called the Resource Allocating
Network with Varying Output Cardinality (RANVOC), is demonstrated to
be capable of learning to perform non-functional regression, on both artifi-
cially constructed data and also on the real-world task of specifying param-
eter settings for a plasma-spray process. Importantly RANVOC is shown to
outperform not just the original RAN algorithm, but also the best possible
error rates achievable by any functional form of regression.

Keywords: non-functional relationships, regression, Resource Allocating
Network, radial basis functions

1. Introduction1

While neural networks offer a flexible and powerful approach to regression2

(see for example [1, 2, 3]), conventional neural net architectures can not be3

successfully applied to problems where the output is not a function of the4

input. However the ability to learn mappings from input to output variable(s)5
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which are non-functional in nature may be required in some applications.6

As a motivating example, consider the work of Choudhury et al. [4]. Data7

gathered from experimental evaluation of a plasma spray process was used8

to train a multi-layer network to predict in-flight particle characteristics of9

the spray given the values of the power and injection parameters of the10

device. The mapping from device parameters to in-flight characteristics is11

functional in nature – given particular parameter settings, a specific set of12

spray characteristics will be observed (subject to a certain amount of noise).13

However the reverse mapping is more useful – the user would like to specify14

the desired spray characteristics and be informed which device settings are15

required. This mapping may not be in the form of a function, as one set16

of spray characteristics might in fact be attainable using more than one set17

of parameter settings. Furthermore these different parameter settings may18

result in variations in other characteristics of interest to the user but not19

modelled by the regression system, such as power usage or paint consumption.20

So in practice a regression system should ideally list all suitable sets of values21

for the device parameters, or at least a representative sample of these settings,22

to allow the user to select the configuration which is most appropriate for the23

task at hand. In addition, certain combinations of spray characteristics may24

not be achievable under any device settings – it would be desirable for the25

system to be able to indicate the absence of any valid output when presented26

with these characteristics as input.27

Unfortunately, while standard neural networks can carry out function28

approximation, they perform inadequately when the regression task requires29

a non-functional mapping from input to output. For example, a neural net30

can learn to map an input x to an output y = x2, as for any input value31

there is a single output value. However the network can not adequately learn32

the inverse relationship, where given y as an input it returns x =
√
y as in33

this case for any value of y > 0 there will be two possible values of x. A34

conventional network trained on a data-set derived from this function, will35

tend to produce the average of the outputs for the training examples which36

share the same input. For example, if trained on two cases, one which maps37

the input y = 4 to x = +2 and the other which maps y = 4 to x = −2, the38

error-reduction process in the training algorithm will learn to output x = 0,39

which is clearly incorrect.40

This problem could be avoided by creating the network with two output41

nodes, and modifying the training data by merging the two cases into a single42

case with -2 and 2 as the outputs for the input 4. However more generally43
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Figure 1: The graph of y = x4 − 2x2

the number of outputs may depend on the input. For example consider44

the function in Figure 1. Depending on the value of y there may be zero,45

two, three or four values for x. Without the ability to explicitly represent a46

varying number of outputs, no network can adequately represent this inverse47

mapping from y to x. For real-world data, the number of outputs required48

at any point in input space may not be known in advance, particularly if the49

network is learning online, as with streaming data or applications such as50

reinforcement learning. In addition, there may be regions of input space for51

which there are no valid output values. Therefore, the ability to adapt the52

number of outputs dynamically is a requirement for algorithms to operate53

correctly in this context.54

To our knowledge the issue of learning non-functional mappings with55

varying cardinality has not previously been addressed in the neural net-56

work literature. Section 2 of this paper provides a formal definition of the57

non-functional regression problem. It also presents and discusses the first58

algorithm designed specifically for non-functional neural regression, the Re-59

source Allocating Network with Variable Output Cardinality (RANVOC).60

RANVOC is a variant of the Resource Allocating Network (RAN) algorithm61

[5], designed to demonstrate how an existing neural regression algorithm62

can be extended to support non-functional regression. Section 3 provides an63

empirical comparison of the RAN and RANVOC approaches on a suite of ar-64

tificial benchmark datasets designed to provide insight into the performance65

of each algorithm under different dataset characteristics. It also compares66

RANVOC’s performance against the theoretical performance limits for any67

functional regression approach. Section 4 then evaluates the performance of68

RANVOC on the real-world plasma-spray process dataset. Section 5 provides69

a summary of the paper along with suggestions for future work.70
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2. Addressing Non-Functional Regression71

2.1. Problem definition72

Neural approaches to regression generally assume that the task is to learn73

an approximate mapping from an input vector I to an output vector O:74

I 7→ O. This inherently assumes that the output is a function of the in-75

put; O = f(I). This paper addresses the more general regression task of76

learning a mapping from an input I to a (possibly empty) set of outputs77

S = {O1, .., On}. It is assumed that the dimensionality of both I and O are78

fixed (that is, |Oi| = |Oj| for all i and j). However the cardinality of set S79

may vary depending on the value of I – that is |S| = f(I).80

2.2. Designing a neural algorithm for non-functional regression81

This section presents the first neural learning algorithm designed specif-82

ically for non-functional regression. This algorithm was developed by ex-83

tending an existing neural regression algorithm to support non-functional84

regression. This approach has two benefits. First it allows for an empirical85

comparison of the original and extended algorithm on datasets involving ei-86

ther functional or non-functional relationships between inputs and outputs.87

By using similar underlying algorithms, any differences observed in perfor-88

mance can clearly be attributed to the modifications made in order to support89

non-functional regression. The second advantage of this approach is that the90

methods developed for supporting varying output cardinality may be suitable91

for use in adapting other neural regression algorithms in the future.92

The novel neural network algorithm developed in this work was required93

to be able to:94

• produce a varying number of outputs depending on the value of the95

input variables (including the capacity for reporting no output where96

appropriate)97

• learn from the training data the maximum number of outputs required98

in any region in input space99

• perform in a fashion similar to a conventional network if the data pre-100

sented to it is in fact functional101

• be suited to online learning (one intended area of application is multi-102

objective reinforcement learning [6, 7], where extending methods such103

as the Pareto set algorithm [8] to more complex problems will require104
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an online regression algorithm capable of mapping inputs to a varying105

number of Pareto-optimal output vectors).106

As the maximum number of outputs can not be predetermined due to107

the online learning context, a constructive algorithm is favoured over a fixed108

network topology [9]. As the number of outputs required varies over input109

space, the network must also determine which output nodes are relevant for110

the current input. We anticipate that the relevance of an output node must111

be able to vary within a constrained range of input space (consider the rapid112

change required from four to two active outputs as y changes from negative113

to positive in Figure 1). Therefore a constructive network based on locally114

responsive units such as radial-basis functions (RBFs) is likely to be more115

suitable than a network based on more globally responsive units.116

The Resource Allocating Network (RAN) proposed by Platt [5] is one of117

the most widely studied locally-responsive constructive algorithms for online118

learning. While its efficiency has been surpassed by more recent algorithms119

such as Huang et al. [10, 11], Vuković and Miljković [12], it is a relatively120

straightforward algorithm, making it well-suited for this initial demonstration121

of the techniques required to support variations in output cardinality. The122

RAN algorithm and its associated notation are presented in Algorithm 1123

and Table 11. RAN fits the training data using structural changes to the124

network (adding new RBF units to its hidden layer) to address large errors,125

and gradient descent over the numeric parameters of the current structure126

to address small errors.127

2.3. The Resource Allocating Network with Varying Output Cardinality al-128

gorithm (RANVOC)129

Extending the RAN algorithm to handle non-functional mappings with130

varying output cardinality requires two major changes. The first alteration is131

that during training the algorithm must have a means for deciding when it is132

appropriate to add a new output node to the network, as well as a mechanism133

for actually adding such a node. The second major change is that because134

the cardinality of the output set may vary, the algorithm must be able to135

determine for any given input which output nodes are actually relevant for136

that input – only the results of these nodes should be included in the output137

1Some modifications have been made to the notation and presentation of [5] for con-
sistency and clarity of presentation of the RANVOC algorithm later in this paper.
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Algorithm 1 Platt’s original Resource Allocating Network (RAN) training
algorithm

1: δ = δmax

2: γ = T0 (from the first input-output pair)
3: for each presentation of an input-output pair (I, T ) do

4: evaluate hidden nodes Hj = e‖cj−I‖
2/wj

2

5: evaluate output of network O =
∑
j

hjHj(I) + γ

6: compute error E = T −O
7: find distance to nearest center d = minj ‖ cj − I ‖
8: if ‖ E ‖≥ ε and d ≥ δ then
9: allocate new unit cnew = I, hnew = E

10: if this is the first new unit to be allocated then
11: width of new unit = κδ
12: else
13: width of new unit = κd
14: end if
15: else
16: perform gradient descent on γ, hj, cjk
17: end if
18: if δ > δmin then
19: δ = δ ∗ exp(−1/τ)
20: end if
21: end for

6



Table 1: Notation and parameters for the Resource Allocating Network (RAN)

Notation
cj centre of hidden unit j
wj width of hidden unit j
Hj(I) the output of hidden unit j for input pattern I
O the output of the RAN for input pattern I
hj weight from hidden unit j to output unit
γ offset for output unit
Parameters
α learning rate for gradient descent
ε threshold error level for adding a new hidden unit
δmax maximum width of hidden units
δmin minimum width of hidden units
τ decay applied to the width of new hidden units
κ constant term used in calculating width

set. Figure 2 illustrates the desired behaviour. The example training data138

has regions of input space where two outputs exist, so RANVOC must add139

at least one extra output node. Each output node has input regions where140

it is relevant (indicated by black points). Outside of these regions the node’s141

output can still be evaluated, but will not be included in the output set S.2142

These two aspects of the algorithm interact during the training phase, and143

so it may be clearest to first consider how relevance testing is applied on the144

final network after training, as shown in Algorithm 2. For each output node,145

the activation of all hidden units connected to that output node is summed,146

weighted by the rj,k relevance weights, and the output node is regarded as147

relevant and included in the output set S if this weighted sum exceeds the148

threshold ρ.149

The same approach is also used to distinguish between relevant and irrel-150

evant output nodes during the training phase of RANVOC. This necessitates151

one small further change from the original RAN algorithm. RAN initialises152

the network from a first input-output pair by simply setting the offset weights153

2Note that outside of its region of relevance, an output unit will receive little activa-
tion from any hidden nodes, and therefore its output will tend towards a constant level
determined by the value of its offset weights γ as shown in the lower half of Figure 2.
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Figure 2: An example dataset requiring non-functional regression (top), and an idealised
RANVOC response (bottom). The horizontal axis is the input value, and the vertical axis
is the output value. In the RANVOC response dark points indicate the output value of an
output unit when it is relevant to the current input, and light nodes indicate the output
value when the unit is not relevant.

Algorithm 2 RANVOC run-time algorithm
1: input: input pattern I
2: output set S = ∅
3: for each output node k do
4: evaluate hidden nodes Hj = e‖cj−I‖

2/wj
2

5: evaluate output of unit Ok =
∑
j

aj,khj,kHj(I) + γk

6: Rk =
∑
j

rj,kHj(I)

7: if Rk > ρ then
8: S = S ∪ {Ok}
9: end if

10: end for
11: output: S
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Table 2: Notation and parameters for the Resource Allocating Network with Varying
Output Cardinality (RANVOC)

Notation
J number of hidden units
K number of output units
cj centre of hidden unit j
wj width of hidden unit j
Hj the output of hidden unit j
Ok the output of output unit k
Rk the relevance value of output unit k
hj,k value weight from hidden unit j to output unit k
aj,k binary feature indicating if hidden unit j is connected to out-

put unit k
rj,k relevance weight from hidden unit j to output unit k
γk offset for output unit k
Parameters
α learning rate for gradient descent
β decay rate for relevance weights
εlow threshold error level for adding a new hidden unit
εhigh threshold error level for adding a new output unit
δmax maximum width of hidden units
δmin minimum width of hidden units
τ decay applied to the width of new hidden units
κ constant term used in calculating width of hidden units
ρ the threshold summed relevance-weighted activation of hid-

den units required for an output unit to be active for the
current input
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Algorithm 3 RANVOC training algorithm
1: δ = δmax

2: γ0 = T0 (from the first input-output pair)
3: c0 = I0;w0 = δ; a0,0 = 1; r0,0 = 1;h0,0 = 0
4: for each presentation of an input-output pair (I, T ) do
5: active output set S = Algorithm 2(I)
6: handled = false
7: if S 6= ∅ then
8: k∗ = argmink ‖ (T −Ok)] ‖ for k ∈ S
9: E = T −Ok∗

10: for each k ∈ S where k 6= k∗ do
11: jk = argminj ‖ cj − I] ‖ for aj,k = 1
12: decrement rjk,k by β
13: end for
14: if ‖ E ‖< εhigh then
15: jk∗ = argminj ‖ cj − I] ‖ for aj,k∗ = 1
16: d =‖ cjk∗ − I ‖
17: if ‖ E ‖< εlow or d < δ then
18: rjk∗ ,k∗ = 1
19: perform gradient descent on γk∗ , hj,k∗ , cj,k∗ for all j where aj,k∗ = 1
20: else
21: allocate new hidden unit cnew = I, wnew = κd
22: hnew,k∗ = E, anew,k∗ = 1, rnew,k∗ = 1
23: end if
24: handled = true
25: end if
26: end if
27: if ¬handled and there is any output node k 6∈ S then
28: k∗ = argmink ‖ (T −Ok)] ‖ for k 6∈ S
29: E = T −Ok∗

30: jk∗ = argminj ‖ cj − I] ‖ for aj,k∗ = 1
31: d =‖ cjk∗ − I ‖
32: if ‖ E ‖< εlow or d < δ then
33: rjk∗ ,k∗ = 1
34: perform gradient descent on γk∗ , hj,k∗ , cj,k∗ for all j where aj,k∗ = 1
35: else
36: allocate new hidden unit cnew = I, wnew = κd
37: hnew,k∗ = E, anew,k∗ = 1, rnew,k∗ = 1
38: end if
39: handled = true
40: end if
41: if ¬handled then
42: allocate new hidden unit cnew = I, wnew = κδ
43: allocate new output unit k∗, γk∗ = T
44: hnew,k∗ = 0, anew,k∗ = 1, rnew,k∗ = 1
45: end if
46: if δ > δmin then
47: δ = δ ∗ exp(−1/τ)
48: end if
49: end for
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of the output node without adding a hidden unit (line 3 of Algorithm 1). In154

RANVOC this would result in the output node producing the correct output155

value for that training point, but not being regarded as relevant. Therefore156

an initial hidden unit is added to the network to ensure the first output node157

is regarded as relevant if presented with this same input (lines 2 and 3 of158

Algorithm 3).159

The approach used for deciding whether to add a new output unit uses an160

error-thresholding mechanism similar to that which RAN uses to determine161

whether to add a new hidden unit. This is carried out in conjunction with162

relevance testing in order to minimise the number of output units added to163

the network. First the algorithm identifies which output units are relevant164

for the current input, and finds the relevant unit with minimum error with165

respect to the current target (lines 5-9). If this unit’s error is below εhigh,166

then it is trained in a fashion akin to that of RAN (lines 14-25). If the error167

exceeds this threshold then this process is repeated using the output units168

which are not regarded as relevant (lines 27-39). Only if no existing output169

units satisfy the εhigh threshold, does the algorithm add a new output node170

(lines 41-45).171

As well as carrying out the operations required to train the network’s172

output values, Algorithm 3 must also modify the the rj,k weights to ensure173

the relevance-testing mechanism works. The approach used is to initialise174

rj,k to 1 when hidden unit j is first connected to output unit k (lines 3, 22,175

37 and 44). This ensures that Rk > ρ when it next encounters the same,176

or very similar, input. However because of the online nature of the training177

process it is possible that an output which is initially seen as relevant for178

an input I may later become irrelevant – if the rj,k values remain fixed then179

output k will always be included in S for this input in the future, harming the180

network’s performance by producing a redundant or inappropriate output.181

Therefore whenever an output is deemed relevant for the current input, but182

not selected as the closest match to the current target, the rj,k weight for the183

most highly activated connected hidden node is decremented (lines 10-13).184

Over time if an output node is repeatedly in S but not the closest match185

to the target, its relevance weight will decay until its Rk value no longer186

exceeds ρ, meaning it will no longer be regarded as relevant. Whenever a187

unit is identified as the best match for the current target, the rj,k weight is188

reset to 1, to ensure that the algorithm does not incorrectly ignore genuinely189

relevant outputs (lines 18 and 33).190

Two important features of the RANVOC training algorithm are worth191
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noting. First, if the dataset characteristics are such that the εhigh threshold192

is not exceeded then the algorithm is identical to the original RAN algo-193

rithm, other than the variation in initial structure noted earlier. Therefore194

RANVOC should be applicable in a case where it is not known in advance195

whether the data’s input-output mapping is functional or not. Second, the196

nature of the constructive process ensures that each hidden unit is connected197

to only a single output node which ensures that the training of one output198

node can not interfere with the prior learning of the other outputs3.199

3. Evaluation on artificial datasets200

As the problem of learning non-functional relationships has not been pre-201

viously explored in the literature, there are no existing benchmark datasets202

which can be used to evaluate the RANVOC algorithm. In addition the stan-203

dard metrics for evaluating regression task performance such as root mean204

squared error are not directly applicable to data with a varying cardinality205

of outputs. Therefore this section of the paper will describe the design of the206

benchmark datasets and experimental methods which have been utilised in207

this study.208

3.1. Benchmark datasets209

Six datasets have been developed for this evaluation, differing in the di-210

mensionality of their input and output spaces, and in the extent to which211

the cardinality of the output varies across the input space. All datasets have212

inputs and outputs scaled to approximately the same range (0..1) to simplify213

selection of distance-based parameters, and to facilitate comparison of error214

values between the different datasets. Each dataset is defined in terms of one215

or more underlying ’generator’ functions which produce (I, O) training pairs.216

Some datasets have only a single generator (used to assess RANVOC’s ability217

to approximate functional relationships), while others have multiple genera-218

tors, which are active over different ranges of input space and map to different219

output ranges. Each dataset was generated by sampling input-output pairs220

3During development of the RANVOC algorithm we experimented with a variant which
supported sharing of hidden units between multiple output nodes. While this produced a
saving in storage space for hidden units, it hampered the accuracy of learning as performing
gradient descent on the centres of hidden units connected to one output node effected the
performance of any other output nodes sharing some of those hidden units.
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from each generator. Where an input sampled in this manner also lay within221

the bounds of another generator(s), the output for that generator was also222

evaluated and included in the data set. That is, each instance within the223

dataset consists of an input vector I, along with a set T = {O1, ..., On} of224

one or more target output vectors, where O1 is the output vector produced225

by the same generator from which I was sampled, and was used as the tar-226

get output during training. The additional output vectors O2, ..., On were227

not used during training, but were used for evaluation purposes as detailed228

in Section 3.2. For each dataset 100 additional input points were randomly229

sampled which lay outside of the range of all generators – these will be re-230

ferred to as ’null points’ and are also used during evaluation to assess the231

ability of the network to correctly indicate that no valid output exists when232

presented with one of these points as input.233

The choice of the number of generators and the degree to which their234

input and output ranges overlap impacts on the extent to which each dataset235

can be accurately approximated by functional regression. To quantify this,236

we propose the non-functional index metric (NFI). Consider a dataset D237

consisting of n data-instances d = (I, T = {O1, ..., On}). The NFI of each238

individual data-instance can be calculated as the maximum distance between239

any pair of output vectors within that instance’s set T of output vectors, as240

shown in Equation 1. For data which is strictly functional, there will be241

only a single vector in T and so NFI(d) will equal zero. The NFI for the242

complete dataset D can be calculated as the mean NFI of the individual243

data-instances, as in Equation 2.244

NFI(d) = max
i,j:1..n

{‖ Oi −Oj ‖} (1)

NFI(D) =

∑n
k=1NFI(dk)

n
(2)

The details of the datasets, including their NFI values, are summarised245

in Table 3. The dataset files used in this study are available for download246

from researchgate.com/url-anonymised-for-review-purposes.247

The first two datasets, Quartic-F and Quartic-NF, are derived from the248

quartic equation in Figure 1. Quartic-F is based on the mapping x 7→ y249

and is defined by a single generator, so all non-null data points have a fixed250

output cardinality of 1. Quartic-NF is based on the mapping y 7→ x and so251

its non-null data points vary in cardinality from 2 to 4.252
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Table 3: Details of the datasets used in this study

Name
Input

dimensions
Output

dimensions
Output

cardinality
Instances NFI

Quartic-F 1 1 1 300 0
Quartic-NF 1 1 2-4 300 0.86
Circles 1 1 2-4 300 1.45
Ellipsoid1D-F 1 1 1 300 0
Ellipsoid1D-NF 1 1 1-3 300 0.38
Ellipsoid2D-NF 2 2 1-5 1000 0.40

The dataset Circles is defined by generators representing two concentric253

circles - the x coordinate of each point on a circle’s perimeter is used as an254

input and the two corresponding y points on the circle as the output. This is255

an example of a dataset which can not be handled via a functional regression256

method, as x 6= f(y) and y 6= f(x).257

The remaining datasets were all based on generators defined by filled el-258

lipsoids embedded in different dimensionalities of input space. Each ellipsoid259

maps to an output vector which is defined as a randomly generated combina-260

tion of linear and quadratic functions of the input variables. Ellipsoid1D-F261

and Ellipsoid1D-NF uses 1-dimensional input and output space which facil-262

itates visualisation of the performance of the networks when trained on this263

data. In Ellipsoid1D-F the generators do not overlap in input space, mean-264

ing the output is a piecewise non-linear function of the input, with some265

gaps. For Ellipsoid1D-NF the generators do overlap so the outputs vary in266

cardinality between 1 and 3. Ellipsoid2D-NF extends this approach to two-267

dimensional input and output vectors to demonstrate that RANVOC is not268

restricted to scalar inputs and outputs.269

3.2. Experimental methodology and evaluation metrics270

Both the RAN and RANVOC algorithms were applied to each data-set271

using 10-fold crossfold validation. Training was carried out for 100 epochs.272

The networks were trained using single input-output pairs sampled from the273

set of active generators. That is to say, the network was never shown more274

than one output for a specific input instance – we believe this to be an275

appropriate replication of how these networks would be trained on actual,276

non-simulated data. After training was completed, the network’s perfor-277

mance was evaluated on each data input in both the training and test folds.278
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The set of outputs produced by the network (possibly empty) was compared279

against the complete set of output targets in the dataset for that input. In280

order to allow for potential mismatches between the expected and actual281

number of outputs, the error metric described in Algorithm 4 was used. By282

measuring the distance between each target and the closest matching out-283

put, and vice-versa, an algorithm is penalised should it produce either too284

few or too many outputs, or if it produces multiple outputs closely matching285

one target but none matching another target. In the case where there is one286

target and one output produced, this measure is equivalent to the root-mean287

squared error commonly used in evaluating conventional neural systems. To288

account for situations in which no outputs were produced, the error for each289

target was set to 1 – as the datasets’ targets varied in the range 0..1 this290

approximated the largest error which could have been measured had an out-291

put been produced. This metric will be referred to as distance error in the292

Results section.293

Algorithm 4 An error metric for comparing sets of target and output values

1: input: set of targets T , set of network outputs S
2: for each target t ∈ T do
3: if S is empty then
4: e = e+ 1
5: else
6: e = e+ min(‖ t− s ‖) over all s ∈ S
7: end if
8: end for
9: for each target s ∈ S do

10: e = e+ min(‖ t− s ‖) over all t ∈ T
11: end for
12: output: e/(‖ T ‖ + ‖ S ‖)

As an additional error metric, the variation in cardinality between the294

target outputs and the actual outputs produced was measured for each in-295

stance shown to the network. The mean of the absolute error in cardinality296

was measured and reported separately for the training folds, the test folds,297

and also for the null folds (the data points sampled from regions of input298

space where no corresponding output values existed). This metric will be299

referred to as cardinality error in the Results section.300

For each dataset 20 independent runs of each algorithm were performed,301
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and results were averaged across all folds and all runs. Suitable parame-302

ter settings for each algorithm were determined via a small number of test303

runs, and as far as possible were kept consistent across all datasets. Table 4304

summarises these parameter settings.305

In addition to comparing the performance of RANVOC to the functional306

regression performed by RAN, it is also possible to establish bounds on the307

best performance achievable by any functional regression algorithm. Con-308

sider a hypothetical optimal functional regression system which for any data309

instance produces a single output s which minimises the distance error met-310

ric in Algorithm 4. Clearly for functional datasets where T contains only311

a single target, s will simply equal that target, giving an error of 0. For312

non-functional datasets, the optimal value of s can be found via a weighted313

average of the targets, as described in Algorithm 5. Therefore for any given314

dataset, the lower bound on the distance error for any functional regression315

system can be established by applying Algorithm 5 to each instance in the316

data-set, calculating the resulting distance error, and then averaging those317

errors over all instances. This process was carried out for all of the benchmark318

datasets, and the results are reported along with the experimental results in319

the next section.320

Algorithm 5 Finding the optimal functional regression output for a given
set of targets

1: input: set of targets T = t1, .., tn
2: emin =∞
3: sum =

∑n
j=1 tj

4: for each target ti ∈ T do
5: stemp = sum+ti

n+1

6: e = distance error of stemp using Algorithm 4
7: if e < emin then
8: emin = e
9: s = stemp

10: end if
11: end for
12: output: s
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Table 4: Algorithm parameters for each dataset.

Dataset RAN RANVOC

All data sets
α = 0.05
κ = 0.87

epsilon = 0.02

α = 0.05
κ = 0.87

epsilonlow = 0.02
epsilonhigh = 0.3

ρ = 0.8
β = 0.01

Quartic-F
δmax = 0.2
δmin = 0.01

δmax = 0.05
δmin = 0.01

Quartic-NF
δmax = 0.2
δmin = 0.05

δmax = 0.4
δmin = 0.05

Circles
δmax = 0.4
δmin = 0.2

δmax = 0.2
δmin = 0.02

Ellipsoid1D-F
δmax = 0.05
δmin = 0.01

δmax = 0.1
δmin = 0.01

Ellipsoid1D-NF
δmax = 0.02
δmin = 0.01

δmax = 0.1
δmin = 0.02

Ellipsoid2D-NF
δmax = 0.1
δmin = 0.05

δmax = 0.1
δmin = 0.02

3.3. Results and discussion321

Tables 5 and 6 list the mean performance of each algorithm over 20322

crossfold-validated trials on each dataset, for the distance and cardinality323

error metrics respectively. Looking first at the two datasets based on func-324

tional relationships (Quartic-F and Ellipsoid1D-F) it can be seen that RAN325

fits these datasets extremely accurately, while RANVOC produces a less ac-326

curate mapping from input to output. This is to be expected as RANVOC’s327

capacity for producing additional outputs can only harm its performance on328

problems such as these with fixed output cardinality. The results demon-329

strate that if a dataset is known to be functional in nature, then the best330

option is to use an algorithm designed for such data. Nevertheless RANVOC331

can still perform reasonably if applied to such data.332

The results on the remaining, non-functional datasets clearly illustrate333

the problems with applying a standard regression approach such as RAN to334

this type of data. From Figure 3 it can be seen that the error produced by335

the RAN algorithm increases rapidly as the degree of non-functionality of the336
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Table 5: Mean results of each algorithm on the distance error metric for each dataset over
20 crossfold validated trials.The differences in performance between RAN and RANVOC
on each error metric on each dataset have been confirmed as significant at p ≤ 0.01
using the Wilcoxon Signed Rank Test. Results for the hypothetical Optimal Functional
Regression system (OFR) are also shown for comparison

Dataset Fold RAN RANVOC OFR
Distance Distance Distance

Error Error Error
Training 0.00007 0.0012 -

Quartic-F Test 0.00014 0.0016 0
Training 0.1091 0.0013 -

Quartic-NF Test 0.1087 0.0014 0.1015
Training 0.3724 0.0109 -

Circles Test 0.3730 0.0113 0.3545
Training 0.00004 0.0016 -

Ellipsoid Test 0.00006 0.0012 0
Training 0.0418 0.0107 -

Ellipsoid1D-NF Test 0.0420 0.0108 0.0364
Training 0.0525 0.0145 -

Ellipsoid2D-NF Test 0.0539 0.0154 0.0426
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Figure 3: The influence of the NFI of the dataset on the mean test-fold distance error of the
RAN and RANVOC algorithms, as well as the hypothetical Optimal Function Regression
(OFR).
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Table 6: Mean results of each algorithm on the cardinality error metric for each dataset
over 20 crossfold validated trials. RAN and the Optimal Functional Regression system have
the same cardinality error results, as will any other functional regression, as they produce a
single output for each instance. The differences in performance between RANVOC and the
functional regression algorithms on each error metric on each dataset have been confirmed
as significant at p ≤ 0.01 using the Wilcoxon Signed Rank Test.

Dataset Fold RAN/OFR RANVOC
Cardinality Cardinality

Error Error
Training 0 0.1294

Quartic-F Test 0 0.1360
Null 1 0.2067
Training 2.907 0.1902

Quartic-NF Test 2.907 0.1995
Null 1 2.58
Training 2.06 0.4808

Circles Test 2.06 0.5052
Null 1 1.09
Training 0 0.1411

Ellipsoid1D-F Test 0 0.1513
Null 1 0.7987
Training 0.958 0.3050

Ellipsoid1D-NF Test 0.958 0.3036
Null points 1 0.5858
Training 1.17 0.4476

Ellipsoid2D-NF Test 1.17 0.4497
Null points 1 0.3218
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dataset increases, whereas RANVOC’s performance is much less influenced337

by the NFI of the dataset. Figures 4 and 5 show that when presented with338

data with multiple outputs, RAN tends to produce an approximation which339

bears little resemblance to the original data. RANVOC substantially outper-340

forms RAN in terms of both the distance and cardinality error metrics over341

the training and test folds. In Figures 4 and 5 it can be seen that RANVOC342

generally fits the datasets accurately, but that some errors occur at the edge343

of the regions of relevance for each output unit, particularly when these units344

have similar output values, suggesting that further work is required to refine345

the algorithm for training of the relevance weights.346

Importantly the results obtained by RANVOC on the non-functional347

datasets are superior not just to those achieved by RAN, but to the best348

possible results obtainable by any form of functional regression, as shown in349

the final column of Table 5 and in Figure 3. This clearly demonstrates the350

benefits of using a system designed specifically for non-functional regression351

when the dataset is known to be non-functional.352

During execution of these experiments it was observed that RANVOC353

was considerably more sensitive to the setting of the δmin and δmax param-354

eters which control the width of the hidden unit’s activation functions. In355

particular RAN’s performance was largely indifferent to the value of δmax,356

whereas this parameter had a considerable impact on RANVOC. Specifically357

the setting of the δ parameters impacted directly on the cardinality of the358

output set. Overly large values of δmax resulted in RANVOC producing more359

outputs than required in many regions of input space, whereas small values of360

δmin resulted in the creation of units which were relevant only to small regions361

of input space – in some cases this resulted in no outputs being produced for362

some instances in the test fold.363

4. Application to plasma spray processes364

The previous set of experiments evaluated and analysed the behaviour of365

the RAN and RANVOC algorithms on artificially generated datasets. This366

section examines the application of these methods to a real-world dataset, to367

demonstrate the potential significance of non-functional regression in prac-368

tice. Specifically we examine the task of learning a mapping from the desired369

output characteristics of an atmospheric plasma spray device to the input370

parameters required to produce those output characteristics. This is the in-371

verse of the mapping previously considered by [4, 13], and this work is based372
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Figure 4: A visualization of the Quartic-NF dataset (top), the output of a randomly
selected run of RAN (middle), and of RANVOC (bottom). The horizontal axis is the
input value, and the vertical axis is the output value.
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Figure 5: A visualization of the Circles dataset (top), the output of a randomly selected
run of RAN (middle), and of RANVOC (bottom). The horizontal axis is the input value,
and the vertical axis is the output value.
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on the datasets used in those studies, which were originally created by [14].373

4.1. Data generation and pre-processing374

This data was generated by monitoring over an extended period of time375

the output particle characteristics produced by a plasma spray device using376

particular input settings. The output characteristics were averaged over time377

to create a profile of the spray produced using each particular set of input378

parameters. This process was repeated for 41 different sets of input param-379

eters. Therefore the complete dataset consists of 41 instances where each380

instance is defined in terms of a vector P of seven input parameters (cur-381

rent, argon plasma gas flow rate, hydrogen plasma gas flow rate, combined382

flow rate, hydrogen to argon ratio, argon carrier gas flow rate and injector383

stand-off distance), and a vector C of three output characteristics (particle384

speed, temperature and diameter). Each attribute was normalised across the385

complete dataset to the range 0..1.386

With just 41 instances this dataset is sparse in nature. [15] note that387

sparsity of data is often an issue for data derived from monitoring of an388

industrial process under varying conditions, as production of more compre-389

hensive data may be prohibitively expensive. Their results also indicate that390

neural networks based on radial basis functions may perform poorly when391

trained on sparse data. To address this issue, the original plasma spray392

dataset was augmented by generating additional data instances via the ad-393

dition of random noise to each of the genuine data-points. This was carried394

out post-normalization. Uniformly distributed noise in the range ±0.02 was395

added to each element of both the P and C vectors. This was carried out 10396

times for each of the original data instances, resulting in an expanded dataset397

containing 410 instances, which is suitable for training a neural network to398

learn the mapping C 7→ P .399

As with the artificial data experiments, the evaluation of the network’s400

performance post-training is complicated by the non-functional nature of this401

mapping. The evaluation metric defined in Algorithm 4 requires that a set402

of targets T be available for each evaluation instance. In the case of artificial403

data this could be created as the true identity of the generators producing the404

data was known. For real-world data this is not the case, and so to construct405

a ground-truth for use with this evaluation metric, the original plasma spray406

data instances were clustered on the basis of their C vectors. If two instances407

had C vectors within 0.1 units of each other, they were merged into a cluster,408

and it was assumed that when presented with a set of particle characteristics409
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Figure 6: An illustration of the clustering process used to generate target sets T for
evaluation of regression performance – note that for simplicity C and P are shown as
scalar values, but the process generalises to vectors. For input C1 the target set T = {P1}
while for inputs C2 and C3 which lie within 0.1 of each other, T = {P2, P3}.

within that range, the desired behaviour for the network would be to produce410

the P vector for each of the instances within that cluster. This process is411

illustrated in Figure 6.412

As well as providing a set of target vectors T for each instance in the data-413

set, this clustering process also provides insight into the underlying nature414

of the data. The clusters formed via this process contained between one415

and seven instances. It was observed that the data exhibited mixed levels of416

non-functionality. Almost 25% of clusters contained only a single instance.417

However other clusters contained multiple instances, and in some cases these418

had widely differing spray settings, indicating a non-functional relationship419

between C and P , which would be expected to pose problems for the RAN420

approach to regression. The NFI of the plasma-spray dataset is 0.35, which421

is comparable to that of the Ellipsoid1D-NF and Ellipsoid2D-NF benchmark422

datasets.423

4.2. Experiments, results and discussion424

RAN and RANVOC networks were trained on the expanded plasma spray425

data-set of 410 instances, using 10-fold cross-validation and 20 independently426

seeded trials of 100 epochs each. The training parameters were α = 0.05,427

δmax = 0.3, δmin = 0.15, κ = 0.87, ρ = 0.8, εlow = 0.02, and εhigh = 0.2.428
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Table 7: Mean results for RAN and RANVOC over 20 cross-validated trials on the atmo-
spheric plasma spray dataset.The results for the hypothetical Optimal Functional Regres-
sion (OFR) system are also shown.

Metric RAN RANVOC OFR
Training fold distance error 0.0479 0.02789 0.0329
Training fold cardinality error 2.44 0.94 2.44
Test fold distance error 0.0488 0.0284 0.0329
Test fold cardinality error 2.44 0.93 2.44

Table 7 summarises the results observed on the plasma spray application.429

Overall RANVOC produces an improvement in the distance error of around430

40% over RAN, on both the training and test folds. In addition RANVOC431

outperforms RAN by a factor of 2.5 on the cardinality error. A Wilcoxon432

Sign Ranked Test confirmed that the observed differences in performance433

were significant at p ≤ 0.01. RAN’s inability to produce more than a sin-434

gle P vector for a given C vector is a major limitation when the data set435

contains instances with up to seven target vectors. These results reflect the436

observed variations in performance of the two algorithms on the artificial437

datasets. As with the artificial datasets, it is possible to apply Algorithm438

5 to the plasma spray dataset to calculate the best possible performance of439

a hypothetical optimal functional regression system – as shown in Table 7440

such a system would outperform RAN, but would still be unable to match441

the results achieved using RANVOC.442

Figure 7 provides a more detailed insight into the behaviour of each algo-443

rithm, by mapping the test-fold error on each data-instance against the NFI444

of that instance, for a single representative run of each algorithm. It can445

be seen that RAN outperforms RANVOC on the functional data-instances446

with NFI of zero. However as the NFI of the instances increases the error447

in RAN’s output increases rapidly. Meanwhile RANVOC’s performance is448

largely unaffected by the NFI of the data, apart from a few outliers. Overall449

RAN is far more likely to suggest plasma spray parameters P which devi-450

ate substantially from those required to produce the desired spray particle451

characteristics.452
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Figure 7: The influence of the NFI of individual data instances on the test-fold error for
representative runs of the RAN and RANVOC algorithms

5. Conclusion and future work453

This paper has made three main contributions. The first is the identifi-454

cation of non-functional neural regression as an overlooked area of research455

with important applications in a range of areas of machine learning. The sec-456

ond contribution is the proposal and evaluation of the first neural network457

algorithm designed specifically for learning non-functional regression tasks,458

the Resource Allocating Network with Varying Output Cardinality (RAN-459

VOC). The final contribution is the establishment of benchmark datasets, an460

evaluation methodology and metrics suitable for assessing the effectiveness461

of an algorithm for non-functional regression, and a methodology based on462

clustering and a Non Functional Index metric to establish whether a datset463

is better suited to functional or non-functional approaches to regression.464

The experimental results have demonstrated that RANVOC offers a sub-465

stantial improvement in performance over the standard functional approach466

to regression when applied to data where the input to output mapping is not467

functional in nature. RANVOC’s performance as measured by the distance468

metric is quite strong across all six artificial datasets examined in this study,469

regardless of whether the datasets are functional or non-functional. In con-470

trast RAN performs well on the functional datasets, but much less accurately471

on the non-functional datasets. In particular RAN’s output on the Quartic-472

NF and Circles datasets demonstrates no ability to learn these datasets.473

These differences in algorithmic behaviour were also evident when the algo-474

rithms were applied to a real-world dataset derived from measurements of an475

atmospheric plasma spray device, with RANVOC providing much improved476

results in terms of both distance and cardinality error metrics. Importantly477
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RANVOC has been shown to outperform not just the original RAN algo-478

rithm, but also the best possible error rates achievable by any functional479

form of regression.480

The primary limitation exhibited by the RANVOC algorithm is that er-481

roneous values sometimes occur at the borders of the regions for which each482

output unit is relevant, as evident in Figures 4 and 5. This leads to errors483

in both the cardinality and distance metrics. A related problem is that the484

cardinality performance on null points (input examples for which no output485

should be produced) is sometimes poor.486

Future work should investigate two approaches to addressing these lim-487

itations. First it was observed that the optimal δ settings for value fitting488

may not be optimal for relevance testing, as reflected by the fact that the489

best cardinality results were often achieved at lower values of δmax than were490

the best distance results. One means to address this may be to maintain491

two separate sets of hidden units with their own δ parameters – one set of492

units is used for output value estimation, while the second set is used only for493

relevance testing. A second, possibly complementary, approach is to make494

use of null points during training as a means of decaying relevance weights495

for regions of input space where no output should be produced. The main496

obstacle to be overcome with such an approach is how to appropriately gen-497

erate input vectors representing such null points for real datasets for which498

the underlying generators are not known.499

In addition RAN was selected as a suitable choice for initial experimen-500

tation with varying output cardinality as its approach to building an RBF501

network is relatively simple. However RAN’s learning capabilities have been502

improved on by more sophisticated constructive algorithms. For example503

Huang et al. [11] provides substantial improvements in learning efficiency,504

while other algorithms such as Huang et al. [10], and Vuković and Miljković505

[12] provide support for pruning unwanted hidden neurons. The results cal-506

culated for the hypothetically optimal functional regression system demon-507

strate that these more advanced functional regression algorithms can not508

in themselves match RANVOC’s performance on non-functional datasets.509

However incorporating the varying output cardinality concepts pioneered in510

RANVOC into these more advanced neural regression systems should allow511

for the development of more accurate and efficient non-functional regression512

systems, and this should be a focus of future work.513
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