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Abstract

Hand pose estimation from single depth images is an essential topic in computer vision and human computer interaction.
Despite recent advancements in this area promoted by convolutional neural networks, accurate hand pose estimation
is still a challenging problem. In this paper we propose a novel approach named as Pose guided structured Region
Ensemble Network (Pose-REN) to boost the performance of hand pose estimation. Under the guidance of an initially
estimated pose, the proposed method extracts regions from the feature maps of convolutional neural network and
generates more optimal and representative features for hand pose estimation. The extracted feature regions are then
integrated hierarchically according to the topology of hand joints by tree-structured fully connections to regress the
refined hand pose. The final hand pose is obtained by an iterative cascaded method. Comprehensive experiments on
public hand pose datasets demonstrate that our proposed method outperforms state-of-the-art algorithms.
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1. Introduction

Accurate 3D hand pose estimation is one of the most
important techniques in human computer interaction and
virtual reality [1], since it can provide fundamental infor-
mation for interacting with objects and performing ges-
tures [2, 3]. Hand pose estimation from single depth im-
ages has attracted broad research interests in recent years [4,
5, 6, 7, 8, 9, 10, 11] thanks to the availability of depth
cameras [12, 13, 14, 15], such as Microsoft Kinect, Intel
Realsense Camera etc. However, hand pose estimation is
an extremely challenging problem due to the severe self-
occlusion, high complexity of hand articulation, noises and
holes in depth image, large variation of viewpoints and
self-similarity of fingers etc.

Hand pose estimation has achieved great advancements
by convolutional neural networks (CNNs). CNN-based
data-driven methods either predict heatmaps of hand joints [5,
16] and infer hand pose from heatmaps, or directly regress
the 3D coordinates of hand joints [17, 18, 7, 19, 10, 20].
In either ways, features are critical for the performance of
hand pose estimation. Prior works mainly focused on in-
corporating prior knowledge into CNN [17, 20] or using er-
ror feedback [18] and spatial attention design [7]. However,
few of prior works have paid attentions to extracting more
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optimal and representative features of CNN. Ye et al. [7]
used spatial attention module to select and transform fea-
tures to a canonical space. Guo et al. [9, 51] proposed the
region ensemble network (REN) that divides the feature
maps of last convolutional layer into several spatial regions
and integrates them in fully connected layers. All afore-
mentioned works haven’t fully exploit optimal features of
CNN for hand pose estimation.

In this paper, we propose a novel method called pose
guided structured region ensemble network (Pose-REN) to
boost the performance of hand pose estimation, as shown
in Figure 1. Upon an iterative refinement procedure, our
proposed method takes a previously estimated pose as in-
put and predicts a more accurate result in each iteration.
We present a novel feature extraction method under the
guidance of previous predicted hand pose to get optimal
and representative features for hand pose estimation. Fur-
thermore, inspired by hierarchical recurrent neural net-
work [21], we present a hierarchical method to fuse fea-
tures of different joints according to the topology of hand.
Features from joints that belong to the same finger are in-
tegrated in the first layer and features from all fingers are
fused in the following layers to predict the final hand pose.

We evaluate our proposed method on three public hand
pose benchmarks [22, 5, 23]. Compared with state-of-the-
art methods, our method has achieved the best perfor-
mance. Extensive ablation analyses illustrate the contri-
butions of different components of the framework and ro-
bustness of our proposed method.

The remainder of this paper is organized as follows. In
Section 2, we review prior works that are highly related
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Figure 1: The framework of our proposed pose guided structured region ensemble network (Pose-REN). A simple CNN (Init-CNN) predicts
pose0 as the initialization of the cascaded framework. Feature regions are extracted from the feature maps generated by a CNN under the
guidance of poset−1 and hierarchically fused using a tree-like structure. poset is the refined hand pose obtained by our proposed Pose-REN
and will be used as the guidance in next stage.

to our proposed method. In Section 3, we present details
about our proposed pose guided structured region ensem-
ble network. Evaluations on public datasets and ablation
studies are provided in Section 4. Section 5 gives a brief
conclusion of this paper.

2. Related Work

In this section we briefly review related works of our
proposed method. Firstly we will review recent algorithms
for depth based hand pose estimation. Since our method
basically builds upon cascaded framework, we will intro-
duce the cascaded methods for hand pose estimation. Fi-
nally, we will review related works about the hierarchical
structure of neural network, as the hierarchical structured
connections are utilized in our method.

2.1. Depth-based Hand Pose Estimation

Recent approaches of hand pose estimation are gener-
ally categorized into three classes: discriminative meth-
ods [5, 22, 17, 23, 24, 10, 16, 25, 26, 11, 9], generative
methods [27, 28, 29, 30] and hybrid methods [31, 6, 32, 33,
34, 7, 20]. Comprehensive review and analysis on depth
based 3D hand pose estimation can be found in [4].

Generative methods fit a predefined hand model to the
input data using optimization algorithms to obtain the
optimized hand pose, such as PSO (particle swarm opti-
mization) [34], ICP (Iterative Closest Point) [27] and their
combination (PSO-ICP) [35]. Hand-crafted energy func-
tions that describe the distance between the hand model

and input image are utilized in prior works, such as golden
energy [34] and silver energy [6]. Several kinds of hand
model have been adopted, including sphere model [35],
sphere-meshes model [28], cylinder model [27] and mesh
model [34]. Generative methods are robust for self-occlusive
areas or missing areas and ensure to output plausible hand
pose. However, they need a complex and time-consuming
optimizing procedure and are likely to trap into local op-
timizations.

Discriminative methods directly learn a predictor from
the labelled training data. The predictor either predicts
the probability maps (heatmaps) of each hand joints [5, 16]
or directly predicts the 3D hand joint coordinates [17, 9].
The most frequently used methods for predictor are ran-
dom forest [36, 22, 37, 6, 23] and convolutional neural net-
work [5, 17, 9, 10, 11]. Discriminative methods do not
require any complex hand model and are totally data-
driven, which are fast and appropriate for real-time ap-
plications. Guo et al. [9, 51] proposed a region ensemble
network (REN) that greatly promoted the performance of
hand pose estimation based on a single network. Region
ensemble network divides the feature maps of last convo-
lutional layer into several spatial regions and integrates
them in fully connected layers. However, REN extracts
the feature regions using a uniform grid and all features
are treated equally, which is not optimal to fully incorpo-
rate the spatial information of feature maps and obtain
highly representative features.

Hybrid methods try to combine the discriminative and
generative methods to achieve better hand pose estimation
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performance. Some works adopted the generative meth-
ods after obtaining initial results by discriminative meth-
ods [31, 33, 34]. Zhou et al. [20] proposed to incorporate a
hand model into the CNN, which exploits the constraints
of the hand and ensures the geometric validity of the es-
timated pose. However, hybrid methods have to predefine
the properties of the hand model, such as the length of
bones. Oberweger et al. [18] proposed a data-driven hy-
brid method, which learns to generate a depth image from
hand pose. However, the generation of depth images is
likely affected by the errors of annotations.

Our proposed method basically falls into the category
of discriminative method and does not rely on any pre-
defined hand model. Compared with prior CNN-based
discriminative methods, our proposed method directly pre-
dicts the 3D locations of hand pose using a cascaded frame-
work without any postprocessing procedure. What’s more,
our proposed pose guided structured region ensemble net-
work (Pose-REN) can learn better features for hand pose
estimation by incorporating guided information of previ-
ously estimated hand pose into the feature maps and im-
prove the performance of our method.

Although our proposed Pose-REN follows the idea of
feature region ensemble as REN [9], there are several essen-
tial differences between Pose-REN and REN [9]: 1) Differ-
ent from REN that uses grid region feature extraction, the
proposed Pose-REN fully exploits an initially estimated
hand pose as the guided information to extract more rep-
resentative features from CNN, which is shown to have
a large impact for hand pose estimation problem, as dis-
cussed in Section 4.4.2. 2) Instead of simple feature fusion
as adopted in REN, our Pose-REN presents a structured
region ensemble strategy that better models the connec-
tions and constraints between different joints in the hand.
3) The Pose-REN is a common framework that can eas-
ily be compatible with any existing methods (for example,
Feedback [18], DeepModel [20] etc.) by using them to pro-
duce initial estimations for Pose-REN.

2.2. Cascaded Method

The cascaded framework has been widely used in face
alignment [38, 39, 40], human pose estimation [41, 42] and
has also shown good performances in the problem of hand
pose estimation [23, 18, 7].

Sun et al. [23] proposed a method to iteratively refine
the hand pose using hand-crafted 3D pose index features
that are invariant to viewpoint transformation. Oberweger
et al. [17] proposed a post-refinement method to refine each
joint independently using multiscale input regions centered
on the initially estimated hand joints. These works have
to train multi models for refinement and independently
predict different parts of hand joints while our proposed
needs only one model to iteratively improve the estimated
hand pose.

Oberweger et al. [18] presented a feedback loop frame-
work for hand pose estimation. One discriminative net-
work is used to produce initial hand pose. A depth image

is then generated from the initial hand pose using a gen-
erative CNN and an updater network improves the hand
pose by comparing the synthetic depth image and input
depth image. However, the depth synthetic network is
highly sensitive to the annotation errors of hand poses.

Ye et al. [7] integrated cascaded and hierarchical regres-
sion into a CNN framework using spatial attention mecha-
nism. The partial hand joints are iteratively refined using
transformed features generated by spatial attention mod-
ule. In their method, the features in cascaded framework
are generated by a initial CNN and remain unchanged in
each refinement stage except for the spatial transforma-
tion. In our proposed method, feature maps are updated in
each cascaded stage using an end-to-end framework, which
will help to learn more effective features for hand pose es-
timation.

Our Pose-REN also adopts the cascaded framework.
Different from the above prior methods, we present a novel
feature extraction method under the guidance of previous
predicted hand pose to get optimal and representative fea-
tures from CNN. What’s more, Pose-REN explicitly mod-
els the constraints and relations between different hand
joints using structured region ensemble strategy, which is
a novel method to improve the robustness and performance
of hand pose estimation.

2.3. Hierarchical Structure of Neural Network

Du et al. [21] proposed a hierarchical recurrent neural
network (RNN) for skeleton-based human action recogni-
tion. The whole skeleton is divided into five parts and
fed into different branches of the RNN. Different parts of
skeleton are hierarchically fused to generated higher-level
representations. Madadi et al. [19] proposed a tree-shape
structure of CNN which regresses local poses at different
branches and fuses all features in the last layer. In their
structure, features of different partial poses are learned in-
dependently except for sharing features in very early lay-
ers. In contrast, our method shares features in the convo-
lutional layers for all joints and hierarchically fuses differ-
ent regions from feature maps to finally estimate the hand
pose. The shared features enables better representation of
hand pose and the hierarchical structure of feature fusion
can better model the correlation of different hand joints.

3. Pose Guided Structured Region Ensemble Net-
work

In this section, we first give an overview of Pose-REN in
Section 3.1. After that we will provide detailed elaboration
about extracting regions from the feature maps under the
guidance of a hand pose in Section 3.2. In Section 3.3 we
present the details of fusing feature regions using hierarchi-
cally structured connection. Finally, the training strategy
and implementation details are given in Section 3.4 and
Section 3.5.
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Figure 2: The scheme of our proposed pose guided region extrac-
tion. The green and red dots represent two hand joints from previ-
ously estimated hand pose. The rectangles of different colors are the
corresponding feature regions extracted from the feature maps.

3.1. Overview

The framework of our proposed method is depicted in
Figure 1. A simple CNN (denoted as Init-CNN) predicts
an initial hand pose pose0, which is used as the initializa-
tion of the cascaded framework. The proposed framework
takes a previously estimated hand pose poset−1 and the
depth image as input. The depth image is fed into a CNN
to generate feature maps. Feature regions are extracted
from these feature maps under the guidance of the input
hand pose poset−1. The insight of our proposed method is
that features around the location of a joint contribute more
while other features like corner regions are less important.
Afterwards, features from different joints are hierarchically
integrated using the structured connection to regress the
refined hand pose poset. The images in dash rectangles
show the close-up results of poset−1 and poset. It can be
seen that the network refines the hand pose gradually.

Our method aims to estimate the 3D hand pose from
a single depth image in a cascaded framework. Specifi-
cally, given a depth image D, the 3D locations P = {pi =
(pxi, pyi, pzi)}Ji=1 of J hand joints are inferred. Given a
previously estimated hand pose result Pt−1 in stage t− 1,
our method uses the learned regression model R to refine
the hand pose in stage t.

Pt = R(Pt−1,D) (1)

After T stages, we get the final estimated hand pose PT
for the input depth image D.

PT = R(PT−1,D) (2)

It should be noted that only one same model R is used
in every stage of refinement in the inference phase, see
Section 3.4 for details.

3.2. Pose Guided Region Extraction

We first use a standard convolutional neural network
(CNN) with residual connections to generate feature maps.
The backbone architecture of CNN for generating feature
maps used in our method is the same as the baseline net-
work in [9], with 6 convolutional layers and 2 residual con-
nections. Each convolutional layer is followed by a Recti-
fied Linear Unit (ReLU) [43] as the activation function and

every 2 convolutional layers are followed by a max pooling
layer. The residual connections are added between max
pooling layers.

Denote feature maps from the last convolutional layer
as F and the estimated hand pose from previous stage as
Pt−1 = {(pt−1xi , p

t−1
yi , p

t−1
zi )}Ji=1. We use Pt−1 as the guid-

ance to extract feature regions from F . Specifically, for
the ith hand joint, We first project the real-world coordi-
nates into the image pixel coordinates using the intrinsic
parameters of the depth camera, as shown in Eq. 3.

(pt−1ui , p
t−1
vi , pt−1di ) = proj(pt−1xi , p

t−1
yi , p

t−1
zi ) (3)

The feature region for this joint is then cropped using
a rectangular window which can be defined by a tuple
(btui, b

t
vi, w, h), where btui and btvi is the coordinates of top-

left corner, w and h is the width and height of the cropped
feature region. The coordinates of the rectangular window
are calculated by normalizing and converting the original
coordinates (pt−1ui , p

t−1
vi , pt−1di ) into coordinates in feature

maps.
The extracted feature region for hand joint i is then

obtained by cropping the feature maps within the rectan-
gular window:

F ti = crop(F ; btui, b
t
vi, w, h) (4)

where the function crop(F ; bu, bv, w, h) means extracting
the region specified by a rectangular window (bu, bv, w, h)
from F .

Figure 2 gives an example of pose guided region ex-
traction. The left image is a feature map from the last
convolutional layer of the CNN. It should be noted the
feature maps usually contains multiple channels, we only
use one channel of them to depict how to crop a region
guided by a joint. The green dot and red dot indicate two
joints (palm center joint and Metacarpophalangeal joint
for middle finger respectively) from the previously esti-
mated hand pose. The green and red rectangles are the
corresponding cropped windows. The images in middle
and right columns show the extracted feature regions for
these two joints.

3.3. Structured Region Ensemble

In the previous section we have described how to ex-
tract feature regions from the feature maps for each joint
using the guidance of previously estimated hand pose. One
intuitional way to fuse these feature regions is to connect
each region with fully connected (fc) layers respectively
and then fuse these layers to regress the final hand pose,
which is adopted in REN [9].

Human hand is a highly complex articulated object.
Therefore, there are many constraints and correlations be-
tween different joints [44, 45]. Independently connecting
feature regions with fc layers and fusing them in the last
layer can not fully adopt these constraints. Inspired by hi-
erarchical recurrent neural network [21], in this paper we
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Figure 3: The architecture of the proposed structured region ensem-
ble method. Features from the joints of the same finger (including
the palm joint) are fused first. Afterwards, features of different fin-
gers are fused to regress the final hand pose.

adopt hierarchically structured region ensemble strategy
to better model the constraints of hand joints, as shown
in Figure 3. First a set of feature regions {F tj}Mj=1 are fed
into fc layers respectively.

hl1j = fc(F tj ), j = 1, . . . ,M (5)

Where M is the number of regions extracted from the fea-
ture maps.

Next, {hl1j }Mj=1 are integrated hierarchically according
the topology structure of hand. Specifically, denote the
indices of joints that belong to the ith finger as {Iij}

Mi
j=1,

where Mi is the number of joints that belong to the ith

finger. All joints that belong to the same finger are con-
catenated (denote as concate) and then fed into a fc layer,
as shown in Eq. 6 and Eq. 7.

h̄l1i = concate({hl1
Iij
}Mi
j=1), i = 1, . . . , 5 (6)

hl2i = fc(h̄l1i ), i = 1, . . . , 5 (7)

Afterwards, features from different fingers {hl2i }5i=1 are
concatenated and fed into a fc layer to regress the final
hand pose Pt ∈ R3×J .

h̄l2 = concate({hl2i }
5
i=1) (8)

Pt = fc(h̄l2) (9)

Each fc layer in Eq. 5 and Eq. 7 has a dimension of 2048
nodes. They are followed by ReLU layers and dropout
layers with dropout rate of 0.5. The last fc layer output a
3×J vector Pt which represents the 3D locations of hand
pose.

3.4. Training

Denote the original training set as

T 0 = {(Di,P0
i ,P

gt
i )}NT

i=1 (10)

where NT is the number of training samples, Di is the
depth image, P0

i is the initially estimated hand pose and
Pgti is the corresponding ground truth of hand pose.

In stage t, a regression model Rt is trained using T t−1.
Using this model, we can obtain the refined hand pose for
each sample in training set.

Pti = Rt(Pt−1i ,D) (11)

we add the refined samples T t = {(Di,Pti ,P
gt
i )}NT

i=1 to the
training set, generating an augmented training set T t.

T t = T t−1
⋃
T t (12)

Again, we train a model Rt+1 in stage t+ 1 using T t and
iteratively repeat this process until reaching the maximum
iteration T . The trained model RT is the final model
used in the inference phase to refine the initial hand pose
iteratively, as described in Eq. 1 and Eq. 2.

3.5. Implementation Details

We implemented our proposed method using Caffe [46].
RoI Pooling layer [47] was used to facilitate the implemen-
tation of pose guided region extraction.

We used the baseline network in [9] as the Init-CNN
to produce initial poses for our method. Generally speak-
ing, any existing hand pose estimation algorithms can be
adopted as the initialization method of Pose-REN. We
will further discuss the effect of different initializations in
Section 4.4.4, including generalization of our pre-trained
model to other initializations in inference phase and ro-
bustness of Pose-REN to other initializations.

Preprocessing. Similar to previous methods [18, 9], we
extracted a fix-sized cube from the input depth image.
The center of the cube was determined by calculating the
centroid of mass of the hand region. The extracted cube
was then resized into a patch with size of 96× 96 and the
depth values within it were normalized into [−1, 1]. Be-
sides, depth values that were outside the cube were trun-
cated according to the size of cube, providing robustness
to invalid depth values. The idea of extracting a fix-sized
cube is to ensure invariance of the hand size to the distance
to the camera.

Training. We first trained the Init-CNN to obtain initial
hand pose. After that, we used the weights of trained
Init-CNN to initialize Pose-REN and train the network.
The whole network was trained using stochastic gradient
descent (SGD) with a batch size of 128 and a momentum
of 0.9. A weight decay of 0.0005 was also adopted for the
network. The learning rate was set to 0.001 and divided by
10 after every 25 epochs. The model was trained for 100
epochs for each stage and totally trained for two stages.

We followed several good practices that have been proved
to be quite effective for hand pose estimation [9], includ-
ing random data augmentation, smooth L1 loss. For data

5



(a) MSRA (b) NYU (c) ICVL

Figure 4: The subset of joints used in pose guided region extraction.
The joints circled by dash rectangles are used when extracting feature
regions under the guidance of previous joints. Totally M = 11 joints
are used, including a joint for the palm, two joints for the root and
tip of each finger.

augmentation, we applied random scaling of [0.9, 1.1], ran-
dom translation of [−10, 10] pixels and random rotation of
[−180, 180] degrees to the depth image. We used smooth
L1 loss to achieve less sensitivity to the outliers.

Parameter settings. Different datasets have the differ-
ent number of hand joints, e.g. 21 joints in MSRA dataset
and 16 joints in ICVL dataset. To balance the complexity
of model and accuracy, we only used part of joints as the
guidance to extract feature regions. Specifically, 11 out
of all joints were used, as shown in Figure 4. The joints
circled by dash rectangles were used, with Mi = 3 for each
finger, including a joint for the palm, a joint for the root
of finger and a joint the tip of finger. It should be noted
that despite part of joints (M = 11) are utilized as the
guidance to extract features, the network still predicts the
locations of all joints. The insights behind are that the
overlaps of different feature regions make sure the cover-
ing of almost all important features even only a part of the
joints is used.

In our experiments, the size of extracted region was
set to (w, h) = (7, 7). In inference phase, the number of
iterations was set to T = 3, which will be further discussed
in Section 4.4.1.

4. Experiments

In this section, we will first introduce the datasets and
evaluation metrics in the experiments. Afterwards we will
evaluation our proposed method on three challenging pub-
lic datasets: ICVL Hand Posture Dataset [22], NYU Hand
Pose Dataset [5] and MSRA Hand Pose Dataset [23]. Fi-
nally we conduct extensive experiments for ablation study
to discuss the effectiveness and robustness of different com-
ponents of our proposed method.

4.1. Datasets

ICVL Hand Posture Dataset [22]. This dataset was
collected from 10 different subjects using Intel’s Creative
Interactive Gesture Camera [48]. In-plane rotations are
applied to the collected samples and the final dataset con-
tains 330k samples for training. There are totally 1596

samples in the testset, including 702 samples for test se-
quence A and 894 samples for test sequence B. The anno-
tation of hand pose contains 16 joints, including 3 joints
for each finger and 1 joint for the palm.

NYU Hand Pose Dataset [5]. The NYU hand pose
dataset was collected using three Kinects from different
views. The training set contains 72757 frames from 1 sub-
ject and the testing set contains 8252 frames from 2 sub-
jects, while one of the subjects in testing set doesn’t appear
in training set. The annotation of hand pose contains 36
joints. Following the protocol of previous works [5, 17, 18,
20, 9], we only use frames from the frontal view and 14 out
of 36 joints in evaluation.

MSRA Hand Pose Dataset [23]. The MSRA hand
pose dataset contains 76500 frames from 9 different sub-
jects captured by Intel’s Creative Interactive Camera. The
leave one subject out cross validation strategy is utilized
for evaluation. The annotation of hand pose consists of
21 joints, with 4 joints for each finger and 1 joint for the
palm. This dataset has large viewpoint variation, which
makes it a rather challenging dataset.

4.2. Evaluation Metric

There are two evaluation metrics widely used in hand
pose estimation: per-joint errors and success rate. Denote
{pij} as the predicted joint locations of test frames, where
i is the index of frame and j is the index of joint. {pgtij } is
the corresponding groundtruth label. N is the number of
test frames and J is the number of joints in a frame.

Per-joint Errors. Average euclidean distance between
predicted joint location and groundtruth for each joint over
all test frames. The error for the jth joint is calculated by:

errj =

∑
i(‖pij − p

gt
ij ‖)

N
(13)

Average joint error err =
∑

j errj

J is also used to evaluate
the overall performance of hand pose estimation.

Success Rate. The fraction of good frames. A frame
is considered as good if the maximum joint error of this
frame is within a distance threshold τ . The success rate
for distance threshold τ is calculated as Eq. 14.

rateτ =

∑
i 1(maxj(‖pij − pgtij ‖) ≤ τ)

N
(14)

where 1(cond) is an indicate function that equals to one if
cond is true and equals to zero otherwise.
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Figure 5: Comparison of our approach with state-of-the-art methods on NYU dataset. Left: the proportion of good frames over different
error thresholds. Right: per-joint errors.
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Figure 6: Comparison of our approach with state-of-the-art methods on ICVL dataset. Left: the proportion of good frames over different
error thresholds. Right: per-joint errors.

Table 1: Quantitative evaluation of different methods on the bench-
mark NYU dataset for hand pose estimation task. We report 2D
average pixel errors and 3D average joint errors in mm.

Methods 3D error (mm) 2D error (pixels)
HandsDeep [17] 19.73 9.81
Feedback [18] 15.97 8.20
DeepModel [20] 16.90 8.76
Mask R-CNN [49] 27.61 8.25
JTSC [50] 16.80 8.02
Madadi et al. [19] 15.60 -
Lie-X [8] 14.51 7.48
REN (4x6x6) [9] 13.39 6.78
REN (9x6x6) [51] 12.69 6.32
Ours 11.81 5.53

4.3. Comparison with State-of-the-Arts

To demonstrate the effectiveness of our proposed method,
we compare it against several state-of-the-art methods, in-
cluding latent random forest (LRF) [22], DeepPrior with
refinements (HandsDeep) [17], cascaded hand pose regres-
sion (Cascaded) [23], feedback loop (Feedback) [18], deep
hand model (DeepModel) [20], Lie group based method
(Lie-X) [8], multi-view CNN (Multiview) [16], 3D-CNN
based method (3DCNN) [11] , CrossingNets [10], local
surface normals (LSN) [24], occlusion aware method (Oc-
clusion) [52], JTSC [50], global to local CNN (Madadi et
al.) [19] and region ensemble network with 9×6×6 region
setting (REN-9x6x6) [51].

It should be noted that some reported results of state-
of-the-art methods are calculated using the predicted la-
bels that are available online [22, 18, 20, 9, 8, 51] and others
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Figure 7: Comparison of our approach with state-of-the-art methods on MSRA dataset. Left: the proportion of good frames over different
error thresholds. Right: per-joint errors.
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Figure 8: Comparison of mean error distance over different yaw (left) and pitch (right) viewpoint angles on MSRA dataset.

are estimated from the figures and tables of the original
papers [23, 24, 16, 11, 10, 52, 19].

We also compare our method with Mask R-CNN [49]
due to its impressive performance on RGB human pose
estimation. For fair comparison, we first crop the depth
images and resize them into 96 × 96, which is the same
preprocessing as our proposed method. We use similar
setting with human pose estimation task in [49] that ex-
ploits ResNet-50-FPN as the backbone network. To adopt
Mask R-CNN for depth-based hand pose estimation, we
first use Mask R-CNN to detect 2D hand pose in image
coordinates and then infer depth values from the original
depth images to recover 3D hand pose. To alleviate the
impact of noises and holes in depth images, the inferred
depth values are constrained within the 3D cube of hand
and valid depth values from 9-neighbours are averaged to
get the final depth coordinate.

On NYU dataset, we compare our proposed method
with [17, 18, 20, 53, 8, 10, 16, 11, 51, 49]. The success rate
with respect to the worse case criteria and per-joint errors
are given in Figure 5. As shown in the figure, our proposed
outperforms all state-of-the-art methods. We further com-
pare the overall 2D and 3D mean joint error in Table 1.
Our method obtain 0.88mm 3D error decrease compared
with existing best performance by REN [51]. Mask R-CNN
performs 2D keypoint detection and the post-processing is
used to lift 2D pose to 3D pose. It achieves comparable
2D error with prior methods. Nevertheless, our Pose-REN
outperforms Mask R-CNN and reduces the 2D error by 2.7
pixels.

On ICVL dataset, we compare our proposed method
against [22, 20, 17, 10, 24, 51]. Results in Figure 6 demon-
strate that our proposed method outperforms all other
methods with a large margin. Compared with REN [51],
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our method reduces the mean error by 0.514mm, which is
a 7.04% relative improvement.

On MSRA dataset, we compare with several state-of-
the-art methods [23, 16, 11, 24, 52, 51]. The success rate
with respect to maximum allowed threshold and per-joint
errors are shown in Figure 7. Our method achieves the
best performance among all evaluated methods. Follow-
ing the protocol of previous works [23], we also report the
mean joint errors distributed over yaw and pitch view-
point angles, as shown in Figure 8. Our method achieves
the smallest errors in almost all angles. It should be noted
that the LSN [24] get slightly smaller errors when the yaw
or pitch angle is relatively small. However, the perfor-
mance of LSN decreases rapidly when the viewpoint be-
comes larger. These results demonstrate that our method
is much more robust to viewpoint changes, which is a quite
challenging problem in hand pose estimation.

The fraction of good frames of our method decreases
slightly compared with REN [51] when the errors are larger
than around 30mm. This is mainly due to worse initial
pose for these challenging samples. When regarding to the
per-joint errors, our method achieves the best performance
among all compared methods.

4.4. Ablation Study

In this section we will provide extensive experiments
to discuss the contributions of different components of our
method and the effect of some parameters.

4.4.1. Effect of the Number of Iteration T

First we will discuss how the number of iteration T af-
fects the performance. The average joint errors on NYU
dataset with using the different number of iterations are
shown in Figure 10. The error for iteration 0 is the result
of the initialization. After one iteration, the error drops
rapidly. As the iteration increases, the error becomes sta-
ble and finally converges. To better balance the computa-
tion complexity and performance, we choose the number
of iteration as T = 3.

4.4.2. Effect of Pose Guided Region Extraction

One of the contributions of our proposed method is to
extract feature regions under the guidance of hand pose
from previous stage. We will show whether this strategy
helps to improve the performance of hand pose estima-
tion. In REN [9], feature regions are extracted using a
uniformly distributed grid. We report the performances of
our method that only adopts one iteration and sets the
number of regions and the size of regions the same as
REN-4x6x6 [9] and REN-9x6x6 [51]. Under such exper-
imental settings, the number of parameters of our method
and REN are the same, which ensures fair comparison.
The first number in the suffix indicates the number of re-
gions and the last two numbers represent the size of re-
gions. Specifically, we use the palm joint, the root joint
of thumb, middle, pinky finger in 4x6x6 setting (denoted

Table 2: Comparing average joint errors of our method with and
without structured region ensemble strategy on three datasets. The
numbers in the brackets indicate the percentages of error reduction.

Dataset Ours w/o structure Ours (mm)
(mm)

NYU [5] 11.869 11.811(−0.5%)
ICVL [22] 6.932 6.793(−2.0%)
MSRA [23] 8.728 8.649(−0.9%)

as Our-4x6x6) and use all joints except for two joints in
thumb finger and the tip joint of pinky finger in 9x6x6 set-
ting (denoted as Our-9x6x6). The success rate curve and
per-joint errors on NYU dataset are shown in Figure 9.
With different region settings, our method both performs
better than REN that adopts grid region ensemble, indi-
cating the contributions of pose guided region extraction
strategy.

4.4.3. Effect of Structured Region Ensemble

We will demonstrate the effectiveness of another com-
ponent of our proposed method: the hierarchically struc-
tured region ensemble. We compare our method with a
network (denoted as Ours w/o structure) that use two
simple fc layers as is adopted in REN [9] instead of hi-
erarchical fc layers. For fair comparison, we set the di-
mensions of the two fc layers as 2304 and 2048 respec-
tively to ensure the similar number of parameters between
our method and Ours w/o structure. The mean joint er-
rors on NYU, ICVL and MSRA dataset are shown in Ta-
ble 2. It can be seen that our method performs better than
Ours w/o structure, which illustrates the effectiveness of
the hierarchically structured region ensemble strategy.

4.4.4. Effect of the Initialization

In this section we will demonstrate the robustness of
our proposed method over different initializations. Our
proposed method builds upon the cascaded framework,
which takes an initial hand pose as input and iteratively
refine the results. To explore the impact of initialization
for our methods, we conduct several experiments on NYU
dataset with different initializations.

Firstly we will discuss the impact of initialization in
inference phase. Specifically, we chose four methods as
initialization: Init-CNN (which is proposed in [9] as a base-
line network and also adopted as the initialization of our
method), DeepPrior [17], Feedback [18], DeepModel [20].
The results of different initializations and refined results
(denoted as, e.g. Ours init deepprior) are shown in Fig-
ure 11. We can observe that our method can considerably
boost the performances of the initializations. Even with
some rather rough initialization (e.g. DeepPrior), the re-
fined results boosted by our Pose-REN are quite compet-
itive. With other better initializations (Feedback, Deep-
Model), the final results are similar to our method, even
if their initializations are slightly worse than ours. These
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Figure 9: Effect of pose guided region ensemble by comparing our method against grid region ensemble (REN [9]). Left: the proportion of
good frames over different error thresholds. Right: per-joint errors.
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results indicate the robustness over initializations of our
method. It should be noted that the model used above
were trained using the samples with our initialization (Init-
CNN). We used different initializations in inference to get
the results above. Therefore, the results above also demon-
strate the generalization of our model.

Furthermore, we consider the case that uses a natural
pose (denoted as meanpose) as initialization and discuss
which performance can be expected. We used the model
that was trained on our initialization to refine the hand
pose with meanpose as the initialization. As shown in
Figure 12, the initial meanpose is very poor and the re-
sults are boosted by adopting our method. We empiri-
cally find that the performance converges after 10 stages
(Ours init meanpose), resulting the average joint error of
17.708mm, which is comparable with some state-of-the-

are methods, as shown in Table 1. We further trained a
model using the meanpose as initialization and report the
refined results (Ours init meanpose train) in Figure 12.
It can be seen that the results are quite close to those
of our method that uses a better initialization, which in-
dicates that our proposed method is robust to different
initializations.

As discussed above, the model trained on our initial-
ization greatly generalize to other initializations. Further-
more, for a very poor initialization, our proposed method
can still obtain satisfying results by training a model using
this initialization.

4.5. Qualitative Results

Figure 13 shows some examples of the iterative process
on NYU dataset. The first column shows the results of the
initialize hand pose, the second to fourth columns show the
refined results on stage 1−3. The rightmost column is the
groundtruth annotation. Our method gradually improves
the estimated hand pose and obtains accurate results after
several iterations.

Some qualitative results on three datasets can be seen
in Figure 14. For each dataset, the first row represents
the results of REN-9x6x6 [51], the second row shows the
results of our proposed method and the third row is the
groundtruth. It can be seen that our method performs
better than REN even in some challenging samples.

5. Conclusion

In this paper we propose a novel method called pose
guided structured region ensemble network (Pose-REN)
for accurate 3D hand pose estimation from a single depth
image. Our method extracts regions from the feature maps
under the guidance of an initially estimated hand pose to
attain more optimal and representative features. Feature
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Figure 11: Performance of our model with different initial hand pose used in inference phase on NYU dataset. Left: the proportion of good
frames over different error thresholds. Right: per-joint errors.
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Figure 12: Performance of our method when using mean pose as the initialization on NYU dataset. Left: the proportion of good frames over
different error thresholds. Right: per-joint errors.

regions are then integrated hierarchically by adopting a
tree-like structured connection that models the topology
of hand joints. Our method iteratively refines the hand
pose to obtain the final estimated results. Experiments on
public hand pose datasets demonstrate that our proposed
method outperforms all state-of-the-art methods. In our
future work, we intend to further improve our method for
robust and accurate 3D hand pose estimation when hands
are interacting with other hands or objects. We would
like to research on integrating hand detection and hand
pose estimation into a unified framework, based on Faster
R-CNN[54] or Mask R-CNN [49] etc. It will also be inter-
esting to apply our proposed method for more articulated
pose estimation tasks, like human pose estimation and face
alignment.
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[27] A. Tagliasacchi, M. Schröder, A. Tkach, S. Bouaziz, M. Botsch,
M. Pauly, Robust articulated-icp for real-time hand tracking,
in: Computer Graphics Forum, Vol. 34, Wiley Online Library,
2015, pp. 101–114.

[28] A. Tkach, M. Pauly, A. Tagliasacchi, Sphere-meshes for real-
time hand modeling and tracking, ACM Transactions on Graph-
ics (TOG) 35 (6) (2016) 222.

[29] D. Joseph Tan, T. Cashman, J. Taylor, A. Fitzgibbon, D. Tar-
low, S. Khamis, S. Izadi, J. Shotton, Fits like a glove: Rapid
and reliable hand shape personalization, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 5610–5619.

[30] J. Taylor, L. Bordeaux, T. Cashman, B. Corish, C. Keskin,
T. Sharp, E. Soto, D. Sweeney, J. Valentin, B. Luff, et al., Effi-
cient and precise interactive hand tracking through joint, con-
tinuous optimization of pose and correspondences, ACM Trans-
actions on Graphics (TOG) 35 (4) (2016) 143.

[31] P. Krejov, A. Gilbert, R. Bowden, Combining discriminative
and model based approaches for hand pose estimation, in: Au-
tomatic Face and Gesture Recognition (FG), 2015 11th IEEE
International Conference and Workshops on, Vol. 1, IEEE, 2015,
pp. 1–7.

[32] C. Choi, A. Sinha, J. Hee Choi, S. Jang, K. Ramani, A collabo-
rative filtering approach to real-time hand pose estimation, in:
Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 2336–2344.

[33] S. Sridhar, F. Mueller, A. Oulasvirta, C. Theobalt, Fast and
robust hand tracking using detection-guided optimization, in:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3213–3221.

[34] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton,
D. Kim, C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei, et al.,

12

http://dx.doi.org/10.1007/s11263-017-0998-6


ICVL

NYU

MSRA

REN

Ours

GT

REN

Ours

GT

REN

Ours

GT

Figure 14: Qualitative results. For each dataset, three rows show the results from region ensemble network (REN-9x6x6) [51], our method
(Ours) and groundtruth (GT) respectively.

Accurate, robust, and flexible real-time hand tracking, in: Pro-
ceedings of the 33rd Annual ACM Conference on Human Fac-
tors in Computing Systems, ACM, 2015, pp. 3633–3642.

[35] C. Qian, X. Sun, Y. Wei, X. Tang, J. Sun, Realtime and robust
hand tracking from depth, in: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2014, pp.
1106–1113.

[36] D. Tang, T.-H. Yu, T.-K. Kim, Real-time articulated hand
pose estimation using semi-supervised transductive regression
forests, in: Proceedings of the IEEE international conference
on computer vision, 2013, pp. 3224–3231.

[37] H. Liang, J. Yuan, D. Thalmann, Parsing the hand in depth
images, IEEE Transactions on Multimedia 16 (5) (2014) 1241–
1253.

[38] S. Zhu, C. Li, C. Change Loy, X. Tang, Face alignment by
coarse-to-fine shape searching, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015,

pp. 4998–5006.
[39] D. Chen, S. Ren, Y. Wei, X. Cao, J. Sun, Joint cascade face de-

tection and alignment, in: European Conference on Computer
Vision, Springer, 2014, pp. 109–122.

[40] M. Kowalski, J. Naruniec, T. Trzcinski, Deep alignment net-
work: A convolutional neural network for robust face alignment,
arXiv preprint arXiv:1706.01789.

[41] A. Toshev, C. Szegedy, Deeppose: Human pose estimation via
deep neural networks, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2014, pp. 1653–
1660.

[42] J. Carreira, P. Agrawal, K. Fragkiadaki, J. Malik, Human pose
estimation with iterative error feedback, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 4733–4742.

[43] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities
improve neural network acoustic models, in: in ICML Workshop

13



on Deep Learning for Audio, Speech and Language Processing,
Citeseer, 2013.

[44] J. Lin, Y. Wu, T. S. Huang, Modeling the constraints of human
hand motion, in: Human Motion, 2000. Proceedings. Workshop
on, IEEE, 2000, pp. 121–126.

[45] Y. Wu, T. S. Huang, Hand modeling, analysis and recognition,
IEEE Signal Processing Magazine 18 (3) (2001) 51–60.

[46] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, T. Darrell, Caffe: Convolu-
tional architecture for fast feature embedding, arXiv preprint
arXiv:1408.5093.

[47] R. Girshick, Fast r-cnn, in: Proceedings of the IEEE interna-
tional conference on computer vision, 2015, pp. 1440–1448.

[48] S. Melax, L. Keselman, S. Orsten, Dynamics based 3d skele-
tal hand tracking, in: Proceedings of Graphics Interface 2013,
Canadian Information Processing Society, 2013, pp. 63–70.

[49] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in:
Proceedings of the IEEE international conference on computer
vision, 2017.

[50] D. Fourure, R. Emonet, E. Fromont, D. Muselet, N. Neverova,
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