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Abstract

In recent years, research efforts to extend linear metric learning models to han-
dle nonlinear structures have attracted great interests. In this paper, we propose a
novel nonlinear solution through the utilization of deformable geometric models
to learn spatially varying metrics, and apply the strategy to boost the performance
of both kNN and SVM classifiers. Thin-plate splines (TPS) are chosen as the
geometric model due to their remarkable versatility and representation power in
accounting for high-order deformations. By transforming the input space through
TPS, we can pull same-class neighbors closer while pushing different-class points
farther away in kNN, as well as make the input data points more linearly sep-
arable in SVMs. Improvements in the performance of kNN classification are
demonstrated through experiments on synthetic and real world datasets, with com-
parisons made with several state-of-the-art metric learning solutions. Our SVM-
based models also achieve significant improvements over traditional linear and
kernel SVMs with the same datasets.

1 Introduction

Many machine learning and data mining algorithms rely on Euclidean metrics to compute pair-wise
dissimilarities, which assign equal weight to each feature component. Replacing Euclidean metric
with a learned one from the inputs can often significantly improve the performance of the algorithms
[1, 2]. Based on the form of the learned metric, metric learning (ML) algorithms can be categorized
into linear and nonlinear groups [2]. Linear models [3, 4, 5, 6, 7, 8] commonly try to estimate a
“best” affine transformation to deform the input space, such that the resulted Mahalanobis distance
would very well agree with the supervisory information brought by training samples. Many early
works have focused on linear methods as they are easy to use, convenient to optimize and less
prone to overfitting [1]. However, when handling data with nonlinear structures, linear models
show inherently limited expressive power and separation capability — highly nonlinear multi-class
boundaries often can not be well modeled by a single Mahalanobis distance metric.

Generalizing linear models for nonlinear cases have gained steam in recent years, and such
extensions have been pushed forward mainly along kernelization [9, 10, 11] and localization
[12, 13, 14, 15, 16] directions . The idea of kernelization [9, 10] is to embed the input features
into a higher dimensional space, with the hope that the transformed data would be more linearly
separable under the new space. While kernelization may dramatically improve the performance of
linear methods for many highly nonlinear problems, solutions in this group are prone to overfitting
[1], and their utilization is inherently limited by the sizes of the kernel matrices [17]. Localiza-
tion approaches focus on combining multiple local metrics, which are learned based on either local
neighborhoods or class memberships. The granularity levels of the neighborhoods vary from per-
partition [13, 14], per-class [12] to per-exemplar [15, 16]. A different strategy is adopted in the
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GB-LMNN method [18], which learns a global nonlinear mapping by iteratively adding nonlinear
components onto a linear metric. At each iteration, a regression tree of depth p splits the input space
into 2p axis-aligned regions, and points falling into the regions are shifted in different directions.
While the localization strategies are usually more powerful in accommodating nonlinear structures,
generalizing these methods to fit other classifiers than kNN is not trivial. To avoid non-symmetric
metrics, extra cares are commonly needed to ensure the smoothness of the transformed input space.
In addition, estimating geodesic distances and group statistics on such metric manifolds are often
computationally expensive.

Most of the existing ML solutions are designed based on pairwise distances, and therefore best
suited to improve nearest neighbor (NN) based algorithms, such as k-NN and k-means. Typically,
a two-step procedure is involved: a best metric is first estimated through training samples, followed
by the application of the learned metric to the ensuing classification or clustering algorithms. Since
learning a metric is equivalent to learn a feature transformation [1], metric learning can also be
applied to SVM models, either as a preprocessing step [19], or as an input space transformation
[19, 20, 21]. In [19], Xu et al. studied both approaches and found applying linear transformations
to the input samples outperformed three state-of-the-art linear ML models utilized as preprocessing
steps for SVMs. Several other transformation-based models [20, 21] have also reported improved
classification accuracies over the standard linear and kernel SVMs. However, all the models employ
linear transformations, which limit their capabilities in dealing with complex data.

In light of the aforementioned limitations and drawbacks of the existing models, we propose a new
nonlinear remedy in this paper. Our solution is a direct generalization of linear metric learning
through the application of deformable geometric models to transform the entire input space. In
this study, we choose thin-plate splines (TPS) as the transformation model, and the choice is with
the consideration of the compromise between computational efficiency and richness of description.
TPS are well-known for their remarkable versatility and representation power in accounting for high-
order deformations. We have designed TPS-based ML solutions for both kNN and SVM classifiers,
which will be presented in next two sections. To our best knowledge, this is the first work that
utilizes nonlinear dense transformations, or spatially varying deformation models in metric learning.
Our experimental results on synthetic and real data demonstrate the effectiveness of the proposed
methods.

2 Nonlinear Metric Learning for Nearest Neighbor

Many linear metric learning models are formulated under the nearest neighbor (NN) paradigm, with
the same goal that the estimated transformation would pull similar data points closer while pushing
dissimilar points apart. Our nonlinear ML model for NN is designed with the same idea. However,
instead of using a single linear transformation, we choose to deform the input space nonlinearly
through powerful radial basis functions – thin-plate splines (TPS). With TPS, nonlinear metrics are
computed globally, with smoothness ensured across the entire data space. Similarly as in linear
models, the learned pairwise distance is simply the Euclidean distance after the nonlinear projection
of the data through the estimated TPS transformation.

In this section, a pioneer Mahalanobis ML for clustering method (MMC) proposed by Xing et al.
[3] will be used as the platform to formulate our nonlinear ML solution for NN. Therefore, we will
briefly review the concept of MMC first. Then we will describe the theoretical background of the
TPS in the general context of transformations, followed by the presentation of our proposed model.

2.1 Linear Metric Learning and MMC

Given a set of training data instances X = {xi| xi ∈ Rd, i = 1, · · · , n}, where n is the number of
training samples, and d is the number of features that a data instance has, the goal of ML is to learn a
“better” metric function D : X × X → R to the problem of interest with the information carried by
the training samples. Mahalanobis metric is one of the most popular metric functions used in existing
ML algorithms [4, 5, 8, 7, 22, 13], which is defined by DM (xi,xj) =

√
(xi − xj)TM(xi − xj).

The control parameter M ∈ Rd×d is a square matrix. In order to qualify as a valid (pseudo-)metric,
M has to be positive semi-definite (PSD), denoted as M � 0. As a PSD matrix, M can be decom-
posed as M = LTL, where L ∈ Rk×d and k is the rank of M . Then, DM (xi,xj) can be rewritten
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as follows:

DM (xi,xj) =
√

(xi − xj)TLTL(xi − xj) =
√

(Lxi − Lxj)T (Lxi − Lxj). (1)

Eqn. (1) explains why learning a Mahalanobis metric is equivalent to learning a linear transformation
function and computing the Euclidean distance over the transformed data domain.

With the side information embedded in the class-equivalent constraints P =
{(xi,xj)| xi and xj belong to the same class} and class-nonequivalent constraints N = {(xi,xj)
| xi and xj belong to different classes}, MMC model formulates the problem of ML into the
following convex programming problem:

min
M

J(M) =
∑

xi,xj∈P

D2
M (xi,xj) s.t. M � 0,

∑
xi,xj∈N

D2
M (xi,xj) ≥ 1. (2)

The objective function aims at improving the subsequent NN based algorithms via minimizing the
sum of distances between similar training data, while keeping the sum of distances between dissim-
ilar ones large. Note that, besides the PSD constraint on M , an additional constraint on the training
samples in N is needed to avoid trivial solutions for the optimization. To solve this optimization
problem, the projected gradient descent method is used, which projects the estimated matrix back to
the PSD group whenever it is necessary.

2.2 TPS

Thin-plate splines (TPS) are the high-dimensional analogs of the cubic splines in one dimension,
and have been widely used as an interpolation tool in the research of data approximation, surface
reconstruction, shape alignments, etc. When it is utilized to align a set of n corresponding point-
pairs ui and vi, (i = 1, . . . , n), a TPS transformation is a mapping function f(x) : Rd → Rd within
a suitable Hilbert space H, that matches ui and vi, as well as minimizes a smoothness TPS penalty
functional Jd

m(f) : H → R (will be given in Eqn. 3).

Typically, the problem of finding f can be decomposed into d interpolation problems, finding com-
ponent thin plate splines fk, k = 1, . . . , d, separately. Suppose the unknown interpolation function
fk : Rd → R belongs to the Sobolev space Hm(Ω), where m is an unknown positive integer and
Ω is an open subset of Rd, TPS transformations minimize the smoothness penalty functional of the
following general form:

Jd
m(f) =

∫
||Dmf ||2dX =

∑
a1+···+ad=m

m!

a1! . . . ad!

∫
. . .

∫
(

∂mf

∂xa1
1 . . . ∂x

ad
d

)2dx1 . . .dxd (3)

where Dmf is the matrix of m-th order partial derivatives of f , with ak being positive, and dX =
dx1...dxd, where xj are the components of x. The penalty functional is the generalized form for
the space integral of the squared second order derivatives of the mapping function. We will suppose
the mapping function f ∈ C, a space of functions whose partial derivatives of total order m are in
L2(Rd). To have the evaluation functionals bounded in C, we need C to be a reproducing kernel
Hilbert space (r.k.h.s.), endowed with the seminorm Jd

m(f). For this, it is necessary and sufficient
that 2m− d > 0. The null space of Jd

m(f) consists of a set of polynomial functions φm with
maximum degree of (m−1), so the dimension of this null space isN0 = (d+m−1)!/(d!(m−1)!).

The main problem of TPS is that N0, the dimension of the null space, increases exponentially with
d due to the requirement of 2m− d > 0. To solve this problem, Duchon [23] proposed to replace
Jd
m(f) by its weighted squared norm in Fourier space. Since the Fourier transform, denoted as F(.)

is isometric, the penalty functional Jd
m(f) can be replaced by its squared norm in Fourier space:∫

||Dmf(t))||2dX ⇐⇒
∫
F(Dmf(τ))||2dτ (4)

By adding a weighting function, Duchon introduced a new penalty functional to solve the exponen-
tial growth problem of the dimension for TPS’ null space, which is defined as

Jd
m,s(f) =

∫
|τ |2s||F(Dmf(τ))||2dτ, (5)
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provided that 2(m+s)−d > 0 and 2s < d. As suggested by [23], one can select an appropriate s to
have a lower dimension for the null space of Jd

m,s(f), with the maximum degree of the polynomial
functions φm,s spanned in this null space being decreased to 1.

The classic solution of Eqn. (5) has a representation in terms of a radial basis function (TPS inter-
polation function),

fk(x) =

n∑
i=1

ψiG(||x− xi||) + `Tx + c, (6)

where ||.|| denotes the Euclidean norm and {ψi} are a set of weights for the nonlinear part; ` and
c are the weights for the linear part. The corresponding radial distance kernel of TPS, which is the
Green’s function to solve Eqn. (5), is as follows:

G(x,xi) = G(||x− xi||) ∝
{
||x− xi||2(m+s)−dln||x− xi||, if 2(m+ s)− d is even;
||x− xi||2(m+s)−d, otherwise.

(7)

For more details about TPS, we refer readers to [23, 24].

2.3 TPS Metric Learning for Nearest Neighbor (TML-NN)

The TPS transformation for point interpolation, as specified in Eqn. (6), can be employed as the
geometric model to deform the input space for nonlinear metric learning. Such a transformation
would ensure certain desired smoothness as it minimizes the bending energy Jd

m(f) in Eqn. (3).
Within the metric learning setting, let x be one of the training samples in the original feature space
X of d dimensions, and f(x) be the transformed destination of x, also of d dimensions. Through a
straightforward mathematical manipulations [25], we can get f(x) in matrix format:

f(x) = Lx + Ψ

G(x,x1)
· · ·

G(x,xp)

 = Lx + Ψ ~G(x), (8)

where L (size d × d) is a linear transformation matrix, corresponding to L in Mahalanobis metric,
Ψ (size d × p) is the weight matrix for the nonlinear parts, and p is the number of anchor points
(x1, . . . ,xp) to compute the TPS kernel. Usually, we can use all the training data points as the
anchor points. However, in practice, p anchor points are extracted via different methods to describe
the whole input space under the consideration of computational cost, such as k-medoids method
used in [16].

The goal of our ML solution is also pulling the samples of the same class closer to each other while
pushing different classes further away, directly through a TPS nonlinear transformation as described
in Eqn. (8). This can be achieved through the following constrained optimization:

min
L,Ψ

J =
∑

xi,xj∈P

‖f(xi)− f(xj)‖2 + λ‖Ψ‖2F

s.t.
∑

xi,xj∈N

‖f(xi)− f(xj)‖2 ≥ 1;

p∑
i=1

Ψk
i = 0,

p∑
i=1

Ψk
i x

k
i = 0, ∀k = 1 . . . d.

(9)

f is in the form of Eqn. (8); Ψk is the kth column of Ψ; xk is the kth component of x. Compared with
MMC, another component ‖Ψ‖2F , the squared Frobenius norm of Ψ, is added to the objective func-
tion as a regularizer to prevent overfitting. λ is the weighting factor to control the importance of two
components. Similarly as in MMC, the nonequivalent constraint

∑
xi,xj∈N ‖f(xi)− f(xj)‖2 ≥ 1

is to impose a scaling control to avoid trivial solutions. The other two equivalent constraints with
respect to Ψ is to ensure that the elastic part of the transformation is zero at infinity [26].

Due to the nonlinearity of TPS, it is difficult to analytically solve this nonlinear constrained problem.
Alternatively, we can use a gradient based constrained optimization solver 1 to get a local minimum
for Eqn. (9) . The complexity of our TML-NN model is dominated by the computation of the TPS
kernel, which isO(p∗n2), as well as the rate of convergence of the chosen gradient based optimizer.
n is the number of training samples, and p is the number of anchor points.

1We use a SQP based constrained optimizer “fmincon” in Matlab Optimization Toolbox.
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Figure 1: (a) original inputs with coordinate grids; (b) transformed
data and the deformation field generated by TML-NN.

To demonstrate the ability of
TML-NN in handling nonlin-
ear cases, we conducted a simi-
lar experiment used in the GB-
LMNN method [18]. Fig. 1.(a)
shows a synthetic dataset con-
sisting of inputs sampled from
two concentric circles (in blue
dots and red diamonds), each of
which defines a different class
membership. Global linear
transformations in linear met-
ric learning are not sufficient to
improve the accuracy of kNN
(k = 1) classification on this
data set. As contrast, by utiliz-
ing TPS to model the underly-
ing nonlinear transformation, as shown in Fig. 1.(b), we can easily enlarge the separation between
outer and inner circles, leading to improved classification rate (would be 100% for 1NN).

3 TPS Metric Learning for Support Vector Machines (TML-SVM)

In this section, we present how to generalize our TPS metric learning model for SVMs. Similar as
in [20], we formulate our model under the Margin-Radius-Ratio bounded SVM paradigm, which
generalizes the traditional SVMs by bounding the estimation error [27]. Given training dataset
X = {xi| xi ∈ Rd, i = 1, · · · , n} together with the class label information yi ∈ {−1,+1},
our proposed TML-SVM aims to simultaneously learn the nonlinear transformation as described in
Eqn. (8) and a SVM classifier, which can be formulated as follows:

min
L,Ψ,w,b

J =
1

2
‖w‖2 + C1

n∑
i=1

ξi + C2‖Ψ‖2F

s.t. yi(w
T f(xi) + b) = yi(w

T (Lxi + Ψ ~G(xi)) + b) ≥ 1− ξi, ∀i = 1 . . . n; (I)
ξi ≥ 0, ∀i = 1 . . . n; (II)

‖f(xi)− xc‖2 = ‖Lxi + Ψ ~G(xi)− xc‖2 ≤ 1, ∀i = 1 . . . n; (III)
p∑

i=1

Ψk
i = 0,

p∑
i=1

Ψk
i x

k
i = 0, ∀k = 1 . . . d. (IV)

(10)

The objective function combines the regularizer w.r.t. Ψ for TPS transformation with the traditional
soft margin SVMs. C1 and C2 are two trade-off hyper-parameters. The first two nonequivalent
constraints (I and II) are the same as used in traditional SVMs. The third nonequivalent constraint
(III) is a unit-enclosing-ball constraint, which forces the radius of minimum-enclosing-ball to be
unit in the transformed space and avoids trivial solutions. xc is the center of all samples. In practice,
we can simplify the unit-enclosing-ball constraint to ‖f(xi)‖2 ≤ 1 through a preprocessing step to
centralize the input data: xi ← xi − 1

n

∑n
i=1 xi. The last two equivalent constraints are used to

maintain the properties for TPS transformation at infinity, similar as in Eqn. (9).

To solve this optimization problem, we propose an efficient EM-like iterative minimization al-
gorithm by updating {w, b} and {L,Ψ} alternatively. With {L,Ψ} fixed, f(xi) is explicit, and
Eqn. (10) can be reformulated as:

min
w,b

J =
1

2
‖w‖2 + C1

n∑
i=1

ξi s.t. yi(w
T f(xi) + b) ≥ 1− ξi, ξi ≥ 0, ∀i = 1 . . . n. (11)

This becomes exactly the primal form of soft margin SVMs, which can be solved by off-the-shelf
SVM solvers. With {w, b} fixed, Eqn. (10) can be reformulated as:
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min
L,Ψ

J = C1

n∑
i=1

ξi + C2‖Ψ‖2F

s.t. yi(w
T f(xi) + b) ≥ 1− ξi, ξi ≥ 0, ∀i = 1 . . . n;

‖f(xi)‖2 ≤ 1, ∀i = 1 . . . n;

p∑
i=1

Ψk
i = 0,

p∑
i=1

Ψk
i x

k
i = 0, ∀k = 1 . . . d.

(12)

By using hinge loss function, we can eliminate variables ξi, and reformulate Eqn. (12) as:

min
L,Ψ

J = C1

n∑
i=1

max[0, 1− yi(wT f(xi) + b)]2 + C2‖Ψ‖2F

s.t. ‖f(xi)‖2 ≤ 1, ∀i = 1 . . . n;

p∑
i=1

Ψk
i = 0,

p∑
i=1

Ψk
i x

k
i = 0, ∀k = 1 . . . d.

(13)

As the squared hinge loss function is differentiable, it is not difficult to differentiate the objective
function w.r.t L and Ψ. Similarly as in solving Eqn. (9), we can also use a gradient based optimizer
to get a local minimum for Eqn. (13), with the gradient computed as:

∂J

∂Ψ
=− 2C1Ψ

n∑
i=1

max[0, 1− yi(wT f(xi) + b)](yiw ~GT (xi)) + 2C2Ψ

∂J

∂L
=− 2C1Ψ

n∑
i=1

max[0, 1− yi(wT f(xi) + b)](yiwxT
i )

(14)

To sum it up, the optimal nonlinear transformation defined by {L,Ψ} along with the optimal SVM
classifier coefficients {w, b} can be obtained by an EM-like iterative procedure, as described in
Algorithm 1.

Algorithm 1 TPS Metric Learning for SVM (TML-SVM)
Input: training dataset X = {xi| xi ∈ Rd, i = 1, · · · , n},

class label information yi ∈ {−1,+1}
Initialize: Ψ = 0, L = I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Centralize the input data: xi ← xi − 1

n

∑n
i=1 xi

Iterate the following two steps:
(1) Update {w, b} with fixed {L,Ψ} :

Compute the transformed data f(xi) by following Eqn. (8)
Update {w, b} by using off-the-shelf SVM solver with input of f(xi)

(2) Update {L,Ψ} with fixed {w, b} :
Update {L,Ψ} by solving Eqn. (13) through gradient based optimizers 2

until convergence
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output: the optimal SVM classifier defined by {w, b},

the nonlinear TPS transformation defined by {L,Ψ}

3.1 Kernelization of TML-SVM

TML-SVM can be kernelized through a kernel principal component analysis (KPCA) based frame-
work, as introduced in [28, 11]. Unlike the traditional kernel trick [29], which often involves the
derivation of new mathematical formulas, KPCA based framework provides an alternative choice
that can directly utilize the original linear models. Typically, it consists of two simple stages: first,
map the input data into a kernel feature space introduced by KPCA; then, train the linear model in
this kernel space. Proved to be equivalent to the traditional kernel trick, this KPCA based framework
also provides a convenient way to speed up a learner, if a low-rank KPCA is used. Through this pro-
cedure, kernelized TML-SVM can be easily realized by directly utilizing Algorithm 1 in the mapped
KPCA space. For more details about this KPCA-based approach, we refer readers to [28, 11].

2We still use “fmincon” in Matlab to solve Eqn. (13). In practice, the convergence for the second inner step
is not necessary, so we use an early stop strategy to speed up the whole algorithm.
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4 Experimental Results

In this section, we present evaluation and comparison results of applying our proposed TPS-based
nonlinear ML methods on seven widely used datasets from UCI machine learning repository. The
details of these datasets are summarized in the leftmost column of Table 1. The three numbers in-
side the bracket indicate data size, feature dimension, and number of classes for the corresponding
dataset. All datasets have been preprocessed through normalization. To demonstrate the effec-
tiveness of our proposed nonlinear metric learning method, we firstly choose kNN method as the
baseline classifier, and compare the improvements made by TML-NN against five state-of-the-art
NN based metric learning methods; then, similar experiments are conducted to show improvements
made by our proposed TML-SVM over the traditional SVMs.

4.1 Comparisons with NN based ML solutions

The first set of experiments are within the Nearest Neighbor (NN) category. We choose k = 1 in
kNN, and the five competing metric learning methods are: Large Margin Nearest Neighbor classi-
fication (LMNN) [7], Information-Theoretic Metric Learning (ITML) [6], Neighborhood Compo-
nents Analysis (NCA) [4], GB-LMNN [18] and Parametric Local Metric Learning (PLML) [16].
The hyper-parameters of NCA, ITML, LMNN and GB-LMNN are set by following [4, 6, 7, 18]
respectively. PLML has a number of hyper-parameters, so we follow the suggestion of [16]: use a
3-fold CV to select α2 from {0.01 ∼ 1000}, and set the other hyper-parameters by its default. In our
TML-NN model, there are two hyper-parameters: the number of anchor points p and the weighting
factor λ. For p, we empirically set it to 30% of the training samples; for λ, we select it through CV
from {5−5 ∼ 525}.

Table 1: Mean and standard deviation of kNN based classification accuracy results on seven UCI
datasets. Boldface denotes the highest classification accuracy for each dataset. The superscripts
+−= in TML-NN column indicate a significant win, loss or no difference respectively based on the
pairwise Student’s t-test with the other six methods. The number in the parenthesis denotes the score
of the respective method for the given dataset.

Datasets kNN LMNN ITML NCA PLML GB-LMNN TML-NN
Iris 95.70± 2.31 95.06± 2.62 95.22± 2.56 94.68± 2.35 84.22± 4.54 95.15± 2.17 96.49± 2.32

[150/4/3] (3.5) (3.0) (3.0) (2.5) (0) (3.0) ++++++ (6.0)
Wine 95.21± 2.04 97.25± 1.80 96.90± 2.31 96.65± 2.27 96.61± 2.10 96.80± 1.94 97.28± 2.07

[178/13/3] (0.0) (4.5) (3.5) (2.5) (2.5) (3.5) +==++= (4.5)
Breast 95.35± 1.34 95.66± 1.39 95.76± 1.30 95.57± 1.13 96.18± 0.98 96.04± 1.22 95.97± 1.04

[683/10/2] (1.0) (2.0) (2.5) (1.5) (5.0) (5.0) +==+== (4.0)
Diabetes 70.58± 2.26 70.54± 2.52 68.81± 2.65 68.53± 2.71 69.04± 2.30 70.62± 2.23 71.54± 2.21

[768/8/2] (4.0) (4.0) (1.0) (1.0) (1.0) (4.0) ++++++ (6.0)
Liver 61.20± 3.96 60.79± 3.54 60.07± 4.92 62.63± 4.15 64.74± 3.99 64.81± 3.80 64.97± 4.28

[345/6/2] (1.0) (1.0) (1.0) (3.0) (5.0) (5.0) ++++== (5.0)
Sonar 84.73± 3.45 84.12± 4.13 82.14± 5.94 85.46± 3.51 87.42± 4.70 85.48± 4.04 85.35± 3.82

[208/60/2] (3.0) (1.5) (0) (3.5) (6.0) (3.5) =++=−= (3.5)
Ionosphere 85.83± 2.62 88.40± 2.54 87.45± 3.07 88.33± 2.77 91.03± 2.23 89.47± 2.70 88.79± 2.37
[351/34/2] (0) (3.0) (1.0) (3.0) (6.0) (4.5) +=+=−= (3.5)
Total Score 12.5 19.0 12.0 17.0 25.5 28.5 32.5

To better compare the classification performance, we run the experiment 100 times with different
random 3-fold splits of each dataset, two for training and one for testing. Furthermore, we conduct
a pairwise Student’s t-test with a p-value 0.05 among the seven methods for each dataset. Then, a
ranking schema from [16] is used to evaluate the relative performance of these algorithms: a method
A will be assigned 1 point if it has a statistically significantly better accuracy than another method
B; 0.5 points if there is no significant difference, and 0 point if A performs significantly worse than
B. The experiment results by averaging over the 100 runs are reported in Table 1.

From Table 1, we can see that TML-NN outperforms the other six methods in a statistically signif-
icant manner, with a total score of 32.5 points. Out of the total 42 pairwise comparisons, TML-NN
has 25 statistical wins. Furthermore, it has significantly improved the baseline method, kNN, on
six datasets out of the total seven, and performed equally well on the seventh (“Sonar”). It is also
worth pointing out that the proposed nonlinear TML-NN has 14 wins and no loss out of the total
18 comparisons against the linear ML solutions (LMNN, ITML, NCA); against the local nonlinear
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ML solutions (PLML, GB-LMNN), TML-NN has five wins and only two loss out of the total 14
comparisons.

4.2 Improvements over SVMs

To verify the effectiveness of our proposed nonlinear metric learning for SVMs, we conduct another
set of experiments on the same seven UCI datasets to compare the following four SVM models:
linear SVM (l -SVM), kernel SVM (r -SVM), our proposed TML-SVM and kernel TML-SVM. For
l -SVM, we directly utilize the off-the-shelf LIBSVM solver [30], for which the slackness coeffi-
cient C are tuned through 3-fold CV from {2−5 ∼ 215}. For r -SVM, we choose the Gaussian
kernel and select the kernel width σ through CV from {dmin ∼ 20dmin}, where dmin is the mean
of the distances between a input data to its nearest neighbor. TML-SVM has three hyper-parameters
to be tuned: the number of anchor points p and the tradeoff coefficients C1 and C2. For p, we
still empirically set it to 30% of the training samples; for C1 and C2, we select them through CV
from {2−5 ∼ 215} and {5−5 ∼ 525} respectively. In kernel TML-SVM, we use the same Gaus-
sian kernel width σ selected in r -SVM for each dataset, and tune the other parameters C1 and
C2 similarly as in TML-SVM. To deal with multi-class classification, we apply the “one-against-
one” strategy on top of binary TML-SVM and kernel TML-SVM, the same as used in LIBSVM.

Table 2: Mean and standard deviation of SVMs based classification
accuracy results on seven UCI datasets. The settings and notations
of the comparison scores are identical to those in Table 1.

Datasets l-SVM TML-SVM r-SVM kernel TML-SVM
Iris 95.94± 2.42 96.67± 2.31 96.09± 2.34 96.81± 2.43

−=− (0.5) +==(2.0) ==−(1.0) +=+(2.5)
Wine 97.20± 1.86 98.97± 1.25 98.07± 1.80 98.46± 1.46

−−− (0) +++(3.0) +−−(1.0) +−+(2.0)
Breast 96.73± 0.97 97.15± 0.88 97.06± 0.83 97.44± 0.98

−−− (0) +=−(1.5) +=−(1.5) +++(3.0)
Diabetes 76.66± 2.18 77.24± 1.92 77.07± 2.05 77.69± 2.20

−=− (0.5) +==(2.0) ==−(1.0) +=+(2.5)
Liver 69.06± 3.79 72.62± 3.13 72.35± 3.76 73.40± 3.58

−−− (0) +==(2.0) +=−(1.5) +=+(2.5)
Sonar 75.78± 4.16 82.16± 3.79 84.96± 4.28 86.54± 3.47

−−− (0) +−−(1.0) ++−(2.0) +++(3.0)
Ionosphere 87.75± 2.42 92.94± 2.06 94.36± 1.87 95.12± 1.72

−−− (0) +−−(1.0) ++−(2.0) +++(3.0)
Total Score 1.0 12.5 10.0 18.5

We adopt the same experi-
mental setting and statistical
ranking scheme as in the NN
based classification, and re-
port the results averaged from
100 runs in Table 2. It is ev-
ident that combining our pro-
posed nonlinear metric learn-
ing has significantly improved
the performance of both l -
SVM and r -SVM. To be spe-
cific, TML-SVM outperforms
l -SVM on all seven datasets;
kernel TML-SVM also fares
better than r -SVM on all
seven datasets. Furthermore,
it is worth pointing out that
TML-SVM has significantly
improved l -SVM’s classifica-

tion rates, performing better than or comparable to r -SVM on five datasets (“Iris”, “Wine”, “Breast”,
“Diabetes”, and “Liver”).

5 Conclusion

In this paper, we present two nonlinear metric learning solutions, for kNN and SVMs respectively,
based on geometric transformations. The novelty of our approaches lies in the fact that it generalizes
the linear or piecewise linear transformations in traditional metric learning solutions to a globally
smooth nonlinear deformation in the input space. The geometric model used in this paper is thin-
plate splines, and it can be extended to other radial distance functions. To explore other types of
geometric models from the perspective of conditionally positive definite kernels is the direction of
our future efforts. We are also interested in investigating a more efficient numerical optimization
scheme (or the analytic form) for the proposed TPS based methods.
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