
Twin Neural Networks for the Classification of Large Unbalanced
Datasets

Jayadeva, Himanshu Pant, Sumit Soman and Mayank Sharma
Department of Electrical Engineering,

Indian Institute of Technology, Delhi, India.
Email: {jayadeva, eez138524, eez127509, eez142368}@ee.iitd.ac.in 12

Abstract

Twin Support Vector Machines (TWSVMs) have emerged an efficient alternative to Support Vector
Machines (SVM) for learning from imbalanced datasets. The TWSVM learns two non-parallel
classifying hyperplanes by solving a couple of smaller sized problems. However, it is unsuitable
for large datasets, as it involves matrix operations. In this paper, we discuss a Twin Neural
Network (Twin NN) architecture for learning from large unbalanced datasets. The Twin NN also
learns an optimal feature map, allowing for better discrimination between classes. We also present
an extension of this network architecture for multiclass datasets. Results presented in the paper
demonstrate that the Twin NN generalizes well and scales well on large unbalanced datasets.

Keywords. Twin SVM, Neural Network, Unbalanced Datasets, Large Datasets, Large scale learn-
ing, Skewed data

1. Introduction

Support Vector Machines (SVMs) have been widely used as a machine learning technique for a
wide variety of applications. In principle, the SVM aims at finding a maximum-margin hyperplane
that best separates samples of two classes. When the two classes are unbalanced or skewed in terms
of the number of samples, the SVM is usually biased towards the larger class. The Twin SVM [11]
(TWSVM) finds two non-parallel hyperplanes, each of which as as close as possible to points of
one class, while being at a distance of at least unity from points of the other class. This involves
solving two smaller sized Quadratic Programming Problems (QPPs). Each of the QPPs involves
samples of only one of the two classes in the constraints. Consequently, the individual hyperplanes
are insensitive to the relative sizes of the two classes. In contrast, a single hyperplane would tend
to be biased towards the larger class.

Several extensions of the TWSVM have been proposed in the literature. Reviews of the Twin
SVM and its extensions have appeared in AI Review (2014) [6], the Annals of Data Science (2014)
[23], and the Egyptian Informatics Journal (2015) [24]. Some of the extensions include Knowledge
based Least Squares TWSVM [1], Margin Based TWSVM [20], ε-TWSVM [22], Twin Parametric
Margin Classifier [17], Least-squares Twin Parametric-Margin Classifier [21], Twin Support Vec-
tor Hypersphere Classifier [18], Least-squares Twin Support Vector Hypersphere Classifier [14],
Structural TWSVM [19] among others. The TWSVM has also been used for regression [12], and

preprint submitted to arXiv January 30, 2018

ar
X

iv
:1

70
5.

00
34

7v
2

 [
cs

.L
G

]
 2

7
Ja

n
20

18

has proven to be efficient even in the primal formulation [16, 15]. A comprehensive review is also
available in [10].

w
(1)
(+1)

w
(2)
(+1)

w
(n)
(+1)

b(+1)

φ(x
(i)
(+1))

x
(i)
(+1)

wT
(+1)φ(x)+b(+1)

||w(+1)||

wT
(−1)ψ(x)+b(−1)

||w(−1)||

y =

+1 :

wT(+1)x+b(+1)

||w(+1)|| ≤
wT(−1)x+b(−1)
||w(−1)||

−1 : otherwise

Network 1 Network 2

w
(1)
(−1)

w
(2)
(−1)

w
(n)
(−1)

b(−1)

ψ(x
(i)
(−1))

x
(i)
(−1)

Figure 1: Architecture of the Twin Neural Network

However, the TWSVM dual formulation (which is conventionally used) requires the use of several
matrix operations including matrix inversion [11, Eqn (28)-(29)], which is not practical to implement
for large datasets. These operations make it difficult to derive a fast update rule like the SMO or
1SMO [9], and detract from the numerical stability of the algorithm. In this paper, we present a
novel neural network architecture called the Twin Neural Network (Twin NN), whose architecture
is summarized in Fig. 1. The Twin NN is effective in learning from unbalanced datasets, and
is significantly faster than the Twin SVM. The neural network also optimizes the feature map,
yielding better generalization. It should be emphasized that the Twin NN is not just the extension
of the Twin SVM into a neural net framework. Note from Fig. 1 that the class of a sample is
determined by comparing the distances of the sample from the separating hyperplanes defined at
the output layer.

Twin SVM Twin Neural Network

· Requires matrix inversion.

· Fixed kernel function

· Unsuitable for large datasets. · Scalable · Implicit kernel optimization · Better generalization

Figure 2: Comparing TWSVM and Twin NN

2

The rest of the paper is organized as follows. Section 2 discusses the formulation for the TWSVM
and mentions the dual formulation which is commonly used in practice. Section 3 introduces the
Twin Neural Network formulation, and its extension for multiclass datasets is discussed in Section
4. This is followed by Section 5 which shows experimental results to benchmark the performance
of the proposed network. Finally, Section 6 presents the conclusions and future work.

2. The Twin Support Vector Machine

We begin by motivating the TWSVM from the classical SVM formulation, based on the inability
of SVMs to classify unbalanced datasets efficiently. Consider a binary classification dataset of N
samples in M dimensions X = {x(1), x(2), ..., x(N)|x(i) ∈ RM ,∀i = 1, 2, ..., N}, with corresponding
labels Y = {y(1), y(2), ..., y(N)|y(i) ∈ {−1,+1},∀i = 1, 2, ..., N}. We can determine the number of
points in each class from this dataset. Let these be denoted as A = {x(i)|y(i) = +1} for samples
of class (+1) and B = {x(i)|y(i) = −1} for samples of class (−1). The soft-margin Support Vector
Machine (SVM) classifier has the following formulation.

min
w,b,ξ

1

2
||w||2 + C

l∑

i=1

ξi (1)

subject to, y(i)(wT (x(i) + b)) ≥ 1− ξi,
ξi ≥ 0, i = 1, . . . , l.

where the separating hyperplane is given by the vector [w, b], C is the upper bound, ξi represents
the slack variables for the soft-margin formulation and αi represents the Lagrange multipliers.

The SVM finds a maximum margin separating hyperplane for the binary classification dataset.
This tends to be biased in cases when the dataset is unbalanced towards the class which has more
number of samples. This is undesirable for better generalization on such unbalanced datasets. In
order to address this situation, the TWSVM evolved as a viable alternative.

The TWSVM determines two non-parallel separating hyperplanes, each of which is as close
as possible to points of one class while being at a distance of at least unity from points of the
other class. Let these hyperplanes be denoted by the coefficient vectors w(+1), w(−1) and bias terms
b(+1), b(−1) corresponding to classes (+1) and (−1) respectively. The TWSVM formulation thus
involves solving the set of QPPs given by Eqns. (2)-(7).

min
w(+1),b(+1),q

1

2
‖Aw(+1) + e+1b(+1)‖2 + C(+1)e

T
−1q, (2)

s.t.− (Bw(+1) + e−1b(+1)) + q ≥ e−1 (3)

q ≥ 0 (4)

min
w(−1),b(−1),q

1

2
‖Bw(−1) + e−1b(−1)‖2 + C(−1)e

T
+1q, (5)

s.t.− (Aw(−1) + e+1b(−1)) + q ≥ e+1 (6)

q ≥ 0 (7)

Here, data belonging to classes (+1) and (−1) are represented by matrices A[NA×M] and
B[NB×M] respectively, where NA and NB are the number of points in each class such that NA+NB =

3

N . e(+1) and e(−1) are vectors of ones of appropriate dimensions, q represents the error variable
associated with the data point and C(+1), C(−1)(> 0) are hyperparameters. It may be noted here
that each of the optimization problems solved for the TWSVM has constraints of only the points
belonging to one class, as opposed to the conventional SVM which has points of both classes in the
constraints. This makes the TWSVM faster than the conventional SVM.

For a test point x, the prediction y is computed by a distance measure based on these two
hyperplanes. Essentially, the closer the test point is to one of these hyperplanes, the corresponding
class is assigned to it. This is summarized by Eqn. (8).

y =

{
+1 : wT(+1)x+ b(+1) ≤ wT(−1)x+ b(−1)
−1 : otherwise

(8)

In practice, it is more efficient to solve the dual formulation for the TWSVM, which is given by
the Eqns. (9)-(10).

max
α

eT2 α−
1

2
αTG(HTH)

−1
GTα (9)

s.t. 0 ≤ α ≤ c1
max
β

eT1 β −
1

2
βTP (QTQ)

−1
PTβ (10)

s.t. 0 ≤ β ≤ c2

Here, H = P = [A, e(+1)], G = Q = [B, e(−1)], u = [w(+1) b(+1)]
T , v = [w(−1) b(−1)]T . As in the

case of SVMs, the kernel formulation for the TWSVM is also possible, where the input dataset X
is mapped to another feature space (often infinite dimensional) to introduce linear separability in
the dataset samples in the mapped feature space. This is typically accomplished using a mapping
function denoted by φ(·). The separating hyperplanes are then determined in this mapped space,
which is often called as the kernel space.

However, it can be seen from the dual formulation of the TWSVM in Eqns. 9-10 that there
is a requirement for matrix inversion. This makes it unfeasible for large datasets, where such
computations require large memory and are often intractable. Hence, we look for an approach for
using the TWSVM within a neural network framework, that would not require such computations
thereby making it scalable for large datasets.

3. The Twin Neural Network Formulation

We consider a three-layer neural network to motivate the formulation of the Twin Neural Net-
work, as shown in Fig. 1, whose structure is described as follows. The input layer takes the training
samples x(i), i = 1, 2, ..., N and transforms it to a space φ(·) by the neurons of the hidden layer.
The final or output layer of this network learns a classifier in the feature space denoted by φ(·), and
the classifier hyperplane coefficients (weight vector w and bias b are used to arrive at the prediction
for a test sample.

For the case of an unbalanced dataset, we propose the formulation of a Twin Neural Network,
where two such networks are trained, whose error functions are denoted by E(+1) and E(−1). These
are defined as shown in Eqns. (11)-(12).

4

E(+1) =
1

2×NB

NB∑

i=1

(t(i) − y(i))2

+
C(+1)

2×NA

NA∑

i=1

(wT(+1)φ(x
(i)
(+1)) + b(+1))

2 (11)

E(−1) =
1

2×NA

NA∑

i=1

(t(i) − y(i))2

+
C(−1)

2×NB

NB∑

i=1

(wT(−1)φ(x
(i)
(−1)) + b(−1))

2 (12)

To minimize the error, we set the corresponding derivatives to zero to obtain update rules for the
weight vector w and bias b. The derivatives w.r.t. w(+1) and w(−1) are shown in Eqns. (13)-(14),
which correspond to the weight update rules for our Twin Neural Network.

∂E(+1)

∂w(+1)
=

1

NB

NB∑

i=1

(t(i) − y(i))(1− y2(i))φ(x
(i)
(−1))

+
C(+1)

NA

NA∑

i=1

(wT(+1)φ(x
(i)
(+1)) + b(+1))φ(x

(i)
(+1)) (13)

∂E(−1)
∂w(−1)

=
1

NA

NA∑

i=1

(t(i) − y(i))(1− y2(i))φ(x
(i)
(−1))

+
C(−1)
NB

NB∑

i=1

(wT(−1)φ(x
(i)
(+1)) + b(−1))φ(x

(i)
(−1)) (14)

Derivatives w.r.t b(+1) and b(−1) are shown in Eqns. (15)-(16), which are used as the update
rule for the bias terms in our Twin Neural Network.

∂E(+1)

∂b(+1)
=

1

NB

NB∑

i=1

(t(i) − y(i))(1− y2(i))

+
C(+1)

NA

NA∑

i=1

(wT(+1)φ(x
(i)
(+1)) + b(+1)) (15)

∂E(−1)
∂b(−1)

=
1

NA

NA∑

i=1

(t(i) − y(i))(1− y2(i))

+
C(−1)
NB

NB∑

i=1

(wT(−1)φ(x
(i)
(−1)) + b(−1)) (16)

5

Based on these, the weights and bias of the hyperplane are updated across the iterations until
these hyperplane parameters converge. The prediction on a test point x is obtained as follows.
First, the point is mapped to the space φ(·) by the hidden layer. Then for the output layer, the
label y is predicted using Eqn. 17.

y =

{
+1 :

wT
(+1)φ(x)+b(+1)

||w(+1)|| ≤ wT
(−1)φ(x)+b(−1)

||w(−1)||
−1 : otherwise

(17)

4. Twin Neural Network for Multi-class Datasets

The Twin Neural Network approach can also be extended to multi-class datasets where the
target label yi ∈ {A,B, ..,K} can belong to one among K classes for the various samples. The
Twin NN for multi-class datasets is realized by training K different networks, each of which uses
a cost function which allows it to correctly classify samples of that class. The architecture is
summarily illustrated in Fig. 3. Here, each class is associated with multiple hyperplanes, and
consequently, multiple classifier neurons, e.g. class A has neurons with outputs labelled as zA1 , zA2 ,
..., zAp . While the figure shows an identical number of output neurons for each class, it is possible
to have a different number for each class. Each output neuron for a given class is associated with
one hyperplane that passes through a number of points of that class, e.g. it may be imagined as
passing through a cluster of samples. The Twin NN allows for multiple planes associated with each
class; each of these hyperplanes passes through a number of points of the class. Consider a sample
of Class A. The Twin NN requires that for a given sample of class A, the hyperplane closest to
that sample is at a small distance from the sample (ideally, a distance of zero). At the same time,
amongst all other planes associated with other classes (not A), it requires that the closest plane is
at a distance of at least one from the sample of class A. The principle is easily extended to samples
of any given class.

As shown in the figure, let NNA, NNB , ..., NNK denote the sub-networks corresponding to
each of the classes A, B, .., K; the outputs of these sub-networks constitute the features used by
the subsequent classifier neurons for the respective class. For example, the features for Class A are
denoted by {φA1 (x), φA2 (x), ..., φAn (x)}. It may be noted that the number of features is denoted by n
identically for all classes, but this has been done for lucidity and not as a restriction. The outputs
of the classifier neurons for class A are denoted as zA1 , zA2 , ..., zAp . Note that these classifier neurons
use an activation function that passes through the origin, such as the tanh() function. The smallest
output of this set is related to the distance of the closest hyperplane (from the class A group of
classifier neurons) to the input sample. The min() operator after the classifier neurons computes
this function, and the target during training for this is 0. In other words, we would like the closes
of all hyperplanes associated with class A to pass through a sample of class A. Similarly, we would
like the closest of all hyperplanes associated with all classes other than A to be at a distance of 1
from the sample. Note that this distance is obviously computed in the feature space defined earlier.

5. Experiments and Discussion

5.1. Results on UCI datasets

The Twin NN was tested on 20 benchmark datasets drawn from the UCI machine learning
repository [2], which included two class and multi-class datasets. Input features were scaled to lie

6

φA1 (x)

φA2 (x)

φAn (x)

zA1

zA2

zAp

minp(|zAp |)

NNA

φB1 (x)

φB2 (x)

φBn (x)

zB1

zB2

zBp

minp(|zBp |)

NNB

φK1 (x)

φK2 (x)

φKn (x)

zK1

zK2

zKp

minp(|zKp |)

NNK

xi

xi

xi

target = { 0 , xi ∈ A

target = { 0 , xi 6∈ A

min{minp{|zBp |}, , ...,min)j{|zKp |}}

{≥ 1, otherwise

{≥ 1, otherwise

Figure 3: Twin NN for multiclass datasets

7

between -1 and 1. Target set values were kept at +1 and -1 for the respective classes. For multi-
class problems, a one versus rest approach [4, pp. 182, 338] was used, with as many output layer
neurons as the number of classes. A Twin NN with one hidden layer was employed for obtaining
these results. The number of neurons in the hidden layer and the hyperparameters were optimized
by using a grid search. The K-Nearest Neighbor (KNN) imputation method was used for handling
missing attribute values, as it is robust to bias between classes in the dataset. Accuracies were
obtained using a standard 5-fold cross validation methodology. This process was repeated 10 times
to remove the effect of randomization. The accuracies were compared with the standard SVM [5],
TWSVM and Regularized Feed-Forward Neural Networks (RFNN) [3]. The results are shown in
Table 1, which clearly indicates the superior performance of the Twin NN compared to the SVM,
TWSVM and and RFNN for 15 of the 20 datasets.

S. No. Dataset Lin SVM Ker SVM RFNN Twin-NN Lin TWSVM Ker TWSVM
1 Pimaindians (768x4) 76.5 ± 2.99 77.33 ± 3.15 76.11 ± 3.60 78.19 ± 2.73 72.99 ± 6.00 75.91 ± 6.05
2 Heartstat (270x13) 83.33 ± 4.71 84.81 ± 3.56 81.01 ± 4.82 84.81 ± 2.74 83.11 ± 5.86 82.49 ± 3.42
3 Haberman (306x3) 72.22 ± 1.17 72.32 ± 1.18 73.11 ± 2.71 76.11 ± 4.54 73.53 ± 0.53 73.53 ± 0.53
4 Hepatitis (155x19) 80.00 ± 6.04 83.96 ± 4.05 81.11 ± 6.29 86.50 ± 5.98 79.11 ± 4.22 82.87 ± 1.71
5 Ionosphere (351x34) 87.82 ± 2.11 95.43 ± 2.35 86.21 ± 4.28 94.01 ± 1.87 85.55 ± 2.93 88.92 ± 1.52
6 Transfusion (748x4) 76.20 ± 0.27 76.60 ± 0.42 76.01 ± 1.57 78.07 ± 1.24 76.2 ± 0.20 76.60 ± 0.42
7 ECG (132x12) 84.90 ± 5.81 87.20 ± 8.48 86.25 ± 6.64 91.73 ± 4.75 84.32 ± 3.18 84.88 ± 2.19
8 Voting (435x16) 93.69 ± 0.96 96.56 ± 1.13 94.47 ± 1.90 96.1 ± 1.5 93.11 ± 1.41 95.32 ± 1.11
9 Fertility (100x9) 85.03 ± 6.03 88.03 ± 2.46 87.91 ± 6.51 88.03 ± 2.46 65.95 ± 3.97 88.03 ± 2.46
10 Australian (690x14) 85.50 ± 4.04 86.51 ± 3.96 85.24 ± 3.52 87.97 ± 3.89 85.71 ± 4.11 85.67 ± 1.02
11 CRX (690x15) 69.56 ± 0 69.56 ± 0 68.14 ± 0.94 70.5 ± 1.62 65.56 ± 0.34 69.57 ± 0
12 Mamm-masses (961x5) 78.87 ± 2.14 83.25 ± 3.77 77.96 ± 2.00 80.75 ± 2.37 78.51 ± 1.10 80.11 ± 1.23
13 German (1000x20) 74.1 ± 2.77 75.20 ± 2.58 75.8 ± 2.88 76.3 ± 1.35 71.99 ± 5.11 72.87 ± 4.71
14 PLRX (182x12) 71.44 ± 1.06 72.52 ± 0.44 71.05 ± 3.54 72.01 ± 1.94 72.08 ± 6.7 71.44 ± 1.06
15 SONAR (208x60) 76.02 ± 6.70 87.02 ± 6.47 86.62 ± 6.90 88.53 ± 5.27 76.11 ± 3.8 79.35 ± 7.11
16 Housevotes (436x16) 95.88 ± 1.90 96.56 ± 1.13 95.56 ± 1.56 97.02 ± 1.00 94.61 ± 1.21 96.32 ± 2.71
17 Balance (576x4) 94.61 ± 1.68 99.82 ± 0.38 97.39 ± 2.39 97.70 ± 1.93 94.99 ± 1.7 97.11 ± 2.42
18 Blogger (100x5) 70.93 ± 12.4 85.82 ± 8.48 79.50 ± 9.35 86.01 ± 4.22 72.11 ± 1.03 80.87 ± 1.11
19 IPLD (583x10) 71.35 ± 0.39 71.35 ± 0.39 71.05 ± 4.20 73.11 ± 1.64 69.97 ± 1.16 71.35 ± 0.48
20 Heart Spectf (267x44) 78.89 ± 1.02 79.16 ± 1.23 79.03 ± 1.17 83.34 ± 3.4 78.41 ± 2.17 79.51 ± 1.70

Table 1: Results on UCI datasets for the Twin NN.

In addition, we also present a comparative analysis of the performance of the Twin NN on
UCI benchmark datasets w.r.t. other approaches in terms of p-values determined using Wilcoxon’s
signed ranks test [25]. The values for the Wilcoxon signed ranks test. The Wilcoxon Signed-Ranks
Test is a measure of the extent of statistical deviation in the results obtained by using an approach.
A p-value less than 0.05 indicates that the results have a significant statistical difference with the
results obtained using the reference approach, whereas p-values greater than 0.05 indicate non-
significant statistical difference. The p-values for the approaches considered are shown in Table 2,
which clearly indicates that the Twin NN works better than the reference approaches.

To verify that the results on the UCI datasets are independent of the randomization due to the
data distribution across folds, we also performed the Friedman’s test [8]. The p-value is 3.77×10−14

(< 0.05), implying that the superior results of the Twin NN are not due to chance, and are clearly
a consequence of the approach used rather than the datasets.

5.2. Results on highly unbalanced datasets

The key benefit obtained by using the Twin NN is better generalization for unbalanced datasets.
To establish this, we evaluate the Twin NN on several unbalanced datasets [13, 26, 7], which are
summarized in Table 3. It may be noted here that the class imbalance has been introduced in

8

S.No Algorithm p value
1 Lin SVM 8.18E-05
2 Ker SVM 3.80E-02
3 RFNN 8.84E-05
4 Lin TWSVM 1.01E-04
5 Ker TWSVM 1.31E-04

Table 2: Wilcoxon signed ranks test for the Twin NN

these datasets by considering the multi-class datasets as separate binary datasets using one-v/s-
rest approach. Thus for a dataset having N classes and M samples per class, we can in principle
generate N datasets, each of which has a class ratio of M : (N − 1) ·M . Each of these possible
datasets has been denoted as “GenN” suffixed to the dataset name in Table 3, where N represents
the corresponding class w.r.t. which imbalance has been induced in the dataset. The procedure to
compute the accuracies is illustrated in Fig. 4.

Generate unbalanced dataset

Divide into 5 subsets

for 5-fold cross validation

Train classifier on all-but-one folds.

Test on the remaining fold.

Compute performance measures.

Repeat 5 times

Repeat 10 times.

Perform Friedman’s Test

Figure 4: Flowchart for computing accuracy of unbalanced dataset.

For evaluating the performance of the Twin NN on unbalanced datasets, measures other than
the classification accuracy are often used in practice. These provide a better understanding of the
performance of the learning algorithm taking into consideration the skewness in the dataset. To
define these measures, we use four basic quantities, True Positives (TP), True Negatives (TN),
False Positives (FP) and the False Negatives (FN). TP is the number of samples whose class label
and predicted label are “true” and TN is the number of samples whose class and predicted labels
are “false”. Correspondingly, we use FP for the samples whose class label is “false” and predicted
label is “true”, and vice-versa for FN . These are schematically illustrated in the confusion matrix
as shown in Fig. 5.

9

S. No. Dataset Generated Source Area Sample Ratio No of Samples Attributes
1 Abalone Gen1 UCI, link Life 1:9 391 : 3,786 1N,7C
2 Letter Gen UCI Computer 1:26 734 :19,266 16
3 Yeast Gen UCI Life 1:28 51 : 1,433 8
4 Abalone Gen2 UCI Life 1:129 32 : 4,145 8
5 Coil 2000 UCI KDD Business 1:15 586 : 9,236 85
6 Car Eval Gen1 UCI Business 1:25 65 : 1,663 6N, 21 C
7 Wine Quality Gen UCI Chemistry 1:26 181 : 4,715 11C
8 Forest CovType Gen UCI KDD Nature 1:210 2747 : 578,265 44N,10C
9 Ozone Level UCI Environment 1:33 73 : 2,463 72C
10 Pen Digits Gen UCI Computer 1:9 1,055 : 9,937 16C
11 Spectrometer Gen UCI Physics 1:10 45 : 486 93C
12 Statlog Gen UCI Nature 1:9 626 : 5,809 36C
13 Libras Gen UCI Physics 1:14 24 :336 90C
14 Optical Digits Gen UCI Computer 1:9 554 : 5,066 64C
15 Ecoli Gen UCI Life 1:8 35 : 301 7C
16 Car Evaluation Gen2 UCI Business 1:11 134 : 1,594 6N
17 US Crime Gen UCI Economics 1:12 150 : 1,844 122C
18 Protein homology KDD CUP 2004 Biology 1:111 1,296 : 144,455 74C
19 Scene Gen LibSVM Data Nature 1:12 177 : 2,230 294C
20 Solar Flare Gen UCI Nature 1:19 68 : 1,321 10N

Table 3: Description of large unbalanced datasets, attributes are numeric (N) or categorical (C)

TP

FP

FN

TN

(+1)

(+1) (-1)

(-1)

Predicted Label

True Label

Figure 5: Confusion Matrix

Based on these, the basic measures are defined as given by Eqns. (18)-(22). Also, PC =
TP + FN , NC = FP + TN , PR = TP + FP and NR = FN + TN .

Accuracy (Acc):=
TP + TN

TP + TN + FP + FN
(18)

True Positive Rate (TPR):=
TP

TP + FN
=
TP

PC
(19)

True Negative Rate (TNR):=
TN

TN + FP
=
TN

NC
(20)

Positive Prediction Value (PPV):=
TP

TP + FP
=
TP

PR
(21)

Negative Prediction Value (NPV):=
TN

TN + FN
=
TN

NR
(22)

The performance measure in terms of geometric mean between accuracy of the two classes is
called the G-means. This is computed as the square-root of the product of the true positive and
true negative rates, or as

√
TPR ∗ TNR. The G-means for the unbalanced datasets is shown in

Table 4. One can observe that the Twin NN has higher G-means value for all except one dataset
when compared to the competing approaches.

10

S. No. Dataset Twin NN Lin SVM Ker SVM RFNN Lin TWSVM Ker TWSVM
1 Abalone Gen1 0.747 ± 0.03 0.045 ± 0.01 0.331 ± 0.14 0.04 ± 0.015 0.127 ± 0.02 0.358 ± 0.11
2 Letter Gen 0.95 ± 0.06 0.83 ± 0.05 0.98 ± 0.09 0.88 ± 0.01 - -
3 Yeast Gen 0.84 ± 0.04 0.2106 ± 0.09 0.411 ± 0.10 0.47 ± 0.12 0.177 ± 0.04 0.31 ± 0.06
4 Abalone Gen2 0.36 ± 0.11 0 ± 0 0 ± 0 0 ± 0 0.20 ± 0.04 0.205 ± 0.01
5 Coil 2000 0.66 ± 0.01 0 ± 0 0.031 ± 0.07 0.055 ± 0.05 - -
6 Car Eval Gen1 1 ± 0.00 0.934 ± 0.06 0.999 ± 0.001 0.999 ± 0.001 0.935 ± 0.04 0.955 ± 0.08
7 Wine Quality Gen 0.735 ± 0.07 0 ± 0 0.35 ± 0.05 0.245 ± 0.13 0.25 ± 0.04 0.29 ± 0.01
8 Ozone Level 0.84 ± 0.008 0 ± 0 0.283 ± 0.04 0.53 ± 0.06 0.187 ± 0.024 0.479 ± 0.10
9 Pen Digits Gen 0.9927 ± 0.02 0.847 ± 0.01 0.983 ± 0.06 0.77 ± 0.022 - -
10 Spectrometer Gen 0.956 ± 0.05 0.902 ± 0.05 0.949 ± 0.05 0.938 ± 0.04 0.91 ± 0.07 0.950 ± 0.09
11 Statlog Gen 0.890 ± 0.011 0.137 ± 0.04 0.745 ± 0.023 0.705 ± 0.023 0.22 ± 0.01 0.68 ± 0.01
12 Libras Gen 0.935 ± 0.05 0.866 ± 0.09 0.935 ± 0.05 0.89 ± 0.07 0.821 ± 0.05 0.947 ± 0.0
13 Optical Digits Gen 0.991 ± 0.007 0.888 ± 0.02 0.98 ± 0.007 0.964 ± 0.017 0.89 ± 0.01 0.952 ± 0.002
14 Ecoli Gen 0.900 ± 0.06 0.69 ± 0.11 0.78 ± 0.12 0.83 ± 0.06 0.697 ± 0.017 0.825 ± 0.01
15 Car Evaluation Gen2 0.996 ± 0.002 0.949 ± 0.05 0.976 ± 0.04 0.990 ± 0.011 0.934 ± 0.07 0.944 ± 0.007
16 US Crime Gen 0.85 ± 0.03 0.635 ± 0.03 0.63 ± 0.03 0.69 ± 0.04 0.58 ± 0.01 0.65 ± 0.01
17 Protein homology 0.942 ± 0.006 0.85 ± 0.01 0.89 ± 0.01 0.871 ± 0.006 - -
18 Scene Gen 0.712 ± 0.04 0.066 ± 0.09 0.321 ± 0.06 0.389 ± 0.04 0.321 ± 0.03 0.39 ± 0.01
19 Solar Flare Gen 0.705 ± 0.03 0 ± 0 0 ± 0 0.29 ± 0.04 0.35 ± 0.005 0.393 ± 0.05

Table 4: G-means of large datasets with high unbalance

The harmonic mean between the positive prediction value and true positive rate is called the
F-measure, which is computed as given by Eqn. (23).

F-measure :=
2

1
TPR + 1

PPV

(23)

The f-measure for the unbalanced datasets is shown in Table 5. From the results, it is evident
that the Twin NN has higher f-measure values for all except one dataset, which demonstrates its
superior performance.

S. No. Dataset Twin NN Lin SVM Ker SVM RFNN Lin TWSVM Ker TWSVM
1 Abalone Gen1 0.358 ± 0.05 0.018 ± 0.005 0.065 ± 0.01 0.0088 ± 0.007 0.171 ± 0.0007 0.212 ± 0.01
2 Letter Gen 0.861 ± 0.02 0.74 ± 0.08 0.97 ± 0.06 0.852 ± 0.02 - -
3 Yeast Gen 0.40 ± 0.08 0.092 ± 0.04 0.278 ± 0.09 0.33 ± 0.13 0.066 ± 0.02 0.19 ± 0.01
4 Abalone Gen2 0.02 ± 0.008 0 ± 0 0 ± 0 0 ± 0 0.015 ± 0.002 0.0158 ± 0.001
5 Coil 2000 0.19 ± 0.01 0 ± 0 0.021 ± 0.009 0.015 ± 0.0034 - -
6 Car Eval Gen1 1 ± 0.00 0.872 ± 0.07 0.99 ± 0.0005 0.999 ± 0.0005 0.892 ± 0.004 0.937 ± 0.001
7 Wine Quality Gen 0.392 ± 0.01 0 ± 0 0.206 ± 0.05 0.13 ± 0.08 0.05 ± 0.004 0.1 ± 0.001
8 Ozone Level 0.42 ± 0.05 0 ± 0 0.140 ± 0.03 0.35 ± 0.08 0.091 ± 0.001 0.12 ± 0.01
9 Pen Digits Gen 0.975 ± 0.01 0.975 ± 0.01 0.975 ± 0.01 0.743 ± 0.01 - -
10 Spectrometer Gen 0.921 ± 0.08 0.869 ± 0.077 0.915 ± 0.085 0.899 ± 0.08 0.872 ± 0.089 0.918 ± 0.006
11 Statlog Gen 0.67 ± 0.01 0.04 ± 0.02 0.655 ± 0.02 0.575 ± 0.03 0.039 ± 0.005 0.281 ± 0.01
12 Libras Gen 0.915 ± 0.04 0.83 ± 0.10 0.90 ± 0.15 0.88 ± 0.08 0.81 ± 0.13 0.124 ± 0.01
13 Optical Digits Gen 0.984 ± 0.0007 0.842 ± 0.018 0.983 ± 0.008 0.956 ± 0.018 0.846 ± 0.019 0.886 ± 0.030
14 Ecoli Gen 0.695 ± 0.10 0.57 ± 0.16 0.670 ± 0.15 0.682 ± 0.11 0.595 ± 0.19 0.647 ± 0.15
15 Car Evaluation Gen2 0.958 ± 0.04 0.909 ± 0.07 0.946 ± 0.06 0.95 ± 0.04 0.89 ± 0.09 0.897 ± 0.02
16 US Crime Gen 0.586 ± 0.04 0.50 ± 0.04 0.497 ± 0.08 0.55 ± 0.04 0.45 ± 0.07 0.56 ± 0.0002
17 Protein homology 0.868 ± 0.007 0.8 ± 0.01 0.86 ± 0.01 0.76 ± 0.007 - -
18 Scene Gen 0.337 ± 0.06 0.021 ± 0.009 0.181 ± 0.061 0.207 ± 0.06 0.136 ± 0.001 0.182 ± 0.001
19 Solar Flare Gen 0.30 ± 0.03 0 ± 0 0 ± 0 0.13 ± 0.02 0.15 ± 0.01 0.16 ± 0.005

Table 5: F-measure for large datasets with high unbalance

In addition, we also compute the Mathew Correlation Coefficient (MCC) for evaluating the
performance of the Twin NN on unbalanced datasets. High MCC values imply that the classifier
has high classification accuracy for both classes and also less mis-classification on both classes. The

11

MCC is computed as given by Eqn. 24. The MCC values for the unbalanced datasets is given in
Table 6, and the values are higher for the Twin NN for all except two datasets.

MCC :=
TP ∗ TN − FP ∗ FN√
PC ∗NC ∗ PR ∗NR

(24)

S. No. Dataset Generated Twin NN Lin SVM Ker SVM RFNN Lin TWSVM Ker TWSVM
1 Abalone Gen1 0.317 ± 0.05 0.019 ± 0.04 0.05 ± 0.13 0.043 ± 0.059 0.08 ± 0.06 0.125 ± 0.03
2 Letter Gen 0.868 ± 0.02 0.761 ± 0.03 0.97 ± 0.006 0.851 ± 0.02 - -
3 Yeast Gen 0.41 ± 0.07 0.12 ± 0.16 0.372 ± 0.068 0.38 ± 0.10 0.08 ± 0.07 0.21 ± 0.08
4 Abalone Gen2 0.07 ± 0.02 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1 ± 0
5 Coil 2000 0.17 ± 0.01 (-)0.0011 ± 0.002 0.017 ± 0.05 0.03 ± 0.04 - -
6 Car Eval Gen1 1 ± 0.00 0.871 ± 0.069 0.995 ± 0.001 0.999 ± 0.001 0.851 ± 0.01 0.94 ± 0.04
7 Wine Quality Gen 0.41 ± 0.01 (-)0.001 ± 0.002 0.27 ± 0.06 0.19 ± 0.11 0 ± 0.05 0.05 ± 0.02
8 Ozone Level 0.41 ± 0.05 (-)0.0015 ± 0.003 0.204 ± 0.066 0.343 ± 0.08 0.01 ± 0.13 0.052 ± 0.05
9 Pen Digits Gen 0.972 ± 0.01 0.775 ± 0.02 0.968 ± 0.01 0.752 ± 0.018 - -
10 Spectrometer Gen 0.92 ± 0.04 0.863 ± 0.08 0.91 ± 0.08 0.89 ± 0.08 0.852 ± 0.09 0.911 ± 0.05
11 Statlog Gen 0.63 ± 0.02 0.113 ± 0.05 0.63 ± 0.02 0.542 ± 0.03 0.09 ± 0.05 0.481 ± 0.01
12 Libras Gen 0.913 ± 0.048 0.83 ± 0.10 0.91 ± 0.09 0.885 ± 0.08 0.80 ± 0.11 0.0 ± 0.00
13 Optical Digits Gen 0.981 ± 0.009 0.828 ± 0.018 0.981 ± 0.009 0.952 ± 0.019 0.826 ± 0.009 0.839 ± 0.03
14 Ecoli Gen 0.667 ± 0.11 0.540 ± 0.14 0.64 ± 0.16 0.690 ± 0.13 0.587 ± 0.09 0.61 ± 0.17
15 Car Evaluation Gen2 0.955 ± 0.01 0.902 ± 0.07 0.945 ± 0.07 0.945 ± 0.04 0.884 ± 0.09 0.908 ± 0.03
16 US Crime Gen 0.552 ± 0.05 0.50 ± 0.04 0.51 ± 0.06 0.53 ± 0.03 0.497 ± 0.1 0.511 ± 0.08
17 Protein homology 0.84 ± 0.01 0.83 0.01 0.86 ± 0.01 0.79 ± 0.01 - -
18 Scene Gen 0.282 ± 0.06 0.061 ± 0.09 0.25 ± 0.06 0.190 ± 0.08 0.131 ± 0.09 0.15 ± 0.001
19 Solar Flare Gen 0.262 ± 0.09 0 ± 0 0 ± 0 0.14 ± 0.11 0 ± 0 0 ± 0

Table 6: MCC for large datasets with high unbalance

The p-values for the measures computed on the unbalanced datasets is shown in Table 7. As
these values are less that 0.05, they do not indicate significant statistical difference.

S.No Algorithm G-Means F-measure MCC
1 Linear SVM 1.32E-04 1.96E-04 1.31E-04
2 Kernel SVM 5.36E-04 1.17E-03 5.61E-03
3 RFNN 1.32E-04 1.36E-04 2.92E-04

Table 7: p-values for Wilcoxon signed ranks test for different measures on unbalanced Datasets

We also show the average values of the measures computed on the unbalanced datasets in Table
8 for the various approaches. It can clearly be seen that the average values are highest for the Twin
NN, indicating its superior performance across the unbalanced datasets. These are also graphically
illustrated in Fig. 6.

Average Linear SVM Kernel SVM RFNN Twin NN
G-Means 0.465768 0.609421 0.607684 0.842195

F-Measure 0.425158 0.539605 0.5272 0.651632
MCC 0.421547 0.551684 0.533789 0.612053

Table 8: Average Values of G-Means, F-Measure, MCC and AUC for Unbalanced Datasets

Finally, to illustrate the scalability of the Twin NN on the unbalanced datasets, we present the
training time for the Twin NN for these datasets in Table 9. It can be seen that the Twin NN can
be trained in tractable time for the unbalanced datasets.

12

Figure 6: Average Values of G-Means, F-Measure, MCC and AUC for Unbalanced Datasets.

S. No. Dataset Generated Twin NN Lin SVM Ker SVM RFNN Lin TWSVM Ker TWSVM
1 Abalone Gen1 0.292 ± 0.09 0.55 ± 0.008 1.08 ± 0.02 1.05 ± 0.38 104 ± 7.58 231 ± 9.11
2 Letter Gen 5.01 ± 0.98 15.01 ± 0.45 19.47 ± 0.49 6.88 ± 1.85 - -
3 Yeast Gen 0.32 ± 0.1 0.03 ± 0.0001 0.09 ± 0.001 1.08± 0.15 14.28 ± 0.53 35.27 ± 1.89
4 Abalone Gen2 2.1 ± 0.1 0.06 ± 0.002 0.14 ± 0.001 1.7 ± 0.09 132 ± 13 255 ± 8.72
5 Coil 2000 20.1 ± 2.2 22.67 ± 0.18 27.06 ± 0.2 21.22 ± 4.21 - -
6 Car Eval Gen1 0.8 ± 0.06 0.07 ± 0.002 0.5 ± 0.004 0.6 ± 0.009 8.36 ± 0.067 24.11 ± 1.17
7 Wine Quality Gen 4.2 ± 0.8 1.8 ± 0.007 2.1 ± 0.05 2.1 ± 0.05 28.11± 0.92 117.64± 5.43
8 Ozone Level 2.9 ± 0.06 0.6 ± 0.02 1.51 ± 0.008 1.98 ± 0.09 21.88 ± 2.7 114.5 ± 4.7
9 Pen Digits Gen 4.38± 0.29 6.79± 0.29 9.36± 0.48 4.68± 0.12 - -
10 Spectrometer Gen 0.31± 0.03 0.09± 0.008 0.10± 0.003 0.58± 0.18 0.60± 0.07 4.81± 0.21
11 Statlog Gen 5.21± 0.9 5.35± 0.1 5.61± 0.5 5.91± 0.5 55.97± 1.87 127.97± 2.88
12 Libras Gen 0.50± 0.007 0.69± 0.011 0.75± 0.02 0.63± 0.11 0.24± 0.008 1.13± 0.01
13 Optical Digits Gen 9.18± 0.30 10.30± 005 20.53± 0.17 9.87± 0.33 65.72± 1.79 132.72± 3.21
14 Ecoli Gen 0.15± 0.01 0.01± 0.0008 0.05± 0.001 0.40± 0.1 0.21± 0.001 1.08± 0.08
15 Car Evaluation Gen2 0.61± 0.01 0.13± 0.005 0.60± 0.009 0.59± 0.05 11.85± 0.02 50.34± 1.75
16 US Crime Gen 3.8± 0.23 0.89± 0.03 2.05± 0.02 1.84± 0.27 27.83± 7.82 56.87± 0.91
17 Protein homology 132.2± 2.87 235.12± 8.19 744.78± 32.71 188.2±5.22 - -
18 Scene Gen 6.2± 1.01 6.6± 0.11 11.9± 0.09 10.03± 0.24 32.60± 0.79 137.46± 7.48
19 Solar Flare Gen 0.20± 0.03 0.10± 0.006 0.23± 0.008 0.63± 0.07 3.77± 0.6 8.7± 1.1

Table 9: Training time for unbalanced datasets

13

5.3. Experiments on scalability

We analyze the scalability of the Twin NN on the Forest Covertype dataset described in Table
10. The dataset with imbalance generated has an imbalance ratio of 1 : 211, with 44 numeric and
10 categorical attributes.

Dataset Generated Forest CovType Gen
Source UCI KDD
Area Nature

Imbalance Ratio 1:211
Number of Samples per class 2747 : 578,265

Attributes 44N,10C
Original Dataset Forest CovType
Original Classes 7

Class No. used to generate imbalance 4

Table 10: Dataset for scaling experiment

The performance parameters for this case have been shown in Table 11 for various number of
training samples, and the corresponding training time has been shown in Table 12. These are also
graphically illustrated in Fig. 7. It can be seen that in comparison to the other methods, the Twin
NN scales well and also trains in tractable time with increase in number of training samples. This
establishes the scalability of the Twin NN for imbalanced datasets.

Train Data Size TNN SVM Linear SVM Kernel NNREG

G-means values

116202 0.9627 0.017 0.7712 0.54
232404 0.9689 0.112 0.8132 0.57
348606 0.9731 0.1754 0.8361 0.5808
464808 0.9802 0.3857 0.8391 0.5885

F-measure

116202 0.7581 0.01 0.72 0.41
232404 0.7881 0.051 0.771 0.43
348606 0.8172 0.0653 0.8069 0.467
464808 0.8172 0.2485 0.8071 0.4736

MCC values

116202 0.7611 0.041 0.74 0.4523
232404 0.7911 0.112 0.78 0.4512
348606 0.8162 0.1649 0.8154 0.5464
464808 0.8198 0.3382 0.8196 0.5487

Table 11: Performance parameters for scaling experiment

Train Data Size TNN SVM Linear SVM Kernel NNREG
116202 89.48 338.8 1290.11 91.11
232404 149.38 990.4 5811.32 181.27
348606 209.41 3129.21 28716.11 227.41
464808 385.93 6254.1 41861.21 394.71

Table 12: Training Time for scaling experiment

14

Figure 7: Average Test Values of G-Means, F-Measure, MCC and AUC and Training Time for
Scale up Experiment.

15

5.4. Results on multi-class datasets

We evaluate the performance of the multi-class architecture of the Twin NN on a few multi-class
datasets. A summary of the datasets is shown in Table 13. For datasets where training, validation
and test sets have been explicitly provided, we have used the same for evaluation. For other cases,
we have employed the same procedure as for the UCI datasets to split the data into train, validation
or test sets and those entries are marked by a ‘-’ in Table 13.

Dataset # train # val # test features # classes

acoustic 78823 - 19705 50 3
connect4 67757 - - 126 3
pendigits 7494 - 3498 16 10
satimage 3104 1331 2000 36 6
segment 1386 462 462 19 7
shuttle 30450 13050 14500 9 7
dna 1400 600 1186 180 3
letter 10500 4500 5000 16 26
seismic 78823 - 19705 50 3
mnist 47999 12001 10000 778 10

Table 13: Multi-class datasets used in experiments

The performance of the Twin NN on the multi-class datasets is shown in Table 14. It can
be seen that the Twin NN performs better than SVM (with RBF kernel), neural network with
regularization (NN) and Random Forests (RF) for most of the datasets.

S. No. Dataset Twin NN SVM RBF NN RF

1 acoustic 79.58 75.29 78.39 79.3
2 connect4 83.95 83.65 80.89 82.14
3 pendigits 99.14 99.60 99.59 99.06
4 satimage 91.32 89.7 89.17 90.3
5 segment 95.46 95 92.64 93.72
6 shuttle 99.37 99.61 98.53 99.98
7 dna 95.37 94.18 93.66 92.66
8 letter 96.99 96.2 90.04 94.9
9 seismic 76.58 72.61 76.1 75.5
10 mnist 98.13 97.02 96.25 96.68

Table 14: Results on multi-class datasets

5.4.1. Handling high imbalance in multi-class datasets

We also illustrate the benefit of using the Twin NN in cases where there is high imbalance for
a multi-class dataset. We consider the Connect4 dataset, which has 3 classes and 126 features.
The number of the samples in the 3 classes in the training set are 11,654, 4551 and 31,086, which
indicates high skewness in the distribution of samples between the classes. Figure 8 shows the
confusion matrix for the testing samples of this dataset using different learning models.

16

(a) Twin NN, test acc=83.95% (b) SVM with RBF kernel, test acc=83.65%

(c) Neural Network with Regularization, test
acc=80.89% (d) Random Forest, test acc=82.14%

Figure 8: Confusion matrices for different models for the Connect4 dataset.

17

It can be observed that the Twin NN correctly classifies more samples of the minority class
when compared to competing methods (268 in comparison to 200, 42 and 98 for SVM, neural
networks and random forest respectively), while also giving the highest accuracy on the dataset.
This illustrates that the Twin NN is beneficial even in cases of imbalance in multi-class datasets.

6. Conclusion and Future Work

In this paper, we present the Twin Neural Network, which extends the motivation and ideas
behind the Twin SVM into a novel neural network framework. In the case of binary classification,
the Twin NN tries to learn a hyperplane passing through samples of one class but at a distance of at
least one from samples of the other class. The training targets for the Twin NN are very different
from a conventional neural network. The class of an output sample is determined by using the
distances from the hyperplanes associated with each class. We also present a multiclass extension
of the Twin NN, in which multiple hyperplanes are associated with each class. The Twin NN
has the advantage that the feature map for each class is separately optimized. The Twin NN has
been shown to have superior performance on several datasets, particularly for the case of unbalanced
datasets. The Twin NN architecture has also been extended for classification of multi-class datasets
and has shown to give good performance on such datasets as well. It is also substantially faster.
Future work would involve developing architectures for other formulations based on the TWSVM,
as well as work on variants for regression.

Acknowledgements

The corresponding author would like to acknowledge the support of the Microsoft Chair Pro-
fessor Project Grant (MI01158, IIT Delhi).

References

[1] M Arun Kumar, Reshma Khemchandani, Madan Gopal, and Suresh Chandra. Knowledge
based least squares twin support vector machines. Information Sciences, 180(23):4606–4618,
2010.

[2] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[3] George Bebis and Michael Georgiopoulos. Feed-forward neural networks. Potentials, IEEE,
13(4):27–31, 1994.

[4] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[5] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[6] Shifei Ding, Junzhao Yu, Bingjuan Qi, and Huajuan Huang. An overview on twin support
vector machines. Artificial Intelligence Review, pages 1–8, 2013.

[7] Zejin Ding. Diversified ensemble classifiers for highly imbalanced data learning and their
application in bioinformatics. 2011.

18

[8] Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association, 32(200):675–701, 1937.

[9] Jayadeva, Sachindra Joshi, Ganesh Ramakrishnan, and Suresh Chandra. Using sequential
unconstrained minimization techniques to simplify svm solvers. Neurocomputing, 77(1):253–
260, 2012.

[10] Jayadeva, Reshma Khemchandani, Suresh Chandra, et al. Twin Support Vector Machines:
Models, Extensions and Applications, volume 659. Springer, 2016.

[11] Jayadeva, Khemchandani R., and Chandra S. Twin Support Vector Machines for pattern
classification. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(5):905–
910, 2007.

[12] Reshma Khemchandani, Keshav Goyal, and Suresh Chandra. Twin support vector machine
based regression. In Advances in Pattern Recognition (ICAPR), 2015 Eighth International
Conference on, pages 1–6. IEEE, 2015.

[13] Miroslav Kubat, Robert C Holte, and Stan Matwin. Machine learning for the detection of oil
spills in satellite radar images. Machine learning, 30(2-3):195–215, 1998.

[14] Xinjun Peng. Least squares twin support vector hypersphere (LS-TSVH) for pattern recogni-
tion. Expert Systems with Applications, 37(12):8371–8378, 2010.

[15] Xinjun Peng. Primal twin support vector regression and its sparse approximation. Neurocom-
puting, 73(16):2846–2858, 2010.

[16] Xinjun Peng. Building sparse twin support vector machine classifiers in primal space. Infor-
mation Sciences, 181(18):3967–3980, 2011.

[17] Xinjun Peng. TPMSVM: a novel twin parametric-margin support vector machine for pattern
recognition. Pattern Recognition, 44(10):2678–2692, 2011.

[18] Xinjun Peng and Dong Xu. Twin support vector hypersphere (TSVH) classifier for pattern
recognition. Neural Computing and Applications, 24(5):1207–1220, 2014.

[19] Zhiquan Qi, Yingjie Tian, and Yong Shi. Structural twin support vector machine for classifi-
cation. Knowledge-Based Systems, 43:74–81, 2013.

[20] Yuan-Hai Shao and Nai-Yang Deng. A novel margin-based twin support vector machine with
unity norm hyperplanes. Neural Computing and Applications, pages 1–9, 2013.

[21] Yuan-Hai Shao, Zhen Wang, Wei-Jie Chen, and Nai-Yang Deng. Least squares twin parametric-
margin support vector machine for classification. Applied Intelligence, pages 1–14, 2013.

[22] Yuan-Hai Shao, Chun-Hua Zhang, Zhi-Min Yang, Ling Jing, and Nai-Yang Deng. An ε-twin
support vector machine for regression. Neural Computing and Applications, pages 1–11, 2012.

[23] Y.J. Tian and Z.Q. Qi. Review on: Twin support vector machines. 1:253–277, 01 2014.

[24] Divya Tomar and Sonali Agarwal. Twin support vector machine: a review from 2007 to 2014.
Egyptian Informatics Journal, 2015.

19

[25] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin, pages 80–83,
1945.

[26] Kevin S Woods, Chiristopher C Doss, Kevin W Bowyer, Jeffrey L Solka, Carey E Priebe,
and W Philip Kegelmeyer JR. Comparative evaluation of pattern recognition techniques for
detection of microcalcifications in mammography. International Journal of Pattern Recognition
and Artificial Intelligence, 7(06):1417–1436, 1993.

20

	1 Introduction
	2 The Twin Support Vector Machine
	3 The Twin Neural Network Formulation
	4 Twin Neural Network for Multi-class Datasets
	5 Experiments and Discussion
	5.1 Results on UCI datasets
	5.2 Results on highly unbalanced datasets
	5.3 Experiments on scalability
	5.4 Results on multi-class datasets
	5.4.1 Handling high imbalance in multi-class datasets

	6 Conclusion and Future Work

