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Abstract

Indefinite similarity measures can be frequently found in bio-informatics by means of

alignment scores, but are also common in other fields like shape measures in image re-

trieval. Lacking an underlying vector space, the data are given as pairwise similarities

only. The few algorithms available for such data do not scale to larger datasets. Focus-

ing on probabilistic batch classifiers, the Indefinite Kernel Fisher Discriminant (iKFD)

and the Probabilistic Classification Vector Machine (PCVM) are both effective algo-

rithms for this type of data but, with cubic complexity. Here we propose an extension

of iKFD and PCVM such that linear runtime and memory complexity is achieved for

low rank indefinite kernels. Employing the Nyström approximation for indefinite ker-

nels, we also propose a new almost parameter free approach to identify the landmarks,

restricted to a supervised learning problem. Evaluations at several larger similarity data

from various domains show that the proposed methods provides similar generalization

capabilities while being easier to parametrize and substantially faster for large scale

data.
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1. Introduction1

Domain specific proximity measures, like alignment scores in bioinformatics [1],2

the modified Hausdorff-distance for structural pattern recognition [2], shape retrieval3

measures like the inner distance [3] and many other ones generate non-metric or indef-4

inite similarities or dissimilarities. Classical learning algorithms like kernel machines5

assume Euclidean metric properties in the underlying data space and may not be appli-6

cable for this type of data.7

Only few machine learning methods have been proposed for non-metric proxim-8

ity data, like the indefinite kernel Fisher discriminant (iKFD) [4, 5], the probabilistic9

classification vector machine (PCVM) [6] or the indefinite Support Vector Machine10

(iSVM) in different formulations [7, 8, 9]. For the PCVM the provided kernel eval-11

uations are considered only as basis functions and no Mercer conditions are implied.12

In contrast to the iKFD the PCVM is a sparse probabilistic kernel classifier pruning13

unused basis functions during training, applicable to arbitrary positive definite and in-14

definite kernel matrices. A recent review about learning with indefinite proximities can15

be found in [10].16

While being very efficient these methods do not scale to larger datasets with in gen-17

eral cubic complexity. In [11, 12] the authors proposed a few Nyström based (see e.g.18

[13]) approximation techniques to improve the scalability of the PCVM for low rank19

matrices. The suggested techniques use the Nyström approximation in a non-trivial20

way to provide exact eigenvalue estimations also for indefinite kernel matrices. This21

approach is very generic and can be applied in different algorithms. In this contribution22

we further extend our previous work and not only derive a low rank approximation of23

the indefinite kernel Fisher discriminant, but also address the landmark selection from24

a novel view point. The obtained Ny-iKFD approach is linear in runtime and memory25

consumption, for low rank matrices. The formulation is exact if the rank of the matrix26

equals the number of independent landmarks points. The selection of the landmarks27

of the Nyström approximation is a critical point addressed in previous work (see e.g.28

[14, 15, 16]). Most recently leverage scores [17] have been found very promising,29

but with quadratic costs. In general these strategies use the full positive semi-definite30

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(psd) kernel matrix or expect that the kernel is of some standard class like an RBF31

kernel. In each case the approaches presented so far are costly in runtime and memory32

consumption as can be seen in the subsequent experiments.33

Additionally, former approaches for landmark selection aim on generic matrix re-34

constructions of positive semi definite (psd) kernels. We propose a restricted recon-35

struction of the psd or non-psd kernel matrix with respect to a supervised learning36

scenario only. We no longer expect to obtain an accurate kernel reconstruction from37

the approximated matrix (e.g. by using the Frobenius norm) but are pleased if the38

approximated matrix preserves the class boundaries in the data space.39

In [12] the authors derived methods to approximate large proximity matrices by40

means of the Nyström approximation and conversion rules between similarities and41

dissimilarities. These techniques have been applied in [11] and [18] in a proof of con-42

cept setting, to obtain approximate models for the Probabilistic Classification Vector43

Machine and the Indefinite Fisher Kernel Discriminant analysis using a random land-44

mark selection scheme. This work is substantially extended and detailed in this article45

with a specific focus on indefinite kernels, only. A novel landmark selection scheme46

is proposed. Based on this new landmark selection scheme we provide detailed new47

experimental results and compare to alternative landmark selection approaches. The48

paper provides the following improvements over the current state of the art: (1) A lin-49

ear costs approximation scheme for the Indefinite Kernel Fisher Discriminant (iKFD)50

and the probabilistic classification vector machine (PCVM) is provided. (2) A new51

supervised landmark selection scheme is proposed which can be also applied to indef-52

inite input kernels to obtain a Nystroem approximation of the given indefinite kernel.53

(3) A variety of experimental results is provided showing the efficiency of the proposed54

approach and linked to related work.55

Structure of the paper: First we give some basic notations necessary in the subse-56

quent derivations. Then we review iKFD and PCVM as well as some approximation57

concepts proposed by the authors in [11] which are based on the well known Nyström58

approximation. Subsequently, we consider the landmark selection problem in more59

detail and show empirically results motivating a supervised selection strategy. Finally60

we detail the reformulation of iKFD and PCVM based on the introduced concepts and61
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show the efficiency in comparison to Ny-PCVM and Ny-iKFD for various indefinite62

proximity benchmark data sets.63

2. Methods64

2.1. Notation and basic concepts65

Consider a collection of N objects xi, i = 1, 2, ..., N , in some input space X .66

Given a similarity function or inner product on X , corresponding to a metric, one can67

construct a proper Mercer kernel acting on pairs of points from X . For example, if X is68

a finite dimensional vector space, a classical similarity function is the Euclidean inner69

product (corresponding to the Euclidean distance) - a core component of various kernel70

functions such as the famous radial basis function (RBF) kernel. Now, let φ : X 7→ H71

be a mapping of patterns from X to a Hilbert spaceH equipped with the inner product72

〈·, ·〉H. The transformation φ is in general a non-linear mapping to a high-dimensional73

spaceH and may in general not be given in an explicit form. Instead, a kernel function74

k : X × X 7→ R is given which encodes the inner product in H. The kernel k is a75

positive (semi) definite function such that k(x,x′) = 〈φ(x), φ(x′)〉H, for any x,x′ ∈76

X . The matrix Ki,j := k(xi,xj) is an N ×N kernel (Gram) matrix derived from the77

training data. The motivation for such an embedding comes with the hope that the non-78

linear transformation of input data into higher dimensional H allows for using linear79

techniques in H. Kernelized methods process the embedded data points in a feature80

space utilizing only the inner products 〈·, ·〉H (kernel trick) [19], without the need to81

explicitly calculate φ. The kernel function can be very generic. Most prominent are82

the linear kernel with k(x,x′) = 〈φ(x), φ(x′)〉 where 〈φ(x), φ(x′)〉 is the Euclidean83

inner product and φ identity mapping, or the RBF kernel k(x,x′) = exp
(
− ||x−x

′||2
2σ2

)
,84

with σ > 0 as a free scale parameter. In any case, it is always assumed that the kernel85

function k(x,x′) is positive semi definite (psd). This assumption is however not always86

fulfilled, and the underlying similarity measure may not be metric and hence not lead to87

a Mercer kernel. Examples can be easily found in domain specific similarity measures88

as mentioned before and detailed later on. Such similarity measures imply indefinite89

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

kernels, preventing standard ”kernel-trick” methods developed for Mercer kernels to90

be applied.91

For a matrix A, A−1 denotes the inverse of A. We will still use this notation even92

when A is non-regular. In that case A−1 will represent an inverse obtained through an93

Singular Value Decomposition (SVD) - based regularization.94

In what follows we will review some basic concepts and approaches related to such95

non-metric situations.96

2.2. Krein and Pseudo-Euclidean spaces97

A Krein space is an indefinite inner product space endowed with a Hilbertian topology.98

99

Definition 1 (Inner products and inner product space) Let Q be a real vector100

space. An inner product space with an indefinite inner product 〈·, ·〉Q on Q is a bi-101

linear form where all f, g, h ∈ Q and α ∈ R obey the following conditions.102

• Symmetry: 〈f, g〉Q = 〈g, f〉Q103

• linearity: 〈αf + g, h〉Q = α〈f, h〉Q + 〈g, h〉Q;104

• 〈f, g〉Q = 0 ∀g ∈ Q implies f = 0105

An inner product is positive definite if ∀f ∈ Q, 〈f, f〉Q ≥ 0, negative definite if106

∀f ∈ Q, 〈f, f〉Q ≤ 0, otherwise it is indefinite. A vector space Q with inner product107

〈·, ·〉Q is called an inner product space.108

Definition 2 (Krein space and pseudo-Euclidean space) An inner product space109

(Q, 〈·, ·〉Q) is a Krein space if we have two Hilbert spaces H+ and H− spanning Q110

such that ∀f ∈ Q we have f = f+ + f− with f+ ∈ H+ and f− ∈ H− and ∀f, g ∈ Q,111

〈f, g〉Q = 〈f+, g+〉H+
− 〈f−, g−〉H− . A finite-dimensional Krein-space is a so called112

pseudo-Euclidean space (pE).113

Indefinite kernels are typically found through domain specific non-metric similarity114

functions (such as alignment functions used in biology [1]), specific kernel functions115
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(e.g. the Manhattan kernel k(x,x′) = −||x − x′||1, tangent distance kernel [20]), or116

divergence measures plugged into standard kernel functions [21]. Another source of117

non-psd kernels are noise artifacts on standard kernel functions [7].118

In such spaces vectors can have negative squared ”norm”, negative squared ”dis-119

tances” and the concept of orthogonality is different from the usual Euclidean case. In120

the subsequent experiments our input data are in general given by a symmetric indef-121

inite kernel matrix K. We will use the symbol K to denote kernel matrices, whether122

psd or not. It will be clear from the context if the underlying space is a Hilbert or a123

Krein space. We use the symbol S for (symmetric) similarity matrices and D for a124

symmetric dissimilarity matrix.125

In practical applications it may also happen that the given data are represented by126

non-metric dissimilarities. A prominent example is the dynamic timewarping score ma-127

trix which can be considered as a dissimilarity matrix of pairwise sequence alignments.128

Given a symmetric dissimilarity matrix D with zero diagonal 1, an embedding of the129

data in a pseudo-Euclidean vector space determined by the eigenvector decomposition130

of the associated similarity matrix2 S is always possible [23].131

Given the eigendecomposition of S = UΛU>, we can compute the corresponding132

vectorial representation V of the data in the pseudo-Euclidean space by133

V = Up+q+z |Λp+q+z|1/2 , (1)

where Λp+q+z is a diagonal matrix containing p positive, q negative and z zero eigen-134

values of S. Up+q+z consists of the corresponding eigenvectors. The triplet (p, q, z)135

is also referred to as the signature of the Pseudo-Euclidean space. This operation is136

however very costly and should be avoided for larger data sets. A detailed presenta-137

tion of similarity and dissimilarity measures, and mathematical aspects of metric and138

non-metric spaces is provided in [22].139

1A similarity matrix can be easily converted into squared dissimilarities using d2(x,y) = k(x,x) +

k(y,y)− 2 · k(x,y).
2 The associated similarity matrix can be obtained by double centering [22] of the (squared) dissimilarity

matrix D: S = −JDJ/2 with J = (I− 11>/N) and identity matrix I and vector of ones 1.

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.3. Indefinite Fisher and kernel quadratic discriminant140

In [4, 5] the indefinite kernel Fisher discriminant analysis (iKFD) and indefinite141

kernel quadratic discriminant analysis (iKQD) was proposed focusing on binary clas-142

sification problems, recently extended by a weighting scheme in [24]3.143

The initial idea is to embed the training data into a Krein space (see Def. 2) and to144

apply a modified kernel Fisher discriminant analysis or kernel quadratic discriminant145

analysis for indefinite kernels. Consider binary classification and a data set of input-146

target training pairs D = {xi, yi}Ni=1, where yi ∈ {−1,+1}. Given the indefinite147

kernel matrix K and the embedded data in a pseudo-Euclidean space (pE), the linear148

Fisher Discriminant function f(x) = 〈w,Φ(x)〉pE + b is based on a weight vector149

w such that the between-class scatter is maximized while the within-class scatter is150

minimized along w. The dot product in pE is defined in Def. 2. Φ(x) is a vector of151

basis function evaluations for data item x and b is a bias term. This direction is obtained152

by maximizing the Fisher criterion in the pseudo-Euclidean space:153

J(w) =
〈w,ΣbpEw〉

pE

〈w,ΣwpEw〉
pE

where ΣbpE = ΣbJ is the scatter matrix in the pseudo-Euclidean space, with J =154

diag(1p,−1q), where 1n ∈ Rn denotes the n-dimensional vector of all ones. The155

within-scatter-matrix in the pseudo-Euclidean space is given as ΣwpE = ΣwJ . The156

Euclidean between- and within-scatter-matrices can be expressed as:157

Σb = (µ+ − µ−)(µ+ − µ−)> (2)

Σw =
1

|I+|
∑

i∈I+
(φ(xi)− µ+)(φ(xi)− µ+)>

+
1

|I−|
∑

i∈I−
(φ(xi)− µ−)(φ(xi)− µ−)>, (3)

where the set of indices of each class are I+ := {i : yi = +1} and I− := {i : yi = −1}158

and µ+ and µ− are the class-conditional means estimated on I+ and I−, respectively.159

To avoid the explicit embedding into the pE space (denoted as R(p,q)) a kernelization is160

3For multiclass problems a classical 1-vs-rest wrapper is used within this paper
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considered such that the weight vector w ∈ R(p,q) is expressed as a linear combination161

of the training data: w =
∑N
i=1 αiφ(xi). A similar strategy can be used for KQD as162

well as the indefinite kernel PCA [5].163

2.4. Probabilistic Classification Vector Learning164

Probabilistic Classification Vector Machine (PCVM) uses a kernel regression165

model
∑N
i=1 wiφi(x) + b with a link function, with wi being again the weights of166

the basis functions φi(x) and b as a bias term. Unlike in the kernelized Fisher discrim-167

inant method described above, in PCVM the basis functions φi are defined explicitly168

as part of the model design. The Expectation Maximization (EM) implementation169

of PCVM [25] uses the probit link function, i.e. Ψ(x) =
∫ x
−∞N (t|0, 1)dt, where170

Ψ(x) is the cumulative distribution of the normal distribution N (0, 1). We get:171

l(x; w, b) = Ψ
(∑N

i=1 wiφi(x) + b
)

= Ψ
(
Φ(x)>w + b

)
172

In the PCVM formulation [6], a truncated Gaussian prior with support on [0,∞)173

and mode at 0 is introduced for each weight wi and a zero-mean Gaussian prior is174

adopted for the bias b. The priors are assumed to be mutually independent. p(w|α) =175

N∏
i=1

p(wi|αi) p(b|β) = N (b|0, β−1), where176

p(wi|αi) =





2N (wi|0, α−1
i ) if yiwi > 0

0 otherwise.

We follow the standard probabilistic formulation and assume that z(x) = Φ(x)>w + b177

is corrupted by an additive random noise ε , where ε ∼ N (0, 1). According to the178

probit link model, we have:179

h(x) = Φ(x)>w + b+ ε ≥ 0, if y = 1,

h(x) = Φ(x)>w + b+ ε < 0, if y = −1 (4)

and obtain:180

p(y = 1|x,w, b) = p(Φ(x)>w + b+ ε ≥ 0) = Ψ(Φ(x)>w + b).

Note that h(x) is a latent variable because ε is an unobservable variable. We collect181

evaluations of h(x) at training points in a vector H(x) = (h(x1), . . . , h(xN))>. In the182

8
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expectation step the expected value H̄ of H with respect to the posterior distribution183

over the latent variables is calculated (given old values wold, bold). In the maximization184

step the parameters are updated through185

wnew = M(MΦ>(x)Φ(x)M + IN )
−1
M(Φ>(x)H̄− bΦ>(x)1) (5)

bnew = t(1 + tNt)−1t(1>H̄− 1>Φ(x)>w) (6)

where IN is a N-dimensional identity matrix and 1 a all-ones vector, the diagonal186

elements in the diagonal matrix M are:187

Mii = (ᾱi)
−1/2 =





√
2wi if yiwi ≥ 0

0 else
(7)

and the scalar t =
√

2|b|. Further details can be found in [6]. Even though kernel188

machines and their derivatives have shown great promise in practical application, their189

scope is somehow limited by the fact that the computational complexity grows rapidly190

with the size of the kernel matrix (number of data items). Among methods suggested to191

deal with this issue in the literature, the Nyström method has been popular and widely192

used.193

3. Nyström approximated matrix processing194

The Nyström approximation technique has been proposed in the context of kernel195

methods in [13]. Here, we give a short review of this technique before it is employed in196

PCVM and iKFD. One well known way to approximate aN×N Gram matrix, is to use197

a low-rank approximation. This can be done by computing the eigendecomposition of198

the kernel matrix K = UΛUT , where U is a matrix, whose columns are orthonormal199

eigenvectors, and Λ is a diagonal matrix consisting of eigenvalues Λ11 ≥ Λ22 ≥ ... ≥200

0, and keeping only the m eigenspaces which correspond to the m largest eigenvalues201

of the matrix. The approximation is K̃ ≈ U(N,m)Λ(m,m)U(m,N), where the indices202

refer to the size of the corresponding submatrix restricted to the larges m eigenvalues.203

The Nyström method approximates a kernel in a similar way, without computing the204

eigendecomposition of the whole matrix, which is an O(N3) operation.205

9
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By the Mercer theorem, kernels k(x,x′) can be expanded by orthonormal eigen-

functions ϕi and non negative eigenvalues λi in the form

k(x,x′) =
∞∑

i=1

λiϕi(x)ϕi(x
′).

The eigenfunctions and eigenvalues of a kernel are defined as solutions of the integral

equation ∫
k(x′,x)ϕi(x)p(x)dx = λiϕi(x

′),

where p(x) is a probability density over the input space. This integral can be approxi-206

mated based on the Nyström technique by an i.i.d. sample {xk}mk=1 from p(x):207

1

m

m∑

k=1

k(x′,xk)ϕi(xk) ≈ λiϕi(x′). (8)

Using this approximation we denote with K(m) the corresponding m ×m Gram sub-

matrix and get the corresponding matrix eigenproblem equation as:

1

m
K(m)U (m) = U (m)Λ(m)

with U (m) ∈ Rm×m is column orthonormal and Λ(m) is a diagonal matrix.208

Now we can derive the approximations for the eigenfunctions and eigenvalues of209

the kernel k210

λi ≈
λ

(m)
i ·N
m

, ϕi(x
′) ≈

√
m/N

λ
(m)
i

k′,>x u
(m)
i , (9)

where u
(m)
i is the ith column of U (m). Thus, we can approximate ϕi at an arbitrary211

point x′ as long as we know the vector k′x = (k(x1,x
′), ..., k(xm,x

′)). For a given212

N × N Gram matrix K one may randomly choose m rows and respective columns.213

The corresponding indices are called landmarks, and should be chosen such that the214

data distribution is sufficiently covered. Strategies how to chose the landmarks have215

recently been addressed in [14, 26] and [27, 16]. We denote these rows by K(m,N).216

Using the formulas Eq. (9) we can reconstruct the original kernal matrix,217

K̃ =
m∑

i=1

1/λ
(m)
i ·KT

(m,N)(u
(m)
i )T (u

(m)
i )K(m,N),

10
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where λ(m)
i and u

(m)
i correspond to the m × m eigenproblem (8). Thus we get the218

approximation,219

K̃ = K(N,m)K
−
(m,m)K(m,N). (10)

This approximation is exact, if K(m,m) has the same rank as K.220

3.1. Pseudo Inverse and Singular Value Decomposition of a Nyström approximated221

matrix222

In the Ny-PCVM approach discussed in Section 5 we need a inverse of a Nyström223

approximated matrix, while for the Ny-iKFD a Nyström approximated eigenvalue de-224

composition (EVD) is needed.225

A Nyström approximated inverse can be regularized by a modified singular value226

decomposition (SVD) with a rank limited by r∗ = min{r,m}, where r is the rank of227

the obtained inverse and m the number of landmark points. The output is given by the228

rank reduced left and right singular vectors and the reciprocal of the singular values.229

The singular value decomposition based on a Nyström approximated similarity matrix230

K̃ = K(N,m)K
−1
(m,m)K

>
(N,m) with m landmarks, calculates the left singular vectors of231

K̃ as the eigenvectors of K̃K̃> and the right singular vectors of K̃ as the eigenvectors232

of K̃>K̃4. The r∗ non-zero singular values of K̃ are then found as the square roots of233

the non-zero eigenvalues of both K̃>K̃ or K̃K̃>. Accordingly, one only has to calcu-234

late a new Nyström approximation of the matrix K̃K̃> using e.g. the same landmark235

points as for the input matrix K̃. Subsequently an eigenvalue decomposition (EVD) is236

calculated on the approximated matrix ζ = K̃K̃>. For a matrix approximated by Eq.237

(10) it is possible to compute its exact eigenvalue estimators in linear time5.238

3.2. Eigenvalue decomposition of a Nyström approximated matrix239

To compute the eigenvectors and eigenvalues of an indefinite matrix we first com-

pute the squared form of the Nyström approximated kernel matrix. Let K be a psd

4For symmetric matrices we have K̃K̃> = K̃>K̃
5assuming m� N , in particular m < N1/3

11
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similarity matrix, for which we can write its decomposition as

K̃ = K(N,m)K
−1
(m,m)K(m,N) = K(N,m)UΛ−1U>K>(N,m) = BB>,

where we defined B = K(N,m)UΛ−1/2 with U and Λ being the eigenvectors and240

eigenvalues of K(m,m), respectively.241

Further it follows for the squared K̃:

K̃2 = BB>BB> = BV AV >B>,

where V andA are the eigenvectors and eigenvalues ofB>B, respectively. The square242

operation does not change the eigenvectors of K but only the eigenvalues. The corre-243

sponding eigenequation can be written as B>Bv = av. Multiplying with B from left244

we get:245

BB>︸ ︷︷ ︸
K̃

(Bv)︸ ︷︷ ︸
u

= a (Bv)︸ ︷︷ ︸
u

.

It is clear that A must be the matrix with the eigenvalues of K̃. The matrix Bv is

the matrix of the corresponding eigenvectors, which are orthogonal but not necessary

orthonormal. The normalization can be computed from the decomposition:

K̃ = B V V >︸ ︷︷ ︸
I

B> = BV A−1/2AA−1/2V >B> = CAC>,

where we defined C = BV A−1/2 as the matrix of orthonormal eigenvectors of K.246

The eigenvalues of K̃ can be obtained using A = C>K̃C. Using this derivation we247

can obtain exact eigenvalues and eigenvectors of an indefinite low rank kernel matrix248

K, given rank(K) = m and the landmarks points are independent6249

The accuracy of this approximation is typically measured by the Frobenius norm. A250

low value of the Frobenius norm of the approximated versus the original kernel matrix251

ensures that the approximated kernel matrix K̃ can be used instead of K for any kernel252

based data analysis method, such as kernel-PCA, kernel-k-means, SVM, Laplacian253

6An implementation of this linear time eigen-decomposition for low rank indefinite matrices is available

at: http://www.techfak.uni-bielefeld.de/˜fschleif/eigenvalue_corrections_

demos.tgz.
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eigenmaps. In the context of classification the requirement of close approximation of254

the kernel matrix may be too strong and unnecessary. After all, a low rank kernel matrix255

which preserves class separation is sufficient. To achieve this objective we suggest to256

use a supervised landmark selection scheme introduced in the following section.257

4. Supervised landmark selection using minimum enclosing balls258

The original (unsupervised) Nyström approximation is based on m characteristic259

landmark points taken from the dataset. The number of landmarks should be suf-260

ficiently large and the landmarks should be diverse enough to get accurate approxi-261

mations of the dominating singular vectors of the similarity matrix. In [14] multiple262

strategies for landmark selection have been studied and a clustering based approach was263

suggested to find the specific landmarks. Thereby the number of landmarks is a user264

defined parameter and a classical k-means algorithm is applied on the kernel matrix to265

identify characteristic landmark points in the empirical feature space. This approach is266

quite effective (see [14]), with some small improvements using an advanced clustering267

scheme as shown in [15]. Other recent proposals along those lines, e.g. leverage scores268

[17], are much more costly with at least quadratic costs and therefore not applicable269

in our setting. We will use the k-means approach as a baseline for an advanced land-270

mark section approach. Further, we will also consider a pure random selection strategy271

as another baseline. It should be noted that the formulation given in [14] takes the full272

kernel matrix as an input into the k-means clustering. This is obviously also very costly273

and may become inapplicable for larger kernel matrices 7
274

In general, the approaches discussed above only address the problem of the selec-275

tion or positioning of the landmarks, given their number. It is not clear how the number276

of landmarks can be appropriately chosen. Clearly, if the number of landmarks is large,277

we can expect the data space to be sufficiently covered, but the model complexity can278

become prohibitive. On the other hand, if the number of landmarks is too small, the279

kernel matrix approximation may be poor.280

7 It may however be possible to circumvent this full complexity approach e.g. by subsampling concepts

or by more advanced concepts of k-means, but this is not the focus of this paper.
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We propose to consider the Nyström approximation in a restricted form with re-281

spect to a supervised learning problem. This relieves us from the need of a perfect282

reconstruction of the kernel matrix. It is in fact sufficient to reconstruct the kernel such283

that it is close to the ideal kernel (see e.g. [28]). We will however not learn an idealized284

kernel as proposed in [28], which by itself is very costly for large scale matrices, but285

provide a landmark selection strategy motivated by similar intuitions.286

The (supervised) representation accuracy of the Nyström approximation of K287

depends on the number of the selected landmarks and the used landmark selection288

scheme. We propose to calculate minimum enclosing ball solutions (MEB) on the289

individual class-wise kernel matrices. This will enable us to290

1. find a sufficient number of landmarks for the given classification task,291

2. find landmark positions preserving a good class separation.292

Note that the chosen landmarks may not necessarily lead to a good reconstruction of K̂,293

as measured e.g. by the Frobenius norm. As an additional constraint we are looking for294

an approach where also indefinite proximity matrices can be processed without costly295

preprocessing steps.296

4.1. MEB for psd input kernels297

We denote the set of indices or points of a sub kernel matrix referring to class j298

by Ωj . Assuming approximately spherical classes (in the feature space), we invoke the299

minimum enclosing ball method on each class separately:300

minR2,wj
R2

such that ‖wj − Φ(ξi)‖2 ≤ R2 ∀ξi ∈ Ωj

whereR is the radius of the sphere and wj is a center of class j, which can be indirectly301

represented in the kernel space as a weighted linear combination of the points in Ωj .302

The assumption of a sphere is in fact no substantial restriction if the provided kernel303

is sufficiently ”expressive”. This is also the reason why core-vector data description304

(CVDD) can be used as a linear time replacement for support vector data description305

[29].306

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

It has been shown e.g. in [30] that the minimum enclosing ball can be approximated307

with quality ε > 0 in (worst case) linear time using an algorithm which requires only308

a constant subset of Ωj , the core set. Given ε, the following algorithm converges in309

O(1/ε2) steps:310

MEB:311

Choose ξi ∈ Ωj randomly. Find ξk ∈ Ωj furthest away from ξi in the feature space312

(e.g. maximizing ‖Φ(ξi)− Φ(ξk)‖2). S := {ξi, ξk}.313

repeat314

solve MEB(S)→ w̃j , R315

if there is ξl ∈ Ωj with ‖Φ(ξl)− w̃j‖2 > R2(1 + ε)2 then316

S := S ∪ {ξl}317

end if318

until all ξl are covered by the R(1 + ε) ball in the feature space319

return w̃j320

In each step, the MEB problem is solved for a small subset of constant size only.321

This is possible by referring to the dual problem which has the form322

minαi≥0

∑
ij αiαjKij −

∑
i αiK

2
ii

where
∑
i αi = 1

with operations only involving dot products, i.e. kernelization is possible. The same323

holds for all distance computations of the approximate MEB problem. Note that the324

dual MEB problem provides a solution in terms of the dual variables αi. The identified325

finite number of core points (those with non-vanishing αi) will be used as landmarks326

for this class and considered to be sufficient to represent the enclosing sphere of the327

data. Each class is represented by at least two core points. Combining all core sets328

of the various classes provides us with the full set of landmarks used to get a Nystöm329

approximation of K.330

The MEB solution typically consists of a very small number of points (independent331

of N ), sufficient to describe the hyper-ball enclosing the respective data. If the kernel332

is psd we can use the MEB approach directly in the kernel space.333
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Algorithm 1 Proposed handling of indefinite kernels by the MEB approach

1. let k(x,x′) be a symmetric (indefinite) similarity function (e.g. a sequence align-

ment)

2. for all classes j let Ωj = {xi : yi = j}
3. calculate the (indefinite) kernel matrix Kj using Ωj and k(x,x′)

4. if the kernel matrix is indefinite, apply a square operation on the small matrix

Kj by using Kj ·K>j
5. apply the MEB algorithm for each of the kernel matrices Kj with ε = 0.01

6. combine all landmark indices obtained from the previous step and calculate the

Nyström approximation using Eq. (10)

7. apply Ny-PCVM or Ny-iKFD using the approximated kernel matrix

4.2. MEB for non-psd input kernels334

If the given kernel is non-psd we either can apply various eigenvalue correction335

approaches see [10], or we use K̂ = K · K>, which can also be easily done for336

Nyström approximated matrices without calculating a full matrix (see first part of Eq.337

(15)). This procedure does not change the eigenvectors ofK but takes the square of the338

eigenvalues such that K̂ becomes psd. It should be noted that if we use K̂ as an input339

of a kernel k-means algorithm this is equivalent as using K as the input of the classical340

k-means with Euclidean distance as suggested in [14].341

The proposed supervised landmark selection using MEB does not only identify an342

estimate for the number of landmarks, but it also suggests their position. The solutions343

of the MEB consist of non-redundant points at the perimeter of the sphere, which can344

considered to be unrelated, although not necessarily orthogonal in the feature space345

(with potentially squared negative eigenvalues). Especially only those points are in-346

cluded in the MEB solution which are needed to explain the sphere such that redun-347

dancy within this set is avoided [30]. We will show the effectiveness of this approach348

in some short experiments. A pseudo code of the suggested algorithm is given in Alg.349

1.350
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Figure 1: Laplacian eigenmap visualization of the initial test and simulated similarity matrices using K ·K>.

Colors/shades indicate the different classes. Axis labeling is arbitrary.

4.3. Small scale experiments - landmark selection scheme351

We use the ball dataset as proposed in [31]. It is an artificial dataset based on352

the surface distances of randomly positioned balls of two classes having a slightly353

different radius. The dataset is non-Euclidean with substantial information encoded in354

the negative part of the eigenspectrum. We generated the data with 100 samples per355

class leading to an N ×N dissimilarity matrix D, with N = 200.356

We also use the protein data (213 pts, 4 classes) set represented by an indefinite357

similarity matrix, with a high intrinsic dimension [10]. Further we analyzed two simu-358

lated metric datasets which are not linear separable using the Euclidean norm: (1) the359

checker board data, generated as a two dimensional dataset with datapoints organized360

on a 3× 3 checkerboard, with alternating labels. This dataset has multi-modal classes.361

(2) a simple Gaussian cloud dataset with two Gaussian with substantial overlap. The362

simulated data have been represented by an extreme learning machine (elm) kernel.363

Checker is linear separable in the elm-kernel space, whereas Gaussian is not separable364

by construction.365
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(a) Checker board data with

the MEB selection scheme.
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(b) Checker board data with

the k-means selection scheme

using #MEB landmarks.
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(c) Checker board data with

the random selection scheme

using #MEB landmarks.

Figure 2: Typical plots of the checker board data - taken from the crossvalidation models - with iKFD

predictions using different landmark selection schemes and an elm kernel. The worst result ≈ 72% is

obtained by plot c) using the random sampling strategy whereby the number of landmarks was chosen from

the MEB approach. The selected landmark points are indicated as (red) circles. In plot b) one clearly sees

that k-means has rearranged the points to cover the whole data space. For the random approach we observe

that some points are very close to each other (and have the same label) and are therefore not very informative.

The MEB solution in plot a) leads to very good prediction results on the test data with around 90%, which

is only slightly worse than the result for b) with 92%.

It should be noted that the elm kernel, used for the vectorial data, typically increases366

the number of non-vanishing eigenvalues such that the original two dimensional data367

are finally indeed higher dimensional and not representable by only two basis func-368

tions. Two dimensional visualizations of the unapproximated K · K> similarity ma-369

trices obtained by using Laplacian eigenmaps [32]. are shown in Figure 1. For the370

checker board data we also show two-dimensional plots of the obtained iKFD decision371

boundaries and different landmark selection schemes in Figure 2.372

Now the obtained (indefinite) kernel matrix has been used in the iKFD in six dif-373

ferent ways using different landmark selection schemes:374

a) we used the original kernel matrix (SIM1),375

b) the matrix is Nystöm approximated using the MEB approach (SIM2),376

c) the matrix is Nyström approximated using the approach of [14] where the num-377

ber of landmarks is taken from the MEB solution (SIM3),378

d) using the approach of [14] but with C landmarks where C is the number of379

classes (SIM4)380
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e) using a random sample of C landmarks (SIM5). SIM5 can be considered as a381

very basic baseline approach.382

f) using an entropy based selection as proposed in [16] (SIM6) 8 where the number383

of landmarks is again taken from the MEB solution384

One may also simply use a very large number of randomly selected landmarks, but385

this can become prohibitive ifN is large such that the calculation ofN×m similarities386

can be costly in memory and runtime. Further it can be very unattractive to have a larger387

m for the out of sample extension to new points. If for example costly alignment scores388

are used one is interested in having a very small m to avoid large costs in the test phase389

of the model.390

The results of a 10-fold crossvalidation are shown in the Table 1 with runtimes391

given in Table 2. Here and in the following experiments the landmark selection was part392

of the crossvalidation scheme and the landmarks are selected on the training set only393

and the test data have been mapped to the approximated kernel space by the Nytröm394

kernel expansion (see e.g. [13] ).395

For the ball data set the data contain substantial information in the negative fraction396

of the eigenspectrum, accordingly one may expect that these eigenvalues should not be397

removed. This is also reflected in the results. In SIM4 and SIM 5 only the two dominat-398

ing eigenvectors are kept such that the negative eigenvalues are removed, degenerating399

the prediction accuracy. The SIM3 encoding is a bit better, but the landmark optimiza-400

tion via k-means is not very effective for this dataset. Also the entropy approach in401

SIM6 was not very efficient. The SIM2 encoding has a substantial drop in the accuracy402

with respect to the unapproximated kernel but the intrinsic dimension of the dataset403

is very high and the m = 8 landmarks are enough to preserve the dominating posi-404

tive and negative eigenvalues. The unapproximated kernel leads to perfect separation,405

clearly showing that the negative eigenspectrum contains discriminative information.406

The respective eigenvalue plots are provided in Figure 3.407

8We use the implementation as provided by the authors in the LSSVM toolbox http://www.esat.

kuleuven.be/sista/lssvmlab/
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Figure 3: Eigenvalue analysis of the ball dataset using the different approaches. The first plot shows the

eigenvalues of the original kernel (SIM1), the other plots show typical results from the 10-fold crossvalida-

tion for the various landmark selection approaches (SIM2-SIM6). It can be clearly seen that the landmarks

identified by the MEB approach sufficiently capture the negative eigenvalues. The random sampling ap-

proach works only if a larger number of landmarks is chosen and is still less efficient because it is not

ensured that the landmarks cover the whole data space. Especially if the data are non i.i.d. random sampling

is typically insufficient.
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Table 1: Test set results of a 10-fold iKFD run on the simulated / controlled datasets in different kernel

approximations. A ? indicates a non-metric similarity matrix. The number of identified landmarks is shown

in brackets for SIM2.

Method Ball? Protein? Checker Gaussian

SIM1|s(K̂,K) 100± 0 98.12± 3.22 98.89± 0.35 90.00± 5.77

SIM2|s(K̂,K) 92.00± 4.83(8) 96.71± 3.20(25) 90.22± 8.52(9) 90.00± 7.45(8)

SIM3|s(K̂,K) 70.00± 12.69 96.71± 4.45 91.78± 9.24 87.00± 10.33

SIM4|s(K̂,K) 59.50± 5.50 86.85± 6.29 65.33± 5.13 65.00± 8.17

SIM5|s(K̂,K) 52.50± 12.08 78.87± 14.61 46.11± 4.20 77.50± 10.61

SIM6|s(K̂,K) 74.50± 12.79 95.31± 5.78 62.33± 11.67 87.00± 7.52

The results show that the proposed MEB approach is capable in preserving the408

geometric information also for the negative (squared) eigendimensions while being409

quite simple. We believe that controlling the approximation accuracy of the kernel by ε410

in the MEB is much easier than selecting the number of clusters (per class) in k-means411

clustering. In fact it will almost always be sufficient to keep ε ≈ 0.01 to get reliable412

landmark sets whereas the number of clusters is very dataset dependent and not easy413

to choose. However, in contrast to the results shown in Table 1 the approach by [14] is414

typically effective for a large variety of datasets also with indefinite kernels, given the415

number of landmarks is reasonable large and discriminating information is sufficiently416

provided in the dominating eigenvectors of the cluster solutions. For the protein data417

we observe similar results and the proposed approach, the k-means strategy and the418

entropy approach are effective. SIM4 and SIM5 is again substantially worse because419

four landmarks are in general not sufficient to represent these data from a discriminative420

point of view.421

For the checker board and Gaussian data SIM2 and SIM3 are again close and SIM4422

and SIM5 are substantially worse using only two landmark points. The entropy ap-423

proach was efficient only for the Gaussian data, but failed for Checker which may be424

attributed to the strong multi-modality of the data.425

The runtimes given, in Table 2, show already for the small data examples that the426

MEB approach is much faster then k-means or the entropy approach if the number of427

points gets larger which was already expected from the theoretical runtime complexity428

of these algorithms.429
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TTable 2: Runtimes in seconds of a 10-fold iKFD run on the simulated / controlled datasets in different kernel

approximations. A ? indicates a non-metric similarity matrix.

Method Ball? Protein? Checker Gaussian

SIM1|s(K̂,K) 0.5 0.82 13.45 0.74

SIM2|s(K̂,K) 1.0 1.56 3.76 0.98

SIM3|s(K̂,K) 1.57 2.57 14.77 1.51

SIM4|s(K̂,K) 0.84 1.14 13.23 0.90

SIM5|s(K̂,K) 0.61 0.98 3.23 0.65

SIM6|s(K̂,K) 3.2 8.47 8.12 3.94
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Figure 4: Reconstructed kernel matrix (from the crossvalidation run) of the 10 dimensional Gaussian exam-

ple. Left using the MEB approach, right using the k-means landmark selection. Note the small region on the

bottom in the left plot indicating the smaller Gaussian which are almost missing in the right plot.
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Figure 5: Results for the different landmark selection schemes on a dataset of two banana like shaped distri-

butions with varying overlap (from strong overlap - top left, to almost no overlap and good separation right,

bottom). We see that the prediction accuracy is improving with better separation of the distributions. One

can also see that a random selection of one landmark per class fails. If the number of landmarks is chosen

more appropriately (by using the number as obtained from the MEB solution) the accuracy improves but is

still worse for a random selection approach. If the landmarks are optimized using k-means the Frobenius

error typically shrinks but the accuracy is not substantially effected. The MEB approach shows consistently

good prediction error, although a slightly higher Frobenius error. We clearly see that a higher Frobenius error

may not lead to a high prediction error.
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Figure 6: Prediction accuracy for the checker board data with a varying number of landmarks. The MEB

solution is indicated by a square. The x axis has an increasing number of landmarks and the y-axis shows the

respective prediction error from the crossvalidation using a k-means based Nyström approximation. We see

that the MEB solution is almost optimal and a further increase of the number of landmarks has only a small

effect. The Frobenius error is inversely scaled such that a low Frobenius error is shown by a large ball

In Figure 5 we analyze a dataset with two banana shaped distributions and varying430

overlap for the different landmark selection schemes. Initially we only know that we431

have two classes, so we may conclude that we have two clusters and hence it maybe432

sufficient to consider two landmarks, only. As the plot shows this is not a very good433

strategy and works only somewhat if the data are very well separated (right, bottom434

subplot). If the data show overlap it is helpful to have a more advanced selection435

strategy. We see that MEB provides a good choice for the number of landmarks and436

in general leads to very good prediction results, although the Frobenius error maybe437

higher. K-means will in general improve the Frobenius error but has still some errors438

if the number of landmarks (or in k-means clusters) is not well determined (?). Only439

with a good pre-condition using the number of landmarks suggested by MEB (�), the440

k-means gives very good results, with low Frobenius error.441

In Figure 6 we consider again the checker board data but by varying the number442

of landmarks. The Nyström approximation was done by k-mean where the number of443

landmarks was given and stepwise increased for each result. We can see, that the MEB444

solution not only has given a good estimate for a reasonable number of landmarks, but445
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has also directly provided a reliable good matrix approximation. Additional landmarks446

have only a minor effect on the prediction accuracy, but help to improve the Frobenius447

error.448

In another small experiment we analyzed the effect of the k-means based landmark449

selection [14] in more detail. We consider three Gaussians where one Gaussian has 500450

points spread in two dimensions and two other Gaussians each with 20 points spread451

in another dimensions. All Gaussians are perfectly separated to each other located in452

a three dimensional space. To make the task more challenging we further add 7 di-453

mensions with small noise contributions to the large Gaussian. The final data are given454

in a 10 dimensional space, whereby the small Gaussians are intrinsically low dimen-455

sional and the large Gaussian is 10 dimensional. with major contributions only in two456

dimensions. The points from the large Gaussian are labeled 0 and the other 1. Using457

the MEB approach we obtain 10 landmarks and the approximated kernel is sufficient458

to give a perfect prediction of 100% in a 10-fold crossvalidation with iKFD. Using459

the k-means or entropy based approach (with the same number of landmarks) the pre-460

diction accuracy drops down to ≈ 84% and for random sampling we get a prediction461

accuracy in the same range of 83% - again with 10 landmarks . This can be explained462

by the behavior of k-means to assign the prototypes or landmarks to dense regions. It is463

hence more likely that after the k-means clustering (almost) all prototypes are used to464

represent the large Gaussian and no prototypes are left for the other classes. Due to the465

fact that the other classes are located in different dimensions with respect to the large466

Gaussian these dimensions are not any longer well represented and hence the respec-467

tive classes are often missing in the approximated kernel (see Figure 4). This density468

related behavior is also known as magnification [33] in the context of different vector469

quantization approaches. Hence using the unsupervised k-means landmark selection it470

can easily happen, that the majority of the data space is well presented but small classes471

are ignored - which is obviously a problem for a supervised data analysis.472

From these initial experiments we see that the proposed landmark selection scheme473

is sufficient to approximate the original kernel function for a supervised analysis as474

indicated by the prediction accuracy of the iKFD model. We also see that the Nyström475

approximation can introduce substantial error if the data are not low rank (for checker)476
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due to a more complicated kernel mapping aka similarity function. We would like to477

highlight again that without an advocated guess of the number of landmarks neither the478

k-means strategy nor the entropy approach are very efficient.479

In the experiment in section 7 we will restrict our analysis to the proposed land-480

mark selection using the MEB approach, the k-means strategy and the entropy based481

technique.482

5. Large scale indefinite learning with PCVM and iKFD483

We now integrate the aforementioned Nyström approximation approaches and the484

supervised landmark selection into PCVM and iKFD. The modifications ensure that485

all matrices are processed with linear memory complexity and that the underlying al-486

gorithms have a linear runtime complexity. For both algorithms the initial input is487

the Nyström approximated kernel matrix with landmarks selected by using one of the488

formerly provided landmark selection schemes.489

5.1. PCVM for large scale proximity data490

The PCVM parameters are optimized using the EM algorithm to prune the weight491

vector w during learning and hence the considered basis functions representing the492

model. We will now show multiple modifications of PCVM to integrate the Nyström493

approximation and to ensure that the memory and runtime complexity remains linear494

at all time. We refer to our method as Ny-PCVM. Initially the Ny-PCVM algorithm495

makes use of the matrices K1 = K(N,m) and K2 = K−1
(m,m) ·K>1 obtained from the496

original kernel matrix using the Nyström landmark technique described above. Given497

a matrix X , we denote by X̂ the matrix formed from X containing elements at indices498

that have not yet been pruned out of the weight vector w. As an example, the matrices499

K̂1 = Kw 6=0,·
1 , K̂2 = K ·,w 6=0

2 hold only those columns/rows of K1 or K2 not yet500

pruned out from the weight vector. We will use the same notation also for other vari-501

ables. We denote the set of indices of m randomly selected landmarks by [m]. Finally,502

in contrast to the original PCVM formulation [6], in our notation we explicitly use the503

data labels - for example, instead of vector Φθ(x) we write Ξθ(x) ◦ y, where Ξθ(x) is504
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the kernel vector of x without any label information, y is the label vector and ◦ is the505

element-wise multiplication.506

We now adapt multiple equations of the original PCVM to include the Nyström507

approximated matrix. Eq. (4) for the i-th training point now reads:508

zi,θ = Ξθ(xi)(y ◦w) + b, (11)

in matrix notation for all training points:509

ẑ = (((ŷ ◦ ŵ)>K̂1) ·K2)> + b. (12)

We obtain column vectors H̄θ and the reduced form ¯̂Hθ, by using only the non-510

vanishing basis functions and the Nyström approximated matrices in Eq. (4). In the511

maximization step of the original PCVM the w are updated as (see Eq. (5)):512

wnew = M(MΦθ(x)>Φθ(x)M + IN )︸ ︷︷ ︸
Υ

−1
M(Φθ(x)>H̄θ − bΦθ(x)>1) (13)

To account for the now excluded labels we reformulate Equation (5) as:513

wnew = M(M(Ξθ(x)>Ξθ(x)ŷ>ŷ)M + IN )︸ ︷︷ ︸
Υ

−1
M(ŷ>(Ξθ(x)>H̄θ)− bŷ>(Ξθ(x)>1))

514

The update equations of the weight vector include the calculation of a matrix in-515

verse of Υ which was originally calculated using the Cholesky decomposition. To516

keep our objective of small matrices we will instead calculate an SVD based inverse517

of this matrix using a Nyström approximation of Υ. It should be noted at this point518

that the matrix Υ is psd by construction. We approximate Υ by selecting another set of519

m∗ landmarks from the indices of the not yet pruned weights and calculate the matrix520

Υ̃ = C(N,m∗)W
−1
(m∗,m∗)C

>
(N,m∗) in analogy to Eq (10) with submatrices: 9

521

C(N,m∗) = E(N,[m]) + ((K̂1 · (K2 · (K1 · K̂2(·,[m∗])))(ŷ
>ŷ[m∗]))

◦
√

2ŵ) ◦
√

2ŵ>[m∗]

W(m
∗,m∗) = C−1

(m∗,·)

9The number of landmarks m∗ is fixed to be 1% of |w| but not more then 500 landmarks. If the length

of w drops below 100 points we use the original PCVM formulations.

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Where ◦ indicates (in analogy to its previous meaning) that each row of the left matrix522

is elementwise multiplied by the right vector and E(N,[m]) is the matrix consisting of523

the m landmark columns of the N ×N identity matrix. The terms
√

2ŵ and
√

2ŵ>[m∗]524

are the entries of the diagonal matrix M as defined in Eq. (7) but now given in vector525

form.526

These two matrices serve as the input of a Nyström approximation based inverse527

(as discussed in sub section 3.1) and we obtain matrices V ∈ RN×r, U ∈ Rr×N and528

S ∈ Rr×r, where r ≤ m∗ is the rank of the inverse. Further we define two vectors529

v1 = ¯̂Hθ

>
·K1

v2 = 1> ·K1.

We obtain the approximated weight update530

wnew = V · (S · U> · (
√

2ŵ(ŷ(v1 · K̂2)> − b · ŷ(v2 · K̂2)>)))
√

2ŵ

The original bias update (6) is replaced with:531

b = t(1 + tNt)−1t(1> ¯̂Hθ − 1>((((ŷ ◦ ŵ)>K̂1) ·K2)>))

Subsequently the entries in ŵ which are close to zero are pruned out and the matrices532

K̂1 and K̂2 are modified accordingly.533

5.2. Nyström based Indefinite Kernel Fisher Discriminant534

Given a Nyström approximated kernel matrix a few adaptations have to be made535

to obtain a valid iKFD formulation solely based on the Nyström approximated kernel,536

without any full matrix operations.537

First we need to calculate the classwise means µ+ and µ− based on the row/column538

sums of the approximated input kernel matrix. This can be done by rather simple539

matrix operations on the two low rank matrices of the Nyström approximation of K.540

For ease of presentation, we will refer to the matrices K(N,m) and K(m,m) as Ψ and Γ,541

respectively. Then542

∑

i

K̃k,i =
m∑

l=1




N∑

j=1

Ψj,·Γ
−1


Ψ>l,k. (14)
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This can obviously also be done in a single matrix operation for all rows in a batch, with543

linear complexity only. Based on these mean estimates we can calculate Eq. (2). In the544

next step we need to calculate a squared approximated kernel matrix for the positive545

and the negative classes, centered at the origin (i.e. with substracted means µ+ or µ−).546

For the positive class with n+ entries, we can define a new Nyström approximated547

(squared) matrix with subtracted mean as :548

K̂+
(N,m) = K(N,m) ·K−1

(m,m) ·(K>(I+,m) ·K(I+,m))·K−1
(m,m) ·K>(m,m)−µ+ ·µ>+ ·n+ (15)

An equivalent term can be derived for the negative class providing K̂−(N,m). It should549

be noted that no obtained matrix in Eq (15) has more than N × m entries. Finally550

K̂+
(N,m) and K̂−(N,m) are combined to approximate the within class matrix as shown in551

Eq. (3). From the derivation in [4] we know, that only the eigenvector of the Nyström552

approximated kernel matrix based on K̂(N,m) = K̂+
(N,m) + K̂−(N,m) are needed. Using553

a Nyström based eigen-decomposition (explained before) on K̂(N,m) we obtain:554

α = C ·A−1 · (C ′ · (µ+ − µ−))

whereC contains the eigenvectors andA the eigenvalues of K̂(N,m). IfA is not regular,555

instead of A−1 one can use a pseudo inverse. The bias term b is obtained as b =556

−α>(µ+ + µ−)/2.557

6. Complexity analysis558

The original iKFD update rules have costs of O(N3) and memory storage O(N2),559

where N is the number of points. The Ny-iKFD may involve the extra Nyström ap-560

proximation of the kernel matrix to obtain K(N,m) and K−1
(m,m), if not already given.561

If we have m landmarks, m � N , this gives costs of O(mN) for the first matrix and562

O(m3) for the second, due to the matrix inversion. Further both matrices are multi-563

plied within the optimization so we get O(m2N). Similarly, the matrix inversion of564

the original iKFD with O(N3) is reduced to O(m2N) + O(m3) due to the Nyström565

approximation of the inverse. If we assume m � N the overall runtime and memory566

complexity of Ny-iKFD is linear in N . For the Ny-PCVM we obtain a similar analy-567

sis as shown in [11] but with extra costs to calculate the Nyström approximated SVD.568
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Additionally, Ny-PCVM uses an iterative optimization scheme to optimize and spar-569

sify w with constant costs CI , as the number of iterations. Accordingly Ny-iKFD and570

Ny-PCVM have both linear memory and runtime complexity O(N), but Ny-PCVM571

maybe slower than Ny-iKFD due to extra overhead costs. The MEB approximation572

has a linear (worst case) complexity [30] which in our case scales with the constant573

number of classes C, hence the complexity remains linear.574

7. Experiments575

We compare iKFD, Ny-iKFD, Ny-PCVM and PCVM on various larger indefinite576

proximity data. In contrast to many standard kernel approaches, for iKFD and PCVM,577

the indefinite kernel matrices need not to be corrected by costly eigenvalue correction578

[34, 35] 10
579

Further the iKFD and PCVM provides direct access to probabilistic classification580

decisions. First we show a small simulated experiment for two Gaussians which exist581

in an intrinsically two dimensional pseudo-Euclidean space R(1,1). The plot in Figure582

7 shows a typical result for the obtained decision planes using the iKFD or Ny-iKFD.583

The Gaussians are slightly overlapping and both approaches achieve a good separation584

with 93.50% and 88.50% prediction accuracy, respectively.585

Subsequently we consider a few public available datasets for some real life exper-586

iments. The data are Gesture (1500pts, 20 classes), Zongker (2000pts, 10 classes) and587

Proteom (2604pts, 53 classes (restricted to classes with at least 10 entries)) from [36];588

Chromo (4200pt, 21 classes) from [37] and the SwissProt database Swiss (10988 pts,589

30 classes) from [38], (version 10/2010, reduced to prosite labeled classes with at least590

100 entries ). Further we used the Sonatas data (1068pts, 5 classes) taken from [39].591

All data are processed as indefinite kernels and the landmarks are selected using the592

respective landmark selection schemes. The mean number of Nyström landmarks as593

obtained by the MEB approach is given in brackets after the dataset label. For all ex-594

periments we report mean and standard errors as obtained by a 10 fold crossvalidation.595

10In [10] various correction methods have been studied on the same data indicating that eigenvalue cor-

rections may be helpful.
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Figure 7: Visualization of the indefinite Fisher kernel for two Gaussians in a two dimensional pseudo-

Euclidean space R(1,1). The predicted labels are with respect to the iKFD classification.

For PCVM we fixed the upper number of optimization cycles to 500. The probabilistic596

outputs can be directly used to allow for a reject region but can also be used to provide597

alternative classification decisions e.g. in a ranking framework598

In Table 3, 4 and Table 5 we show the results for different non-metric proximity599

datasets using Ny-PCVM, PCVM and iKFD or Ny-iKFD. The overall best results for600

a dataset are underlined and the best approximations are highlighted in bold.601

Considering Table 3 and Table 4 we see that iKFD and PCVM are similarly ef-602

fective with slightly better results for iKFD. The Nyström approximation of the kernel603

matrix only, often leads to a in general small decrease of the accuracy, but the addi-604

tional approximation step, in the algorithm itself, does not substantially decrease the605

prediction accuracy further11.606

The approximations used in the algorithms Ny-iKFD and Ny-PCVM appear to be607

effective. The runtime analysis in Table 5 clearly shows that the classical iKFD is608

very complex. As expected, the integration of the Nyström approximation leads to609

substantial speed-ups. Larger datasets like the Swiss data with ≈ 10.000 entries could610

11Also the runtime and model complexity are similar and therefore not reported in the following.
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dataset iKFD (MEB) (KM) (ENT)

gesture 97.93± 0.73 96.60± 1.84 95.73± 0.86 93.47± 1.93*

1500→ 64

sonatas 90.17± 2.14 83.52± 2.08∗ 77.63± 3.19∗ 80.24± 2.46*

1068→ 25

zongker 96.60± 1.97 90.70± 2.30∗ 88.40± 1.33∗ 90.90± 1.15*

2000→ 41

proteom 99.58± 0.38 99.68± 0.31 94.78± 1.89 94.54± 1.87

2604→ 123

chromo 97.24± 0.94 94.79± 1.45 94.17± 0.86 94.50± 1.30

4200→ 65

swiss – 83.05± 1.60 73.74± 0.71

10988→ 116

Table 3: Comparison of the test set accuracy of iKFD with different input kernels. The first column (iKFD)

refers to the results obtained by a full, unapproximated kernel with classical iKFD. The other columns report

results for the Ny-iKFD approach with differently approximated input kernels. (MEB) gives results for the

proposed approach, (KM) shows results of the kmeans strategy and (ENT) employs the entropy approach.

Below the dataset label we provide the number of samples and the number of landmarks used to represent the

kernel with MEB, KM and ENT. (*) indicate significant differences with respect to the same unapproximated

method. Best approximation results are in bold. Best overall results are underlined. Bold markings indicate

the best approximated solution.

not be analyzed by iKFD or PCVM before. We also see that the landmark selection611

scheme using MEB is slightly more effective than by using k-means but without the612

need to tune the number of clusters (landmarks). The entropy approach is similar613

efficient than the k-means strategy but more costly due to the iterative optimization of614

the landmark set and the respective eigen-decompositions (see [16]).615

The PCVM is focusing on a sparse parameter vector w in contrast to the iKFD.616

For the iKFD most training points are also used in the model (≥ 94%) whereas for617

Ny-PCVM often less than 5% are kept in general as shown in Table 6. In practice it is618

often costly to calculate the non-metric proximity measures like sequence alignments619

and also a large number of kernel expansions should be avoided. Accordingly sparse620
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dataset PCVM (MEB) (KM) (ENT)

gesture 73.20± 18.12 85.53± 1.22∗ 92.60± 1.04∗ 91.07± 2.97*

1500→ 64

sonatas 91.20± 2.69 87.08± 3.19∗ 77.81± 3.28∗ 82.77± 2.86*

1068→ 25

zongker 93.60± 2.00 84.35± 2.53∗ 88.30± 2.89∗ 90.50± 2.12

2000→ 41

proteom 99.58± 0.38 99.45± 0.53 94.18± 1.23 80.93± 22.96*

2604→ 123

chromo 93.29± 1.51 92.21± 1.31 92.10± 0.89 90.95± 2.55

4200→ 65

swiss – 70.38± 19.19 75.36± 7.55

10988→ 116

Table 4: Comparison of the test set accuracy of PCVM with different input kernels. The first column (PCVM)

refers to the results obtained by a full, unapproximated kernel with classical PCVM. The other columns report

results for the Ny-PCVM approach with differently approximated input kernels. (MEB) gives results for the

proposed approach, (KM) shows results of the kmeans strategy and (ENT) employs the entropy approach.

Below the dataset label we provide the number of samples and the number of landmarks used to represent the

kernel with MEB, KM and ENT. (*) indicate significant differences with respect to the same unapproximated

method. Best approximation results are in bold. Best overall results are underlined. Bold markings indicate

the best approximated solution.

models are very desirable. Considering the runtime again Ny-PCVM and Ny-iKFD621

are in general faster than the original algorithms, typically by at least a magnitude. the622

PCVM and Ny-PCVM are also very fast in the test case or out-of sample extension due623

to the inherent model sparsity.624

In [9] and [10] one can also find an in depth analysis of alternative non-probabilistic625

classifiers and how they perform on the considered data sets. Overall the accuracy of626

our approaches is competitive to other reported results. These alternative techniques627

have in general quadratic to cubic complexity, are often non-sparse in the final model628

and are more complicated to handle if the model is applied to new test data. In par-629

ticular the work in [9] provides a large disussion about the practical issues of handling630
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gesture 50.72± 1.54 9.18± 0.19 116.33± 7.49 31.98± 0.42

sonatas 5.04± 0.22 1.85± 0.06 60.07± 2.54 7.01± 0.24

zongker 51.61± 1.43 5.53± 0.16 184.07± 14.97 16.91± 0.24

proteom 559.25± 15.29 42.08± 1.92 352.08± 18.05 111.22± 1.88

chromo 763.24± 31.54 27.91± 1.77 694.43± 15.61 54.36± 0.77

swiss – 178.79± 10.63 – 123.29± 2.72

Table 5: Typical runtimes (in sec.) - indefinite kernels

iKFD Ny-iKFD (MEB) PCVM Ny-PCVM (MEB)

gesture 100.00± 0 100.00± 0 10.60± 0.84 5.25± 0.31

sonatas 100.00± 0 100.00± 0 11.24± 0.56 3.42± 0.57

zongker 100.00± 0 100.00± 0 14.42± 3.65 8.63± 0.31

proteom 100.00± 0 100.00± 0 5.23± 0.36 5.85± 0.14

chromo 100.00± 0 100.00± 0 7.49± 0.51 2.49± 0.34

swiss − 96.95± 0.27 − 1.18± 0.25

Table 6: Model complexity - indefinite kernels (threshold 1e−4)
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non-psd kernels with the Support Vector Machine and was a motivation for our work.631

8. Conclusions632

We presented an alternative formulation of the iKFD and PCVM employing the633

Nyström approximation. We also provided an alternative way to identify the landmark634

points of the Nyström approximation in cases where the objective is a supervised635

problem. Our results indicate that in general the MEB approach is similar efficient636

compared to the k-means clustering or the entropy strategy but with less effort and637

almost parameter free. We found that Ny-iKFD is competitive in the prediction638

accuracy with the original iKFD and alternative approaches, while taking substantially639

less memory and runtime but being less sparse then Ny-PCVM. The Ny-iKFD and640

Ny-PCVM provides now an effective way to obtain a probabilistic classification model641

for medium to large psd and non-psd datasets, in batch mode with linear runtime642

and memory complexity. If sparsity is not an issue one may prefer Ny-iKFD which643

is slightly better in the prediction accuracy then Ny-PCVM. Using the presented644

approach we believe that iKFD is now applicable for realistic problems and may get a645

larger impact then before. In future work it could be interesting to incorporate sparsity646

concepts into iKFD and Ny-iKFD similar as shown for classical KFD in [40].647

Implementation: The Nyström approximation for iKFD is provided at648

http://www.techfak.uni-bielefeld.de/˜fschleif/source/649

ny_ikfd.tgz and the PCVM/Ny-PCVM code can be found at https:650

//mloss.org/software/view/610/.651
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