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Abstract

Convolutional neural networks (CNNs) can be applied to graph similarity matching, in which case
they are called graph CNNs. Graph CNNs are attracting increasing attention due to their effectiveness and
efficiency. However, the existing convolution approaches focus only on regular data forms and require
the transfer of the graph or key node neighborhoods of the graph into the same fixed form. During this
transfer process, structural information of the graph can be lost, and some redundant information can be
incorporated. To overcome this problem, we propose the disordered graph convolutional neural network
(DGCNN) based on the mixed Gaussian model, which extends the CNN by adding a preprocessing layer
called the disordered graph convolutional layer (DGCL). The DGCL uses a mixed Gaussian function to
realize the mapping between the convolution kernel and the nodes in the neighborhood of the graph. The
output of the DGCL is the input of the CNN. We further implement a backward-propagation optimization
process of the convolutional layer by which we incorporate the feature-learning model of the irregular
node neighborhood structure into the network. Thereafter, the optimization of the convolution kernel
becomes part of the neural network learning process. The DGCNN can accept arbitrary scaled and
disordered neighborhood graph structures as the receptive fields of CNNs, which reduces information loss
during graph transformation. Finally, we perform experiments on multiple standard graph datasets. The
results show that the proposed method outperforms the state-of-the-art methods in graph classification
and retrieval.

1 Introduction

A graph structure is a rich representational form that can describe complex structural data in the real world,
such as images, biomedical data, and social networks. Many studies represent an image as an attribute graph
and transform the image retrieval problem into an attribute graph search problem. The technique of chemical
analysis graph searching, for example, can facilitate the study of properties of newly synthesized chemicals
by referring to a database of existing chemicals with known properties. Therefore, it is important to study
graph feature learning and searching.

In recent years, deep learning has been applied to many areas and has been shown to significantly
outperform traditional methods. Among the available techniques, convolutional neural networks (CNNs)
are widely used in image classification, semantic segmentation and object recognition. CNNs can learn the
local structure and features of data. Because data such as images, video and sound have the same fixed-sized
neighborhoods, convolution, pooling and other operations are well defined in the mathematical sense. For
example, in an image, each pixel has eight neighboring nodes. However, traditional CNNs cannot be applied
directly to graph data, whose neighborhoods are irregular.
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To apply CNNs to graph-structured data, multiple methods have been proposed [1, 2, 3, 4, 5, 6, 7]. These
methods can be divided into two categories: spatial-based methods and spectral-based methods. Spatial-based
approaches use the neighborhood information from the graph data space in convolution operations. The
main strategy of these methods is to convert the convolution of the graph data into an inner product of the
neighborhood information in the graph data space. However, it is challenging to find a convolution operation
that is translation-invariant for irregular data. The spectral-based methods typically use the Laplacian to
transform the graph data and then use the eigenvector as the convolution operator. The purpose of this
transformation is to approximate the convolution operation of the graph data as a convolution operation
of the regularized data. In recent work, researchers have attempted to design a graph-CNN architecture by
employing a graph-labeling procedure for the construction of a receptive field. Mathias Niepert [8] proposed
a framework for learning CNNs for graphs. To a certain extent, the methods mentioned above solve the
problem of applying a CNN to graph data. However, all of these methods require the graphs to be transformed
into the same neighborhoods with the same ordering . This process is called graph regularization and involves
the conversion of graph data into a data format that can be processed by standard CNNs.

The local receptive field of a graph is similar to the fixed-size neighborhood of an image. However, the
numbers of neighboring nodes of each node in the graph are not fixed. The standard practice is to regularize
the neighborhood of the node: First, a threshold value is fixed. If the neighborhood size is less than the
threshold, the neighborhood will be filled with zeros, which is equivalent to adding invalid information.
When the neighborhood size is greater than the threshold, we interpret the threshold size of the node as
a neighborhood , which results in the loss of some of the effective neighborhood information. However,
this approach cannot reflect the neighborhood information of real nodes. This type of model can support
continuous labelling with graph data but requires the graph or node neighborhoods of the graph to be
transformed into fixed-sized representations to meet the processing requirements of the CNN. Therefore, this
method can result in the loss of important information due to the padding and interception operations. Thus,
one of the challenges in improving the effect of applying CNNs to graph data is that the neural network model
can perform convolution operations directly on irregular node neighborhoods and can perform parametric
learning.

To address these limitations, we present a graph convolutional neural network (g-CNN) model that can
perform feature learning on graph data directly. We use a continuous mapping function (which is based
on a mixed Gaussian process) between the irregular local neighborhood and the convolution weight to
transform the discrete parameter learning problem into a parameter sampling problem of a continuous
function. Therefore, parameter sampling becomes a function of the features in the preceding layer of the
network rather than being based on manually defined parameters on the graph, as in previous studies.

The main innovation of our model is that it does not need to convert the graph or its node neighborhoods
into fixed structures; instead, the model learns the irregular structural data directly and can optimize the graph
convolution kernel through the neural network. Thus, the model is called the disordered graph convolutional
neural network (DGCNN). We conduct experiments on multiple standard graph datasets, and the experimental
results show that the proposed method outperforms the existing g-CNN methods and other types of methods
in graph classification and retrieval.

The remainder of this paper is organized as follows. In Section 2, we introduce the relevant work on
g-CNNs and graph kernels (g-kernels). In Section 3, we introduce the model structure. In Section 4, we
introduce the DGCL. In Section 5, we describe the experiment and present the results of our method and the
comparison methods. Finally, in Section 6, we discuss the results and present our conclusions , respectively.
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2 Related work

Current graph processing methods can be divided into two categories: traditional kernel approaches and
g-CNNs. The g-CNN approaches often apply standard CNNs to graph data feature learning, while traditional
kernel approaches typically use non-linear projection to transform sample graph data into a higher-dimensional
feature space, where analysis and processing are performed.

2.1 G-kernel approaches

G-kernel approaches project a graph into a feature vector space; the similarity of the two graphs is their scalar
product in the space. A g-kernel often defines the similarity function for two graphs. Multiple g-kernels have
been proposed, such as the random-walk (RW) kernel, the shortest-path (SP) kernel and the sub-tree kernel.

Gartnerj et al. [9] proposed an RW kernel function based on computing the RW kernel functions of
common steps for two graphs and proved that this function is a positive-definite function. However, the RW
g-kernel function has two disadvantages. First, for both of the g-kernels, the comparison of RW paths is
of enormous computational complexity. Second, an RW path often contains multiple repeated points and
edges, which influences the computational efficiency of RW g-kernel functions. Weisfeiler [10] proposed the
WL sub-tree g-kernel, which is based on the one-dimensional WL isomorphism algorithm. This algorithm
searches for the sub-tree structure that is shared by two graphs. However, the WL kernel supports only discrete
features, and the memory consumed by the WL kernel is proportional to the number of training samples. The
SP kernel (Borgwardt and Kriegel 2006) calculates the similarity by comparing every pair of edges in SP
graphs. Shervashidze [11] proposed a graphlet count kernel (GK) function based on the sub-graph structure.
A graphlet is a small-sized sub-graph that often contains 3 to 5 nodes. Due to the lack of an effective approach
for node labelling, this GK function is not applicable to datasets that are focused on node labels.

2.2 Graph convolutional neural networks

CNNs are applied to graph data in two broad categories of research: spectral filtering methods and local
filtering methods. In the field of spectral filtering methods, Henaff et al. [12] used feature vectors of graph
Laplacians to perform convolution and used a weighted distance to construct the similarity matrix. Defferrard
et al. [2] proposed a network model based on ChebNet, which is a spectrally defined method with space
attributes. In this model, Chebyshev polynomials of the Laplacian are used to learn k-hop neighborhoods
of graph data, thereby incorporating spatial information into neighborhoods. Kipf and Welling [13] derived
a semi-supervised g-CNN approach by simplifying and extending the ChebNet-based model. All of these
approaches require a fixed graph data structure. In the field of local filtering methods, Atwood and Towsley
developed a diffusion convolutional neural network (DCNN) that performs RWs in graph data to select the
neighborhood structure in the space as the input for the CNN. However, the DCNN is of complexity O(N2),
which restricts the extendibility of this approach. Bruna et al. [1] proposed a multi-scale cluster-based g-CNN
model in which convolution defines the weight of each non-shared attribute of each cluster. Duvenaud et
al. [2] developed a local space filter that can be applied to any node and its neighborhood. Mathias Niepert [8]
proposed a method that can obtain the local receptive field of graph data and apply it to a CNN, which
includes three steps: 1) select a node; 2) construct the fixed-size neighborhood of this node to form a fixed-size
sub-graph; and 3) regulate the neighborhood sub-graph. It is possible to obtain a one-dimensional data unit
that can be processed by a standard CNN using these three steps. However, both spectrally and spatially
defined methods need to transform graph data into data structures with fixed scale, and feature information
loss during the transformation process is unavoidable.

3



Unlike previous work, the g-CNN model we propose, namely, DGCNN, is specially designed for
the disordered features of node neighborhoods and can perform convolution from irregular neighborhood
structures while achieving the back-propagation of graph convolution without transforming the graph data
structure into a fixed regular structure. After parameter sampling based on the Gaussian mixture model
(GMM), the DGCNN can perform convolution operations on irregular and disorder neighborhood structures.

3 Model structure and preprocessing

The key step for the application of CNNs to normalize grid data is to use a window of size k ∗ k to capture
the local neighborhood of the image and share the corresponding convolution kernel parameters in the
window. Because of the randomness of the neighborhoods of graph nodes, the traditional window translation
method is not applicable to graph data, and a g-CNN model is proposed for accommodating random node
neighborhoods.

When processing an image in the framework of the standard CNN model, the local receptive field is
used to implement the convolution operation on the data according to a step movement and obtain the local
features of the graph, as shown in Fig. 1(a), where the convolution window size is fixed to W ∗ H . Due
to the normalization of the pixel position of the image, the local receptive field can be moved from left
to right and from top to bottom to obtain the local information of the image. As shown in Fig. 1(b), the
neighborhoods of the different nodes correspond to various receptive fields of the convolution processes. The
node neighborhoods of the graph have no fixed scale or order; thus, the convolution cannot be implemented
directly on the graph using the fixed-sized and ordered convolution kernels.

…… ……

……

……

H

W

(a) weights of the image

.
.
.

(b) node neighborhood in the graph data

Figure 1: Receptive fields of an image and the corresponding graph

To overcome the above problems, we propose a disordered g-CNN model that can be applied to arbitrary
graph data. The network in this model can learn the parameter mapping between the random node neigh-
borhoods and the convolution weights of the graph. As shown in Fig. 2, the graph data are first transformed
into a receptive field that can be processed by the CNNs. Then, a convolution operation is performed over
the kernel parameter matrix and the receptive field. Finally, the g-CNN takes the output of the convolutional
layer (CL) as the input data of the standard overall connection layer. Our model contains the following parts:

(1)Key Node Selection: The selection operation is implemented on the graph data to obtain a fixed number
of key nodes. To ensure that the number of neighborhoods of the nodes in each graph is consistent, the same
number of key nodes is sampled for each graph.
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Figure 2: Illustration of the proposed architecture

(2)Neighborhood Assembly: The nodes of the k − neighborhood are the candidates for the receptive
field. Note that this time, the receptive field is disordered.

(3)Parameter Sampling: The corresponding convolution kernel parameters are sampled based on the
mixed Gaussian model according to the information of the nodes in each neighborhood to implement the
convolution operation for each neighboring graph with its corresponding convolution kernel parameters.

(4)Feature Learning: By combining the DGCL with the standard CNN and the output layers, the g-CNNs
can be built and can directly learn the neighborhood of any random node.

The preprocessing procedure was implemented on each input graph data, as shown in Fig. 2, which
includes node sampling and node neighborhood construction:

(1)Sequence sampling of key nodes: To sort all the nodes in the graph, a method proposed elsewhere [8]
was adopted, and a graph labeling function was introduced in which the set of nodes in the graph are mapped
to an ordered node sequence according to the centripetal parameters (e.g., the node degree or centrad). From
the sequence, w nodes are alternately selected according to a certain interval s to form the ultimate node
sequences. The nodes in the graph are sorted first, as shown in Fig. 3, and then four nodes are alternately
selected as the key node sequence according to the interval s = 2.

(2)Node neighborhood construction: As shown in Fig. 3, for each node in the node sequence that was
obtained in the previous step, breadth-first searching is used to find the neighboring nodes, which form the
neighborhood set of the original key nodes. The node in each node neighborhood should contain the attribute
(such as the weight of the edge or the similarity) between the node and the key node and the attributes of the
node (such as the node category).

After the two steps of input graph data preprocessing, the input data are transformed into a random
neighborhood set with a fixed size, which is similar to the local receptive field set of the graph.
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Figure 3: Preprocessing procedure of graph data
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(a) illustration of a standard CNN
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(b) illustration of a DGCNN based on a GMM

Figure 4: Convolutional Process Comparison between the Standard Image and a Node Neighborhood of the
Graph Data

4 DGCL and its learning process

In the DGCNN, a disordered CL that can receive and process any graph data is designed. A disordered CL is a
CL that can perform convolution operations on irregular and disordered node neighborhoods while achieving
the back-propagation of the CNN.

4.1 Disordered graph convolutional layer

For a DGCL, the input is the node neighborhood structure that was obtained after graph preprocessing. With
the GMM and an activation function, the input graph is transformed into the output of the CNNs.

Fig. 4(a) shows a standard CNN with a receptive field on an image. The receptive field is of fixed size and
ordered. For graph data, each node neighborhood is of variable size and disordered, as shown in Fig. 4(b). For
example, the node neighborhood in Fig. 4(b) includes 5 nodes. Among nodes N1, N2, N3, N4 and N5, N1 is
the key node, and the others are its neigh boring nodes. It is necessary to obtain the convolutional kernels for
these five nodes before performing the convolution operation. An existing solution is to define a fixed-sized
convolutional kernel parameter, which requires a regularization process that may lead to information loss.
However, we sample the convolutional parameters of each neighborhood node on the possibility distribution
for the similarity of the neighborhood nodes and the key node, and the number of convolutional parameters
is the same as the number of key node neighborhoods. According to the central limit theorem [14], it is
reasonable to assume that the probability distribution of the parameters is defined by the GMM, which can
approximate any probability distribution. Thus, for such a node neighborhood, we sample the convolutional
parameters on the sheaf of a Gaussian function GMM (θ) based on the GMM for each node neighborhood.
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Figure 5: Convolutional Unit of A Node Neighborhood
The output value of the convolution operation for such a neighborhood and the sampled kernel parameter is:

F (N) = (GMM(θ), X) =
5∑

k=1

(
n∑
i=1

wiG(θk, µi, σi), Xk) (1)

where N denotes the neighborhood map of a key node, X is the attribute value of a node according to
this map, parameter Xk is the attribute of the k − th node, θ is the correlation between the k − th node and
the key node, m is the number of Gaussian components, wi is the weight of each Gaussian component, µi
and σi are the mean value and variance of each Gaussian component, respectively, and G(·) is the Gaussian
function.

After sampling the convolutional parameters for all key nodes, convolution operations are performed on
the neighborhood to finish the graph data convolution in the graph CL. The convolutional processing of the
graph data represents the forward propagation of the neural network, as shown in Fig. 4(b).

In Fig. 5, the red node in the input part represents the key node, the white nodes are the neighboring
nodes of the key node, the yellow node is the output node, and the green oval in the middle represents F (N).
θ0 is a constant (in this study, θ0 = 0), and θ1, θ2, · · · , θk represent the attribute values of edges between
neighboring nodes and the key node, and X0, X1, X2, ..., Xk are the attribute values of the nodes.

As for the j-th receptive field, we can obtain the forward output for which the graph convolutional process
is performed on its receptive field.

fj =

I∑
i=0

GMM(θi)Xi + b (2)

where I denotes the size of the neighborhood sub-graph, Xi denotes the attribute value of the i-th node,
GMM(θi) denotes mixed Gaussian values of the i-th node, and b ∈ RE denotes a vector of bias terms.

4.2 Graph convolution back-propagation and Gaussian parameter learning

In the DGCL based on the GMM, the parameters of each component of the GMM must be optimized. The
difference between the output value of CNN and the real value is then used for back-propagation to adjust the
parameters. The error function for back-propagation is defined in formula (3) [15]:

error(θ) =
1

2

A∑
a=1

B∑
b=1

(t
(a)
b (θ)− f (a)b (θ))2

=
1

2

A∑
a=1

B∑
b=1

(∇fab (θ))2
(3)
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where t(a)i is the a-th dimension of the corresponding label of the b-th graph data, f (a)b is the similarly
value of the a-th output layer unit in response to the n-th input pattern, B is the number of graph data types,
and A is the number of graph data.

For the a-th graph data, we can immediately compute the gradient:

∇faθ =
∂fa

∂(w1, µ1, σ1, ..., wm, µm, σm)

= (
∂fa

∂w1
,
∂fa

∂µ1
,
∂fa

∂σ1
, ...,

∂fa

∂wm
,
∂fa

∂µm
,
∂fa

∂σm
)

(4)

where f denotes the output of forward-propagation; w, µ, σ are the weight, mean value and variance of
each Gaussian component, respectively; and m is the number of Gaussian components. We need to calculate
the derivative and parameters of the Gaussian component:

∂f

∂wi
=

1√
2πσi

e
− (x−µi)

2

2σ2
i (5)

∂f

∂σi
=

wi√
2πσi

e
− (x−µi)

2

2σ2
i [−1 + (x− µi)2

σ2i
] (6)

∂f

∂µi
= −wi ∗ (x− µ)√

2πσ3i
e
− (x−µi)

2

2σ2
i (7)

wi+1 = λ ∗ ∂f
∂wi

(8)

σi+1 = λ ∗ ∂f
∂σi

(9)

µi+1 = λ ∗ ∂f
∂µi

(10)

where wi+1, µi+1, σi+1 are the parameters that are obtained after updating wi, µi, σi, respectively, and
λ is a learning rate parameter. In practice, there is often a learning rate parameter λ for each Gaussian
component.

The computation of the gradient of bias b is the same as that for the traditional CL and is explained here.

4.3 Number of parameters and computational complexity

Each weight matrixW is obtained by sampling the mixed Gaussian model, and the number of weight matrices
is equal to the number of neighboring nodes of key nodes. The parameters in our method with respect to a
conventional CNN are the Gaussian component weight w, mean value µ, and variance σ for each vector. Let
N be the number of nodes in the graph and M be the number of Gaussian components. The total number of
parameters is 3 ∗N ∗M . Here, we ignore the bias terms, which contribute few parameters.

The complexity of the DGCNN consists of the forward- and back-propagation complexities. Let k be
the number of key nodes in the graph. Let E denote the average number of neighbors of each node. For
the forward-propagation process, DGCNN has a worst-case complexity of O(f(k ∗M ∗ E)), and for the
back-propagation process, DGCNN has a worst-case complexity of O(3 ∗ f(k ∗M ∗ E)). Let T be the
number of graphs. The total computational complexity is O(4 ∗ T ∗ f(k ∗M ∗ E)).
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5 Experiment

5.1 Graph datasets

We conduct our experiments on the following popular real datasets to compare our approach with state-of-
the-art g-kernels and CNNs in terms of retrieval precision:

• PTC [16]: PTC consists of 344 chemical compounds, where the classes indicate carcinogenicity for
male and female rats.

• D&D [17]: D&D is a data set of 1178 protein structures classified into enzymes and non-enzymes.

• AIDS [18]: The dataset contain 4395 chemical compounds, of which 423 belong to class CA, 1081 to
CM, and the remaining compounds to CI .

• PROTEIN [8]: PROTEINS is a graph collection in which nodes are secondary structure elements and
edges indicate neighborhoods in the amino-acid sequence or in 3D space. Graphs are classified as
enzymes or non-enzymes.

• COLLAB [19]: The dataset contains 12,000 graphs, each with an average of 400 nodes. The dataset
contain users, movies, and the users’ ratings of the movies.

5.2 Experimental configuration

(1) We compare the DGCNN method that is proposed herein with the following methods by experiments on
graph classification and graph search:

• G-kernel method: the SP kernel [20], the RW kernel [9], the GK kernel [21], and the Weisfeiler-Lehman
subtree kernel (WL) [10].

• g-CNNs: PATCHY-SAN [8], LMFGCN [22], and SSGCN [13].

(2) We test the influence of the number of Gaussian components on the proposed model using 5, 10, 15,
20, 25, 30 and 35 components and find the optimal number, at which the best effect is obtained;

(3) We perform efficiency analysis.
In our experiment, when calculating the Weisfeiler-Lehman fingerprint, the number of iterations is set as

h = 10, the GK parameter is set as 7, and the factor of RW is set as 10−6, 10−5, . . . , 10−1. For PATCHY-
SAN, the fixed receptive field in this paper is k = 5. The network structure consists of two CLs, which are
one-dimensional (5 ∗ 1); one dense hidden layer; and one softmax layer. The CNN uses 3 ∗ 3 filters. The
network structure of SSGCN is consistent with that of PATCHY-SAN. To obtain fair comparison results, for
the graph classification experiment, the network structure in DGCNN consists of one DGCL, one standard
CL, one dense hidden layer and one softmax layer. In the graph search experiment, the network structure is
the same as that used for graph classification. In this study, the output of the dense hidden layer is treated as a
feature vector of the graph data.

All the experiments are performed under the following configuration: an Intel Xeon X5650, a dual-
core CPU running at 2.66 GHz with 8 GB memory, and a Linux system. The methods that use CNNs are
implemented using the torch framework.
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Figure 6: Retrieval precision on five graph datasets for DGCNN, graph kernel methods and recent graph
convolution networks

Table 1: Comparison of Classification precision between four graph kernel and two graph CNN Methods on
Multiple Graph Datasets

Dataset PTC AIDS PROTEIN D&D COLLAB

number of graphs 344 4395 600 1178 12000
Max 109 207 620 5748 4123
Avg 25.56 30.15 39.06 284.32 400
SP 58.53±2.55 62.37±1.13 65.12±1.01 71.00±1.11 61.23±2.12
RW 57.26±1.30 58.37±2.21 68.11±2.02 68.10±0.11 65.20±3.21
GK 57.32±1.13 60.27±1.12 61.12±1.03 78.45±0.26 64.45±3.12
WL 56.97±2.01 59.97±1.01 62.23±1.03 77.95±0.70 61.25±1.72

PSCH [8] 59.43±3.14 60.10±2.72 72.10±1.72 74.58±2.85 62.32±2.45
LMFGCN [22] 61.32±1.21 59.21±2.32 67.12±2.25 73.13±1.13 66.13±2.01
SSGCN [13] 60.21±2.14 55.10±1.15 65.10±3.12 75.10±1.02 63.10± 2.12

DGCNN 65.43±3.14 65.10±1.82 75.10±2.72 77.21±0.85 68.34±3.13

5.3 Experimental results

(1) Comparison of the Graph Classification Results
Table 1 shows the graph classification accuracy on each dataset for eight methods: SP, RW, GK, WL,

PSCH, LMFGCN, and DGCNN. The DGCNN, the method presented here, demonstrated good accuracy
on most datasets and attained its best results on the PTC, AIDS, COLLAB and PROTEIN datasets. Unlike
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Figure 7: Relationship between Number of Gaussian Components and Classification precision for Different
Datasets

traditional g-kernel approaches, the DGCNN exhibits a significant advantage on most datasets. Existing
g-CNNs use the standard CNN model and predefine only a one-dimensional convolutional kernel (e.g., 1 ∗ 5)
in the convolutional feature-learning process without making full use of the space information between the
key nodes and their neighborhood information. The method proposed here transforms the discrete learning
process into a process of projecting continuous functions and fully learns the relationships between the
neighboring nodes and key nodes in the graph data. Therefore, on the most datasets, DGCNN outperforms
the existing g-CNN methods and g-kernel methods.

(2) Comparison of the Graph Retrieval Results
The experiment compares the DGCNN and existing methods in terms of graph similarity retrieval

performance. We use the output of the dense hidden layer as the feature vector of the graph data. To ensure a
fair comparison, for PATCHY-SAN, we also use the output of the dense hidden layer as the feature vector of
the graph data. As indicated by the experiment results shown in Fig. 6, on the PTC, PROTEIN, COLLAB
and AIDS datasets, the DGCNN outperforms the other methods. On the D&D dataset, the DGCNN method
performs similarly to the optimal GK method. The DGCNN outperforms the recently proposed g-CNN
methods on most datasets because the process of regularizing node neighborhoods leads to loss of information
about the node neighborhoods, whereas our convolutional kernel method, which is based on the GMM, builds
a dynamic graph convolutional kernel, which eliminates the local information loss during node neighborhood
regularization.

(3) Influence of the Number of Gaussian Components
The purpose of this experiment is to examine the influence of the number of Gaussian components on the

DGCNN. In the experiment, the number of Gaussian components is defined as m, which is set as 5, 10, 15,
20, 25, 30 or 35. For each case, we perform the same experiment on multiple graph datasets and calculate the
mean result as the final result. The experimental results are shown in Fig. 7.

For dataset PTC, the classification precision increases significantly from m = 5 to m = 15 and is stable
when m is larger than 15. For ADIS, the classification precision increases significantly from m = 5 to
m = 20 and is relatively stable when m is larger than 20. Similarly, for the PROTRIN and D&D datasets,
the classification precision increases significantly from m = 5 to m = 15 and from m = 5 to m = 25,
respectively, and is stable when m is larger. For the dataset with many graphs, namely COLLAB, more
parameters are needed to make the model fit the data. We found that m = 25 gives the best results on this
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Table 2: Comparison of running time on five graph datasets (in seconds)

Dataset PTC AIDS PROTEIN D&D COLLAB

WL [10] 30 65 143 609 245
PSCH [8] 6 10 31 154 235

LMFGCN [22] 14 23 41 72 62
SSGCN [13] 15 20 58 150 200

DGCNN 16 25 57 152 212

graph dataset.
These experiments indicate that the optimal numbers of Gaussian components for different datasets are

different. Increasing the number above the optimal number does not increase the precision.
In the next experiments, we use the optimal number of Gaussian components with the best classification

result for each dataset.
(4) Efficiency analysis
We assess the efficiency of the DGCNN by applying it to graph datasets. For a given graph, we compute

the end-to-end running time. The results in Table 2 show that the running time of the DGCNN is less than
that of WL. In addition, the average values for other graph convolutional approaches on different datasets are
11.7 s (for PTC), 18 s (for AIDS), 44 s (for PROTEIN), 126 s (for D&D), and 165 s (for COLLAB). The
results of the DGCNN are somewhat slower (the gap is 4.3 s for PTC, 7 s for AIDS, 13 s for PROTEIN,
26 s for D&D, and 47 s for COLLAB) than the other graph convolutional approaches, probably because
generating the receptive fields takes less time than sampling the kernel parameters on the GMM. The recent
graph convolution approaches need to generate the receptive fields as the input of the CNN. In the CL of
our approach, additional computation is required to sample the parameters on the GMM. However, the
total running time of these additional computations is not significantly different and is of the same order of
magnitude.

6 Discussion and conclusions

We have presented a DGCNN based on a GMM that is applicable to graph similarity matching. The main
innovation of this model is that by sampling the corresponding convolutional kernel parameters from a
mixed Gaussian distribution, the dynamic convolutional kernel is adapted to the size and order of the node
neighborhood. Therefore, our model supports different scales of convolutional receptive fields, thereby
avoiding the loss of graph information during the regularization of node neighborhoods. The key aspect of
our model is the GMM-based DGCL, which performs convolutional learning on local node neighborhoods of
any graph while achieving the back-propagation of graph convolution.

Graph convolutional parameters are combined into a neural network optimization process and optimized
to a large degree. Finally, we perform graph classification and search experiments on standard graph datasets
such as PTC, PROTEIN, COLLAB and AIDS. These experiments indicate that the DGCNN outperforms
existing g-kernels and g-CNNs.

The main novelty of the DGCL is that our architecture changes the discrete parameter learning problem
into a parameter sampling problem of the GMM. Therefore, the proposed approach does not rely on the
format of the input data. Thus, the DGCL is also valid for feature learning on other irregular input data, such
as text data and 3D shape data.
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Figure 8: the common model of DGCL

As shown in Fig. 8, we represent arbitrary data in matrix form. Then, the matrix serves as the input of the
DGCL, and the output of the DGCL can serve as the input of a standard CL or a fully connected layer (FCL).
Solid lines denote forward-propagation processes of networks and dotted lines represent back-propagation
processes of networks. Therefore, DGCL can be combined with an arbitrary CNN to handle arbitrary regular
and irregular data.
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