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Abstract

We investigate the phenomenon of vibrational resonance (VR) in neural populations, whereby

weak low-frequency signals below the excitability threshold can be detected with the help of addi-

tional high-frequency driving. The considered dynamical elements consist of excitable FitzHugh-

Nagumo neurons connected by electrical gap junctions and chemical synapses. The VR perfor-

mance of these populations is studied in unweighted and weighted scale-free networks. We find

that although the characteristic network features – coupling strength and average degree – do not

dramatically affect the signal detection quality in unweighted electrically coupled neural popula-

tions, they have a strong influence on the required energy level of the high-frequency driving force.

On the other hand, we observe that unweighted chemically coupled populations exhibit the oppo-

site behavior, and the VR performance is significantly affected by these network features whereas

the required energy remains on a comparable level. Furthermore, we show that the observed VR

performance for unweighted networks can be either enhanced or worsened by degree-dependent

coupling weights depending on the amount of heterogeneity.
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I. INTRODUCTION

The ability of weak-signal detection and transmission of nonlinear systems is crucial to

understand the processing of information in many complex structures in nature. Over the

last few decades, much attention has been devoted to stochastic resonance (SR), which

manifests itself as detection and transmission of weak-signals in the presence of noise [1, 2].

In a large variety of artificial and natural nonlinear dynamical systems, including physical

and biological ones, it is observed that the presence of an optimal level of noise leads to

maximal correlation between the input signal and the system’s response [3–12]. However,

due to the random nature of noise, researchers have been looking for alternatives to obtain

similar signal detection performances. Recently, it has been shown that the response of a

nonlinear system to a weak low-frequency signal can be enhanced by an additional high-

frequency input, which then has a role similar to noise in SR. This SR-like phenomenon

is known as vibrational resonance (VR). Then, the response of a nonlinear system results

in a bell-shaped dependence on amplitude of the high-frequency driving signal, indicating

that the correlation between the signal and the system’s response is maximal around a

moderate vibration force [13]. It is worth to note that VR is a different concept than

classical vibrational control theory [14–16]. Although, VR and vibrational control have in

common that the system’s performance is enhanced due to an additional high-frequency

driving, the purpose, however, is of different nature: The aim of vibrational control is the

stabilization of unstable (steady) states, while vibrational resonance will drive the system

away from its fixed point.

In recent years, there has been a growing interest in studying VR in excitable neuronal

systems [17, 18]. The reasons are manifold: The presence of such bichromatic signals with

widely separated frequencies is very common in the internal and surrounding environment of

living organisms [19–24]. Furthermore, neurons are generally subject to multiple signals of,

for instance, sensory or motor information that can range from milliseconds to days. Another

remarkable example is the dynamical behavior of bursting neurons, which operates on two

different time scales [25]. Moreover, the effect of high-frequency stimulation in treatments

of neurological disorders, i.e., Parkinson and epilepsy, can be studied in the framework of

VR in neuronal systems [26, 27].

Motivated by the above mentioned reasons, various works have investigated VR in neu-
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ronal systems at the level of both a single neuron and networks under different biophysical

conditions. For instance, Ullner et al. studied VR in a single FitzHugh-Nagumo model

and showed that the optimal amplitude of the high-frequency signal can indeed increase the

response of the neuron to a low-frequency signal [28]. They also showed that high-frequency

driving can substitute a fraction of the noise and hence control the SR performance via

the VR mechanism. Wu et al. [26] studied VR in a more realistic model neuron, i.e., the

Hodgkin-Huxley system. Comparing to VR in models with constant ion concentrations,

they observed significantly enhanced vibrational multi-resonances for a single neuron where

the potassium and sodium ion concentrations vary temporally. On the level of neural pop-

ulations, VR has been investigated extensively for different coupling topologies including

feed-forward [29–31], random [18, 32] and small-world networks [33, 34]. The vast majority

of these studies reported the emergence of VR under the variation of population features

such as the population size, complexity of topology, synaptic coupling type, and local neu-

ronal dynamics. Apart from these works, as a first attempt, we have recently studied VR

in a scale-free (SF) network, which is a well-known and widely-used connectivity paradigm

in computational studies of local microcircuits since such connectivity has been observed in

many functional brain regions via neuroimaging and electrophysiological studies [35–38]. We

demonstrated that VR can also emerge in a SF neuronal network for a wide range of system

parameters. Moreover, it was shown that neuronal heterogeneity in this type of networks

may give rise to a different VR behavior compared to homogeneous populations in terms of

the signal encoding quality and required energy level [39].

Here, we continue to study the VR phenomenon in SF networks by considering electrically

and chemically coupled neural populations. In fact, it should be noted that VR dynamics

in neural populations consisting of electrical and chemical couplings have been studied in

several previous works [29, 32, 34], in which various types of VR behavior have been reported

for different network types. This plurality of reported results indicates that the influence of

electrical and chemical synaptic couplings on VR is highly associated with network features

(i.e. topology, network size, average degree and complexity). For instance, a coupling scheme

may enhance VR performance of a population with a given network topology whereas the

same coupling may worsen it with another type of topology. This relation also holds for SR

phenomenon in neuronal systems, as many reported findings indicate that the noise-assisted

weak signal detection ability of electrically and chemically coupled populations is peculiar to

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

different network states [40–44]. Therefore, it is difficult to conclude that one coupling type

is vastly superior to another when considering SR and VR phenomena in neuronal networks.

Since the precise roles of different types of coupling in shaping VR performance in SF net-

works are still not completely established, our aim is to investigate the conditions for the

emergence of VR in SF networks of neurons coupled via electrical and chemical synapses.

This will fill a gap with respect to the importance of this relevant network topology. On the

other hand, recent publications on the VR phenomenon in neural populations have entirely

focused on unweighted networks, where each link between coupled neurons is realized with

a fixed coupling strength. However, this is a simplification of the peculiarities of an actual

neural medium since findings from imaging studies have demonstrated that neural popula-

tions have not only complex connection topologies but also weighted communication paths.

This also holds for many real-world networks, e.g. transportation, social and other biological

systems such as gene and protein interaction networks [45–49]. Therefore, investigating the

VR dynamics of electrically and chemically coupled population in a weighted SF network is

of great importance.

In what follows, firstly, the emergence of VR in unweighted electrically and chemically

coupled populations is demonstrated comparatively as a function of key system parameters,

i.e., coupling strength and link density. Then, we systematically investigate the effect of

weighted coupling on the VR performance in both cases and conclude in Sec. IV with a

summary.

II. MODELS AND METHODS

We consider a population of identical N = 200 neurons. The dynamics of each neuron in

the population are modeled by the well established FitzHugh-Nagumo equations [50]. This

is a convenient neural system for investigating the VR phenomenon due to its simplicity

to control the excitability and its computational efficiency. This simple but paradigmatic

model mimics the main firing characteristics of neuronal activities of excitability type II.

The equations of the FitzHugh-Nagumo model in a population are given by:

ε
dxi(t)

dt
= xi(t)−

xi(t)
3

3
− yi(t) + Isyni (t) (1a)

dyi(t)

dt
= xi(t) + a+ Istimi (t). (1b)
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The dimensionless variables xi and yi denote a fast activation variable that represents the

voltage of the membrane, and a slow recovery variable that inhibits the activator, respec-

tively. The parameter ε is very small and separates their time scales. The value of the time

scale ratio is set to ε = 0.01. The excitability level of each neuron is determined by the

bifurcation (control) parameter a. The uncoupled FitzHugh-Nagumo neuron is excitable for

|a| > 1 and the system has a stable fixed point (x∗i , y
∗
i ) = (−a,−a+ a3/3). This fixed point

becomes unstable for |a| < 1. Then, the system exhibits an oscillatory behavior generating

regular spikes. In the following, the bifurcation parameter is set to a = 1.05 for all neurons

in the network, because we are interested in the weak-signal detection performance of the

neurons in their excitable regime.

The external stimulus current Istimi applied to neuron i is a bichromatic signal consisting

of a subthreshold low-frequency signal (LFS) and a high-frequency stimulus (HFS) modeled

as Istimi (t) = A cos(ωt) + B cos(Ωt + φi) where A and ω (B and Ω) refer to the LFS (HFS)

amplitude and angular frequency, respectively. We choose a LFS amplitude of A = 0.01 so

that the system remains below the excitation threshold in the presence of LFS alone, and

Ω � ω, in particular Ω = 5 and ω = 0.1. The initial HFS phases φi are randomly drawn

from a uniform distribution between [0 π].

In Eq. (1a), the coupling term Isyni is the total synaptic current received by neuron i. It

includes electrical or chemical synapses. In the case of electrical gap junctions, the coupling

is proportional to the sum of the difference between membrane voltage of neuron i and that

all of its neighbors j ∈ N(i) and can be described by:

Isyni (t) =
∑

j∈N(i)

ge (xj(t)− xi(t)) , (2)

where ge is the electrical synaptic strength between neurons i and j. Chemical synapses have

more complex and nonlinear dynamics that arise from mechanisms underlying the modula-

tion of the presynaptic neurotransmitter release and postsynaptic binding to a neuroreceptor.

Then, the total synaptic current takes the following form:

Isyni (t) =
∑

j∈N(i)

gc sj(t) (Erev − xi(t)) , (3)

where sj is determined by

dsj(t)

dt
= −sj(t)

τsyn
+

nj∑

l=1

δ
(
t− t(j)l

)
. (4)
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Here, gc is the maximal chemical synaptic strength. sj is the fraction of open channels of the

neuron j. Once the presynaptic neuron j triggers an action potential at times t
(j)
1 , . . . , t

(j)
nj ,

all synaptic channels open and the fraction sj is set to sj = 1 via the δ-function. Then, it

decays exponentially with a fixed time constant τsyn = 0.83. Erev is the excitatory synaptic

reversal potential and it is assumed to be zero.

As connection topology of the neural population, we consider potentially weighted SF

networks. This is a well-known and widely-used connectivity model in computational stud-

ies of neuroscience, since many neuroimaging and electrophysiological studies in recent years

have revealed that many functional brain regions often exhibit such a topology [35–38, 51].

Graph-based analyses of resting-state fMRI data have also suggested an efficient organiza-

tion of intrinsic brain connectivity networks, indicating that the human brain is not just

represented by binary networks, but also weighted interactions [52–54]. The most promi-

nent construction protocol for a SF network is based on preferential attachment and known

as the Barabási-Albert model [55]. This procedure starts with a set of m fully connected

nodes, and at each step a new node is introduced that connects to m different nodes already

present in the network with a degree-dependent probability Π, such that Π = ki/
∑

j kj

where ki and kj are the degrees of nodes i and j, respectively. This procedure yields a net-

work with an average degree kavg, and a power-law degree distribution P (k) ∼ k−3. In our

setup, unless otherwise stated, our SF networks consist of N = 200 nodes with one neuron

at each node. In addition, to incorporate the coupling weights in the network interactions,

we assign weights to links based on the node degrees. We assume the weight associated

the link between two nodes to be wij = (kikj)
−α [56]. Then, the value of synaptic strength

between two connected neurons becomes ge = wijge for electrical coupling and gc = wijgc for

chemical coupling. Finally, α is a tunable parameter characterizing the weight distribution

and the amount of heterogeneity. Unweighted networks are recovered for α = 0.

To evaluate the effect of VR on the network, the collective temporal behavior is measured

by calculating the average membrane voltage

xavg(t) =
1

N

N∑

i=1

xi(t), (5)

where xi(t) is the time series of each FHN neuron simulated for n = 100 periods of the

low-frequency signal (T = 2π/ω). The response of the network output to the low-frequency
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signal is quantified by means of the Q factor [13]:

Q =
√
Q2

sin +Q2
cos, (6)

where Qsin and Qcos are computed via the Fourier coefficients after eliminating a sufficiently

large transients, T0:

Qsin =
1

nT

∫ T0+nT

T0

2xavg(t) sin(ωt)dt (7a)

Qcos =
1

nT

∫ T0+nT

T0

2xavg(t) cos(ωt)dt. (7b)

Q is a measure of the Fourier spectrum of xavg at the frequency ω. With this value, we can

test the response of the network to the low-frequency signal. The described mathematical

model is integrated numerically using the forward Euler method with a time step ∆t = 0.001.

The simulations presented below have been averaged over 20 realizations of the network for

any given set of the model parameters.

III. RESULTS

In this section, we will systematically analyze the emergence of VR in electrically and

chemically coupled populations of FitzHugh-Nagumo neurons. The VR dynamics of these

two types of populations will be investigated in both unweighted and weighted network

configurations. For comparison, we first study VR in unweighted networks.

Since the density of links is a crucial property in determining the dynamics and com-

plexity of a network, the weak-signal detection ability of electrically and chemically coupled

populations will be analyzed in networks of different link densities. For this purpose, we

compute the input-output correlation measure Q for various connectivity levels and fixed

coupling strengths as a function of the high-frequency driving amplitude B and, by varying

the average degree kavg as the control parameter.

Figure 1 shows the obtained results in both electrically and chemically coupled popu-

lations. In electrically coupled unweighted population, the density of connections in the

network has no prominent effect on the weak LFS encoding performance since the resulting

maximal values Qmax remain constant independent of kavg (Fig. 1a). Additionally, it can be

observed that the increase in kavg induces an increase of the optimal driving amplitude Bopt

corresponding to the peak Qmax. This indicates that it requires more energy to obtain the
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Figure 1: Emergence of vibrational resonance in unweighted electrically and chemically coupled

neural populations. The panels show the variation of the amplification factor Q as a function of

high-frequency driving amplitude B for different average degrees in (a) electrically coupled and (b)

chemically coupled unweighted networks. Model parameters: ge = gc = 0.03, α = 0, A = 0.01,

Ω = 5, and ω = 0.1.

same signal detection performance in the presence of dense connectivity in an electrically

coupled network. On the other hand, a different effect appears in the case of chemically

coupled unweighted populations. Figure 1b shows that although the required energy level

does not change very much, the signal detection performance slightly decreases as kavg in-

creases. These findings indicate that for fixed coupling strengths, the density of connections

in a SF network influences the VR dynamics distinctly in these two types of populations.

In particular, the link density plays a key role for the required energy consumption in an

electrically coupled population, whereas it is important in a chemically coupled population

for determining the efficiency of weak-signal detection.

To generalize above findings, it is important to elaborate further on the results for different

synaptic coupling strengths of electrically and chemically coupled populations. To do so,

we calculate the optimal required energy level Bopt and the maximal amplification factor

Qmax as a function of ge and gc separately for different kavg values. Figure 2 features the

obtained results. It can be seen that the variation of synaptic coupling strengths ge and

gc dramatically enhance the effects of kavg for both types of coupling. More precisely, as

ge increases, the optimal high-frequency driving force amplitude required for similar VR

performance increases in the electrically coupled population. This effect becomes more

8
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Figure 2: The influence of link density varied via the average degree kavg and synaptic strengths

(ge and gc) on the signal detection quality (Qmax) and optimal required energy level (Bopt) in

electrically and chemically coupled unweighted networks. Panels (a) and (b) show the variations

of Bopt and Qmax, respectively, as a function of ge for different values of kavg in electrically coupled

unweighted population. Panels (c) and (d) show the similar analysis as in (a) and (b) for chemically

coupled unweighted neural populations. Other model parameters as in Fig. 1.

prominent in densely coupled networks than in sparser ones (Fig. 2a). However, the quality

of amplification remains almost the same with regards to changes in ge (Fig. 2b). On

the other hand, in the case of chemically coupled unweighted populations, variation of gc

does not affect the optimal energy level Bopt (Fig. 2c) regardless of kavg. However, its

performance dramatically decreases the signal amplification quality (Fig. 2d). Note that

latter effect becomes more prominent as the number of connections increases in chemically

coupled populations.

Since the neural populations have not only complex network topologies but also weighted
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Figure 3: The influence of weighting on VR in electrically and chemically coupled neural popula-

tions. The panels demonstrate the variation of Q as a function of B for different values of weighting

parameter α in (a) electrically and (b) chemically coupled populations. Parameters: ge = gc = 0.1

and kavg = 12 in both cases. Other parameters as in Fig. 1.

communication paths, it is crucial to study the VR behavior in weighted networks in order

to understand the VR dynamics in actual neural medium. This also offers insight into how

weighting of connections within the population affects the weak-signal encoding efficiency of

electrical and chemical synapses. For this purpose, we consider a dense and strongly coupled

network configuration with kavg = 12 and ge = gc = 0.1, and then compute the response of

the networks Q as a function of B for different weighting levels by tuning the parameter α.

The obtained results are presented in Fig. 3a for electrically and in Fig. 3b for chem-

ically coupled populations. It can be seen that weighting the connections in electrically

coupled population does not significantly affect the VR performance since the maximum

Q-values remain almost same for any weighting level. On the other hand, as the value of α

increases, the optimal high-frequency driving amplitude Bopt required for the best VR per-

formance gradually decreases for a given link density and coupling strength. This indicates

that an electrically coupled neural population having weighted connections needs less energy

to amplify weak-signals via the VR mechanism. Note that although there is a pronounced

reduction in the required energy level, the range of B-values, for which the weak-signal is

efficiently amplified, becomes smaller for larger α. This indicates a limitation of the energy

range suitable for the emergence of VR in weighted electrically coupled populations. We also

perform the same analysis for the case of chemically coupled neural populations. Figure 3b
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shows that weighting in chemically coupled populations affects weak-signal processing dif-

ferently compared to electrically coupled neural populations. As the weighting parameter α

increases, the network response Q also increases, implying a significant enhancement in VR

performance of the populations. However, the optimal high-frequency driving amplitude

Bopt does not change very much with variation of weighting level in the network.
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Figure 4: The influence of weighting parameter α and synaptic strength on the signal detection

quality (Qmax) and optimal required energy level (Bopt) in electrically and chemically coupled

weighted populations. Panels (a) and (b) show the variation of Bopt and Qmax, respectively, as a

function of α in both types of population for fixed mean degree kavg = 12 and different synaptic

strengths. Other parameters as in Fig. 1.

To extend the above findings, we calculate the optimal required energy level Bopt and the

maximal amplification factor Qmax as a function of the weighting parameter α for different

synaptic strengths of both electrical and chemical coupled populations. Figure 4 summarizes

the obtained results. In Fig. 4a, it can be observed that regardless of weighting level and

synaptic strength, the most energy efficient neural response is obtained in chemically coupled

populations since Bopt remains same at a minimum value for all parameter variations. On

the other hand, as the network becomes more weighted in electrically coupled populations,

Bopt decreases for all ge values and finally saturates to a minimum energy level, which is also

required for chemically coupled populations. In terms of signal detection quality, weighting

the network in electrically coupled populations has neither a promoting nor a suppressing

role at any given gc but it significantly increases Qmax indicating an enhancement in the

weak-signal encoding capability of the populations. Thus, our results suggest that the
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energy dependence of VR in electrically coupled populations is not as strong as in the case

of unrealistic unweighted networks. Moreover, a poor weak-signal encoding quality in a

chemically coupled could be high, if the connections weights are considered in a SF network.
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Figure 5: The influence of weighting on the response of electrically and chemically coupled popu-

lations. (a) The panels show the firing patterns of electrically coupled populations in response to a

low-frequency periodic stimulation (bottom panel) as the weighting parameter α varies. (b) Similar

analysis as in (a) for chemically coupled populations. Note that the presented firing patterns are

obtained for a fixed high-frequency driving amplitude B = 0.06. Other parameters as in Fig. 3.

A qualitative understanding on different effects of weighting in electrically and chemically

coupled populations can be gained by analyzing the spatio-temporal response patterns of

the neurons. Figure 5 shows raster plots for different values of the weighting parameter

α for a fixed HFS amplitude of B = 0.06, which eventually provides maximal Q for each

population types (Fig. 3). In the case of electrically coupled neural populations (Fig. 5a),

it can be seen that there is no spiking activity in response to input signals in unweighted

networks (α = 0). Increasing α to a certain extent cannot trigger neural activity indicating
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that LFS signal is not detected by the population in the presence of HFS. However, when

the weighting parameter is set to α = 0.5, all neurons fire synchronously in correlation with

the negative phase of LFS implying a successful detection and transmission of the weak

input signal. We observe a different dynamical behavior in chemically coupled network

where neurons fire coherently regardless of weighting level in the network. However, the

correlation between LFS signal and collective spiking varies with α. More precisely, as seen

in Fig. 5b, synchronized spiking columns appear during both phases of LFS resulting in lower

Q-values. As the network becomes more weighted, the number of firing events in positive

phase of LFS decreases. Then, all neurons start to fire only during the negative LFS phase.

Such a locked mode of spiking activity into a single signal phase, either negative or positive,

provides relevant information about LFS.

IV. CONCLUSIONS

We have investigated vibrational resonance in excitable FitzHugh-Nagumo systems cou-

pled in a scale-free network via electrical gap junctions and chemical synapses. We have

found that the detection performance of weak low-frequency signals is influenced by specifics

of the considered coupling scheme. The underlying mechanism responsible for these different

behaviors in weighted and unweighted populations may be described in terms of the opti-

mal required energy level Bopt and strongest response factor Q. The unweighted network

is constructed with densely and strongly coupled identical neurons with a fixed excitability

parameter a = 1.05. From early studies of VR in single neurons [17, 18, 29, 57], it is known

that the optimal HFS amplitude for a FitzHugh-Nagumo model neuron to encode a low-

frequency signal via the vibrational resonance mechanism is Bopt ≈ 0.06 for a = 1.05. In our

analysis, since the considered populations have dense and strong network connections, the

total synaptic current introduced into each FitzHugh-Nagumo neuron in electrically cou-

pled networks becomes very large. This provides a permanently increased mean value of

membrane potentials, which consequently increases the spiking threshold of each neurons

by modulating the excitability parameter a. Therefore, neurons in unweighted electrically

coupled populations stay in a quiescent state in response to low-frequency signals because

each neuron needs more energy to be attracted into the basin of the spiking state. On the

other hand, since the transmission via chemical synapses is controlled by a time constant
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τsyn of the neurotransmitter-release [58–60], the increase in the average membrane potential

of neurons is not as high as in the case of electrically coupled populations. Thus, the ex-

citability level of neurons is less effected by the total synaptic inputs. This is the reason why

we have observed sparse synchronous firings in unweighted chemically coupled populations.

After introducing weights into synaptic connections, the total synaptic current for each neu-

ron is significantly reduced proportional to the node degree of each unit in the network

because of scaled synaptic strengths. This means that neurons in both types of coupling

start to become independent from the network. Thus, above mentioned disadvantageous of

unweighted networks – high energy dependence and low signal amplification quality in elec-

trically and chemically coupled populations, respectively – can be removed as the weighting

level increases in the network.

Note that results on vibrational resonance dynamics in neural populations have been

reported mostly based on networks of electrically coupled units [17, 39, 61]. A few study have

also considered chemical synapses by considering trivial network configurations [18, 29, 34].

Here, we have shown the existence of vibrational resonance in chemically coupled neural

populations and compared it with electrically coupled ones in scale-free networks. Although

previous works stated that electrical synapses are more efficient for signal detection in neural

populations than chemical ones, our results have revealed that one can achieve the same

vibrational resonance performance in both coupling schemes if the features of the scale-

free network are fine-tuned. Additionally, we have suggested that both coupling types in

a given network have relative advantages with respect to each other by means of energy

requirements and maximal signal encoding achievements. Thus, it can be concluded that

network topology should be taken into account to determine the role of coupling type on

the weak-signal detection capability of a neural population by vibrational resonance.

In this work, we focussed on class II excitability for the single neuronal dynamics in a

given population. Since neurons with class I and III excitabilities are also ubiquitous in the

brain [62, 63], a possible extension of the current work should investigate VR in electrically

and chemically coupled neuronal networks by considering class I and III excitability for

single neuronal dynamics. This is important, as the dynamics of populations composed of

neurons with different excitability characteristics have been shown to exhibit different be-

haviors at the population level [64–66]. Furthermore, we considered only excitatory synapses

for chemically coupled populations. It will also be interesting and insightful to further in-
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vestigate whether different chemical coupling schemes (i.e., excitatory-inhibitory and purely

inhibitory coupled populations) perform different roles in regulating vibrational resonance

in weighted and unweighted neuronal networks.

Acknowledgments

PH acknowledges the support by Deutsche Forschungsgemeinschaft (DFG) in the frame-

work of Collaborative Research Center 910.

[1] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Reviews of

Modern Physics, vol. 70, pp. 223–287, 1998.

[2] B. McNamara and K. Wiesenfeld, “Theory of stochastic resonance,” Physical Review A,

vol. 39, no. 9, p. 4854, 1989.

[3] D. F. Russell, L. A. Wilkens, and F. Moss, “Use of behavioural stochastic resonance by paddle

fish for feeding,” Nature, vol. 402, no. 6759, p. 291, 1999.

[4] J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, “Noise enhancement of information

transfer in crayfish mechanoreceptors by stochastic resonance,” Nature, vol. 365, no. 6444,

p. 337, 1993.

[5] V. S. Anishchenko, A. B. Neiman, F. Moss, and L. Shimansky-Geier, “Stochastic resonance:

noise-enhanced order,” Physics-Uspekhi, vol. 42, no. 1, pp. 7–36, 1999.

[6] G. Schmid, I. Goychuk, and P. Hänggi, “Stochastic resonance as a collective property of ion

channel assemblies,” EPL (Europhysics Letters), vol. 56, no. 1, p. 22, 2001.

[7] P. Hänggi, “Stochastic resonance in biology how noise can enhance detection of weak signals

and help improve biological information processing,” ChemPhysChem, vol. 3, no. 3, pp. 285–

290, 2002.

[8] M. Perc, “Stochastic resonance on excitable small-world networks via a pacemaker,” Physical

Review E, vol. 76, no. 6, p. 066203, 2007.

[9] J. F. Mejias and J. J. Torres, “Emergence of resonances in neural systems: the interplay

between adaptive threshold and short-term synaptic plasticity,” PLOS ONE, vol. 6, no. 3,

p. e17255, 2011.

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[10] J. J. Torres, J. Marro, and J. F. Mejias, “Can intrinsic noise induce various resonant peaks?,”

New Journal of Physics, vol. 13, no. 5, p. 053014, 2011.

[11] G. Pinamonti, J. Marro, and J. J. Torres, “Stochastic resonance crossovers in complex net-

works,” PLOS ONE, vol. 7, no. 12, p. e51170, 2012.

[12] J. J. Torres, I. Elices, and J. Marro, “Stochastic multiresonances in complex nets of spiking

neurons,” International Journal of Complex Systems in Science, vol. 3, no. 1, pp. 21–25, 2013.

[13] P. S. Landa and P. V. E. McClintock, “Vibrational resonance,” Journal of Physics A: Math-

ematical and General, vol. 33, no. 45, p. L433, 2000.

[14] S. M. Meerkov, “Principle of vibrational control: Theory and applications,” IEEE Transac-

tions on Automatic Control, vol. 25, no. 4, pp. 755–762, 1980.

[15] S. M. Meerkov, “Vibrational control theory,” Journal of the Franklin Institute, vol. 303, no. 2,

pp. 117–128, 1977.

[16] J. M. Berg and I. P. Manjula Wickramasinghe, “Vibrational control without averaging,” Au-

tomatica, vol. 58, pp. 72–81, 2015.

[17] B. Deng, J. Wang, X. Wei, K. M. Tsang, and W. L. Chan, “Vibrational resonance in neuron

populations,” Chaos, vol. 20, no. 1, p. 013113, 2010.

[18] J. Sun, B. Deng, C. Liu, H. Yu, J. Wang, X. Wei, and J. Zhao, “Vibrational resonance in

neuron populations with hybrid synapses,” Applied Mathematical Modelling, vol. 37, no. 9,

pp. 6311–6324, 2013.

[19] G. M. Shepherd, The Synaptic Organization of the Brain. Oxford University Press, USA,

2004.

[20] J. D. Victor and M. M. Conte, “Two-frequency analysis of interactions elicited by vernier

stimuli,” Visual Neuroscience, vol. 17, no. 6, pp. 959–973, 2000.
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